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Two-dimensional dipolar gap solitons in free space with spin-orbit coupling
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We present gap solitons (GSs) that can be created in free nearly two-dimensional (2D) space in dipolar spinor
Bose-Einstein condensates with the spin-orbit coupling (SOC), subject to tight confinement, with size a⊥, in the
third direction. For quasi-2D patterns, with lateral sizes l � a⊥, the kinetic-energy terms in the respective spinor
Gross-Pitaevskii equations may be neglected in comparison with SOC. This gives rise to a band gap in the system’s
spectrum, in the presence of the Zeeman splitting between the spinor components. While the present system
with contact interactions does not produce 2D solitons, stable gap solitons (GSs), with vorticities 0 and 1 in the
two components, are found, in quasianalytical and numerical forms, under the action of dipole-dipole interaction
(DDI). Namely, isotropic and anisotropic 2D GSs are obtained when the dipoles are polarized, respectively,
perpendicular or parallel to the 2D plane. The GS families extend, as embedded solitons (ESs), into spectral
bands, a part of the ES branch being stable for isotropic solitons. The GSs remain stable if the competing contact
interaction, with the sign opposite to that of the DDI, is included, while the addition of the contact term with the
same sign destabilizes the GSs, at first replacing them by breathers, and eventually leading to destruction of the
solitons. Mobility and collision of the GSs are studied too, revealing negative and positive effective masses of
the isotropic and anisotropic solitons, respectively.

DOI: 10.1103/PhysRevA.95.063613

I. INTRODUCTION

Gap solitons (GSs) are usually defined as self-trapped
modes existing in spectral band gaps of periodic potentials.
GSs have been predicted and observed in diverse optical media,
such as Bragg gratings [1], waveguide arrays [2], and photonic
crystals [3] (see also reviews [4–6]), as well as in Bose-Einstein
condensates (BECs) trapped in optical lattices [7,8], and in
a plasmonic medium including a lattice potential [9]. The
dynamics of spatial GSs is usually modeled by the nonlinear
Schrödinger or Gross-Pitaevskii equations (NLSEs, GPEs)
with periodic potentials. GSs in fiber gratings are described
by nonlinear coupled-mode equations for counterpropagating
waves [4]. In all cases, the underlying spatially periodic
structures play a key role, producing spectral band gaps in
which GSs can be created.

A challenging problem in optics and BEC is the creation
of stable fundamental and vortical bright solitons in two-
and three-dimensional (2D and 3D) geometry [10–12]. New
possibilities are offered by spin-orbit coupling (SOC) in spinor
BEC [13] and its counterparts in optics [14,15]. In particular,
the interplay of the linear SOC with the cubic attractive
nonlinearity opens a way for creating 2D ground-state [16]
and 3D metastable [17] solitons in free space, which was
previously deemed impossible (1D [18] and 2D [19] GSs
supported by a combination of lattice potentials and SOC were
predicted too).

We aim to demonstrate that SOC offers another unexpected
possibility, to create stable 2D GSs in free space, without
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the use of any periodic potential. The model is formulated in
Sec. II, where we consider the 2D condensate under the action
of strong SOC, which makes it possible to neglect the kinetic-
energy terms in the corresponding system of coupled GPEs,
thus reducing them to a first-order system of coupled-mode
equations. The gap in the system’s spectrum is generated by
the Zeeman splitting (ZS), which is an essential ingredient of
SOC settings [20]. However, numerical results demonstrate
that the usual contact nonlinearity of any sign fails to build
solitons in this 2D system. Our main result is the prediction
of families of stable isotropic and anisotropic 2D GSs under
the action of dipole-dipole interaction (DDI). We note that
the realization of SOC in the condensate of dipolar chromium
atoms was proposed in Ref. [21], and elaborated theoretically
in subsequent works [22].

Using a combination of an analytical approximation, which
is available close to edges of the band gap (similar to the
approximation recently developed in Ref. [23]), and numerical
methods, in Sec. III we construct families of stationary
solutions for isotropic and anisotropic GSs in the condensates
composed of dipoles oriented, respectively, perpendicular or
parallel to the system’s plane. The isotropic and anisotropic
families extend, severally, as embedded solitons (ESs) [24]
across the top and bottom edge of the band gap into the adjacent
Bloch band. Stability of the GSs and ESs is explored by means
of systematic direct simulations. Mobility and collisions of
the GSs are studied in Sec. IV, showing that the effective
mass is positive for the anisotropic 2D solitons, and negative
for the isotropic ones (negative mass is a known property of
GSs [25]). In Sec. V, we consider an extended system, which
includes both the dipole-dipole and contact interactions. The
conclusion is that the solitons persist as stable modes under
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the action of competing interactions with opposite signs. If the
signs are identical, the addition of the contact interaction tends
to destabilize a soliton, replacing it by a breather. Eventually,
all self-trapped modes are destroyed. The paper is concluded
by Sec. VI.

II. MODEL

In the scaled form (the corresponding estimates of physical
parameters are given below), the coupled GPEs for two
components of the spinor wave function, φ±, carrying the same
magnetic moment and coupled by the SOC of the Rashba type
[26], are [16,22,23,27–29]

i∂tφ+ = −(2m)−1∇2φ+ + λ(∂x − i∂y)φ− − �φ+

+ (g|φ+|2 + g̃|φ−|2)φ+ + κφ+

×
∫

R(r − r′)(|φ+(r′)|2 + |φ−(r′)|2)dr′,

i∂tφ− = −(2m)−1∇2φ± − λ(∂x + i∂y)φ+ + �φ−

+ (g|φ−|2 + g̃|φ+|2)φ− + κφ−

×
∫

R(r − r′)(|φ+(r′)|2 + |φ−(r′)|2)dr′, (1)

where m is the atomic mass, g and g̃ are strengths of the
contact self- and cross interactions (usually, these strengths
are nearly equal in mixtures of different states of the same
atomic species [30]), while λ,� > 0, and κ > 0 represent
SOC, ZS, and DDI, respectively [21]. Note that the sign of
κ may be altered by means of a rotating magnetic field [31],
and ZS may be replaced by the Stark-Lo Surdo splitting in dc
electric field.

SOC of the purely Rashba type is adopted here as it helps
to build 2D solitons, while the Hamiltonian mixing the Rashba
and Dresselhaus terms tends to cause delocalization [23]. Nev-
ertheless, Eqs. (16) and (17), derived below in the limit case
when one component is much larger than the other, take a uni-

versal form for any combination of the Rashba and Dresselhaus
terms. Although, strictly speaking, those asymptotic equations
are valid only in small vicinities of the bottom and top edges of
the spectral band gap, see Eq. (14) below, the results reported
in the next section [see Fig. 1(b)] clearly demonstrate that the
predictions produced by Eqs. (16) and (17) are quite accurate
in the entire band gap, hence the universality implied by
those equations remains approximately valid for the full GS
families.

In the isotropic setting, with dipoles oriented perpendicular
to the (x,y) plane, the respective repulsive DDI kernel is

Riso(r − r′) = 1/[ε2 + (r − r′)2]3/2, (2)

where cutoff ε is determined by the confinement in the
transverse dimension [32–34], while effects of the attractive
DDI in the transverse direction are suppressed by the tight
confinement, whose strength (trapping frequency) is much
larger than the chemical potential produced by the effective
2D GPE [35]. If the dipoles are polarized parallel to the (x,y)
plane [35], the DDI is anisotropic, with

Raniso(r − r′) = (1 − 3 cos2 �)/[ε2 + (r − r′)2]3/2, (3)

where � is the angle between the polarization direction and
(r − r′). The simplest approximation for the cutoff, adopted
here, is sufficient, as the detailed analysis demonstrates that
the exact form gives rise to practically the same result [32–34].

The SOC coefficient relevant to experimental settings with
transverse-confinement size a⊥ is estimated, in physical units,
as λ � h̄2/(ma⊥) [36]. It follows from here that the kinetic-
energy terms in Eq. (1) may be neglected for all quasi-2D
patterns, with lateral sizes l � a⊥, reducing it to the coupled-
mode equations,

i∂tφ+ = λ(∂x − i∂y)φ− − �φ+ + (g|φ+|2 + g̃|φ−|2)φ+

+ κφ+
∫

R(r − r′)[|φ+(r′)|2 + |φ−(r′)|2]dr′, (4)

FIG. 1. (a) The band gap structure, as per Eq. (6) with (λ,�) = (1,10). The same values of � and λ are used below throughout the paper.
(b) The chemical potential of the isotropic (b1) and anisotropic (b2) 2D solitons vs their total norm N , defined as per Eq. (9). Yellow areas are
spectral bands, with the white gap between them. Blue solid and black dotted curves are, respectively, numerically found stable branches and
their unstable extensions. The stable branch of isotropic solitons [semivortices, see Eq. (10)] traverses the band gap and extends, in the form of
ESs, to the upper band. It is stable at N < Nmax ≈ 45.0. The branch of anisotropic solitons extends into the lower band, but its stable segment
terminates in the gap, at N = Nmax ≈ 28.2. Red dashed curves are semianalytical predictions based on Eq. (16). (c) The share of the total norm
in the vortex component, F∓ = N∓/N vs N for the isotropic (−) and anisotropic (+) solitons. Note that this figure and all others refer to the
scaled norm, while the actual number of atoms in the respective BEC is Nat ∼ 103N , see Eq. (18). In all the panels, we have fixed κ = 0.1.
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i∂tφ− = −λ(∂x + i∂y)φ+ + �φ− + (g|φ−|2 + g̃|φ+|2)φ−

+ κφ−
∫

R(r − r′)[|φ+(r′)|2 + |φ−(r′)|2]dr′, (5)

cf. Ref. [15] in one dimension. In a different context, a 2D
SOC system with a deep optical-lattice potential and negligible
kinetic energy was recently introduced in Ref. [37].

The linear part of Eqs. (4) and (5) is essentially the same
as in the 2D nonlinear Dirac equation (NDE) for bosons in
honeycomb lattices [38], which gives rise to stable states
in the presence of an external trap [39]. In the absence of
the trap, stable 2D solitons were produced by NDE with the
sign-indefinite contact nonlinear terms, ±(|φ+|2 − |φ−|2)φ±,
in its two components [40]. However, this case is not
relevant to the BEC spinor wave function, whose components
represent atomic states with nearly equal intracomponent and
intercomponent scattering lengths [30]. We have checked that
Eqs. (4) and (5) with the corresponding contact nonlinearity,
∼(|φ+|2 + |φ−|2)φ±, fail to create 2D solitons, unlike the
system that includes the kinetic energy [16]. This is explained
by the fact that the gradient energy corresponding to the Dirac
operator in Eqs. (4) and (5), unlike its Schrödinger counterpart,
cannot balance the local cubic nonlinearity. However, it is
shown below that GSs are readily produced by the balance
of the SOC with the DDI, as well as with a combination
of the DDI and contact interaction with opposite signs. The
statements concerning the balance are corroborated by analyt-
ical results reported below for GSs located close to band gap
edges.

Linearizing Eqs. (4) and (5) for φ± ∼ exp(ipx + iqy −
iωt), we derive the dispersion relation,

ω2 = �2 + λ2(p2 + q2), (6)

with the free-space band gap of width 2�, as shown in Fig. 1(a)
for λ = 1,� = 10 (by means of scaling, these values of the ZS
and SOC strengths are fixed in the present work). The band gap
will close if the small kinetic-energy terms are kept in Eq. (1),
which may cause transformation of the GSs into usual solitons
at times much larger than experimentally relevant time scales.

GS solutions to Eqs. (4) and (5) with chemical potential
μ are looked for as φ± = e−iμtu±(x,y), with u± obeying
equations

μu+ = λ(∂x − i∂y)u− − �u+ + (g|φ+|2 + g̃|φ−|2)u+

+ κu+
∫

R(r − r′)[|u+(r′)|2 + |u−(r′)|2]dr′, (7)

μu− = −λ(∂x + i∂y)u+ + �u− + (g|φ−|2 + g̃|φ+|2)u−

+ κu−
∫

R(r − r′)[|u+(r′)|2 + |u−(r′)|2]dr′. (8)

The GS is characterized by the norm, which is proportional to
the total number of atoms in the binary BEC,

N = N+ + N− ≡
∫

(|u+(r)|2 + |u−(r)|2)dr. (9)

Furthermore, Eqs. (7) and (8) with the isotropic DDI kernel
given by Eq. (2) admit solutions with an exact structure of
semivortices [16,17,23], i.e., isotropic complexes with zero

vorticity S = 0 in component u+, and vorticity S = 1 in u:

u+ = U+(r), u− = U−(r)eiθ , (10)

where (r,θ ) are the polar coordinates in the (x,y) plane, and
radial functions U±(r) are real. Indeed, the substitution of the
semivortex ansatz (10) in Eqs. (7) and (8) yields, after perform-
ing the angular integration in the DDI terms, to the following
equations, which include solely the radial coordinate:

μU+ = λ

(
dU−
dr

+ 1

r
U−

)
− �U+ + (gU 2

+ + g̃U 2
−)U+

+ κU+
∫ ∞

0
�(r,r ′)[U 2

+(r ′) + U 2
−(r ′)]r ′dr ′, (11)

μU− = −λ
dU+
dr

+ �U− + (gU 2
− + g̃U 2

+)U−

+ κU−
∫

�(r,r ′)[U 2
+(r ′) + U 2

−(r ′)]r ′dr ′, (12)

where the effective radial kernel is

�(r,r ′) = 2E(k)√
ε2 + (r + r ′)2[ε2 + (r − r ′)2]

,

k ≡ 2
√

rr ′√
ε2 + (r + r ′)2

. (13)

Here, E(k) is the standard complete elliptic integral of the
second kind with modulus k.

Numerical results presented in the next section, see
Figs. 2(a)–2(c) and 3(a1)–3(a3), confirm that Eqs. (7) and (8)
with the isotropic kernel indeed give rise to the two-component
solitons whose structure precisely conforms to ansatz (10).
Furthermore, it is demonstrated below that the anisotropic
kernel gives rise, as a matter of fact, to deformed patterns
of the same semivortex type, with S = 0 in component u− and
S = −1 in u+, see Figs. 2(d)–2(f) and 3(b1)–3(b3) below.

III. FAMILIES OF GAP SOLITONS AND
EMBEDDED SOLITONS

A. Isotropic and anisotropic solitons near edges of the band gap

Close to edges of the band gap of dispersion relation (6),
i.e., at

μ = ∓(� − δμ), 0 < δμ � �, (14)

the two-component problem can be reduced to one of those
previously solved for the single component in the semi-infinite
gap [35,41]. Close to the bottom (top) edge, Eq. (8) for u−
(u+) makes it possible to eliminate this component in favor of
u+ (u−):

u∓ ≈ (λ/2�)(∂x ± i∂y)u±. (15)

In particular, for the isotropic semivortex represented by
ansatz (10), Eq. (15) amounts to U−(r) ≈ (λ/2�)dU+/dr .

Substituting relation (15) in Eq. (8) for u±, one arrives at
an equation for the single component:

δμ · u± = λ2

2�
∇2u± ± g|u±|2u± ± κu±(r)

×
∫

R(r − r′)|u±(r′)|2dr′, (16)
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FIG. 2. Comparison between cross sections, drawn along x = 0, of stable (a)–(c) isotropic solitons [semivortices, see Eq. (10)] and (d)–(f)
anisotropic solitons, as found in the numerical form (blue solid curves), and predicted by Eqs. (15) and (16) (red dashed curves). (a) A GS
with N = 2.013 and μ = −9.7. (b) A GS with N = 21.37 and μ = 1.72. (c) An ES with N = 44.47, μ = 16.65, located close to the stability
boundary (the blue dot) of isotropic solitons. (d) A GS with N = 2.0043, μ = 9.935. (e) A GS with N = 16.12, μ = 4.06. (f) A GS with
N = 28.17, μ = −3.78, located close to the stability boundary of anisotropic solitons.

where ∇2 = (∂x + i∂y)(∂x − i∂y) ≡ ∂2
x + ∂2

y appears as a
square of the SOC operator from Eqs. (4) and (5). It is easy
to see that the same ∇2 is produced by squaring the SOC
operator, which presents a general combination of the Rashba
and Dresselhaus terms.

Along with Eq. (16), it is relevant to consider its time-
dependent version,

∓ i
∂

∂t
ũ± = λ2

2�
∇2

±ũ ± g|ũ±|2±ũ ± κũ±(r)

×
∫

R(r − r′)|ũ±(r′)|2dr′, (17)

where ũ±(x,y,t) ≡ exp (±i�t)u(x,y,t). In particular, Eq. (17)
is used below to test stability of various solitons generated by
Eq. (16).

If the contact nonlinear term ∼g is present in Eq. (16), while
the DDI is absent (κ = 0), this equation produces no solitons
in the case of the effective self-defocusing, ±g < 0 (recall we
define � to be positive). In the case of the local self-focusing,
±g > 0, Eq. (16) produces unstable Townes solitons [42]. This
argument suggests that the contact interaction of either sign,
in the absence of the DDI, cannot support stable solitons in
the present system. As mentioned above, this expectation is
fully corroborated by numerical results (not shown here in
detail).

FIG. 3. (a1), (a2) Density patterns of u+ and u− (zero-vorticity and vortex components, respectively) for a stable isotropic GS (semivortex)
with N = 21.37, μ = 1.17. (a3) The phase structure of u−. (b1)–(b3) The same for a stable anisotropic GS (deformed semivortex) with
N = 22.02, μ = 0.016).
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Proceeding to the opposite case, when the DDI is present,
while the contact interaction is absent (g = 0), we note that,
near the bottom edge of the band gap, Eq. (16) for u+, with
κ > 0 and the isotropic kernel, R = Riso(r − r′), gives rise to
the ground state in the form of an axisymmetric bright soliton
with zero vorticity [41], while the respective smaller com-
ponent u−, produced by Eq. (15), features vortical structure
∼reiθ (at small r), conforming to the semivortex structure of
the isotropic GS, as given by Eq. (10). In fact, in this case, the
2D integration in Eq. (16) can be reduced to the radial-only
integration, with kernel Riso(r − r′) substituted by the effective
radial one, as done above, in the general form, in Eq. (13).

On the other hand, near the top edge of the band gap,
Eq. (16) for u−, with κ > 0 and the anisotropic kernel taken
as per Eq. (3), gives rise to the ground state in the form of the
2D anisotropic bright soliton, as previously demonstrated in
Ref. [35], while Eq. (15) produces a smaller component, u+,
in the form of an anisotropic vortex. Overall, the anisotropic
GS constructed in this form seems as a deformed semivortex,
as corroborated by numerically exact results displayed below
in Figs. 3(b1)–3(b3).

B. Numerical findings for generic two-component solitons

The above results predict that the isotropic DDI for dipoles
polarized perpendicular to the (x,y) plane and the anisotropic
DDI for the in-plane polarization support, severally, stable
isotropic GSs [with the semivortex structure, as per Eq. (10)]
and anisotropic 2D GSs, with μ taken, respectively, close to
the bottom or top edge of the band gap. These predictions have
been corroborated by numerical solutions of Eqs. (7) and (8).
The numerical results are collected in Figs. 1(b1) and 1(b2)
for the system, which does not include the contact interaction
[g,g̃ = 0 in Eqs. (7) and (8)]. The results clearly demonstrate
that the quasianalytical approximations remain valid not only
close to the edges, but actually across the entire band gap, and
extend, as ESs (see further details below), into the bands.

Numerical solutions of Eq. (8) were produced by means
of the squared-operator method [43]. The scaling invariances
of Eqs. (4) and (8) were used to fix � = 10, λ = 1, and κ =
0.1. Generic results were produced fixing the regularization
parameter as ε = 0.5 (with other reasonable values of ε,
similar results have been obtained), while the total norm, N ,
was varied as an essential control parameter. The stability
of the GS families was identified by means of systematic
simulations of the perturbed evolution (the distinction between
stable and unstable states could be easily detected, as numerical
truncation errors were sufficient to trigger the growth of the
instability, if any). As concerns the asymptotic equation (16),
its solutions were produced by applying the imaginary-time
method [44] to its time-dependent version given by Eq. (17).
Comparison of shapes of stable solitons, as found from Eqs. (7)
and (8), and, on the other hand, from the simplified equations
(16) and (17), is displayed in Fig. 2.

Branches of isotropic and anisotropic solitons are char-
acterized by μ(N ) dependences displayed in Figs. 1(b1)
and 1(b2), along with the quasianalytical counterparts of these
dependences. It has been thus found that the stable branch
of the isotropic GSs extends across the full band gap into
the upper Bloch band abutting on the band gap, as a family

FIG. 4. Evolution of (a) an unstable isotropic ES, with N =
56.43, μ = 24.84, and of (b) an unstable anisotropic GS with N =
34.5, μ = −8. Density snapshots of the zero-vorticity and vortex
components are shown in the top and bottom panels, respectively, for
the isotropic soliton, and vice versa for the anisotropic one.

of ESs, which may exist under certain conditions in spectral
bands [24]. In particular, a model supporting ESs in a 2D
system was reported in Ref. [45]. With the increase of N , the
isotropic-ES branch loses its stability inside of the Bloch band
at Nmax ≈ 45 (μ ≈ 16.7). At N > Nmax, the branch extends
indefinitely into the band in an unstable form. On the contrary,
the stability of the anisotropic GSs terminates still in the band
gap, at Nmax ≈ 28.2 ( μ ≈ −3.8), the ES continuation of this
branch being fully unstable. The robustness of the solitons
in the present system is further attested to by the fact that
unstable ones, both isotropic and anisotropic, do not suffer
destruction, their vortex component keeping its vorticity: as
shown in Fig. 4, unstable solitons commence spontaneous
motion, instead of destruction, emitting small amounts of
radiation from the vortex component. The evolution of the
weakly unstable isotropic ESs (recall all the isotropic GS are
stable) does not break their circular symmetry either.

As said above, isotropic GSs are built as semivortices
[defined as per Eq. (10)], i.e., bound states of zero-vorticity and
vortex components, as can be clearly seen in Figs. 3(a1)–3(a3).
The extension of the GS solutions in the ES form keeps the
semivortex shape as well. Although no exact ansatz for a vortex
structure is available for anisotropic GSs, Figs. 3(b1)–3(b3)
clearly demonstrate that the anisotropic GSs (and their ES
extension) feature the shape of deformed semivortices. An
essential peculiarity of the semivortices is that their vortex
component carries a relatively small share of the total norm,
in comparison with the zero-vorticity counterpart, as shown in
Fig. 1(c) for the isotropic and anisotropic semivortices alike.
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The stable isotropic solitons shown above, with vorticities
(S+,S−) = (0,1) in their large and small components, are
fundamental states, as the system cannot produce any state with
a simpler structure. However, it is possible to look for more
complex modes (excited states). To generate them near the
bottom edge of the band gap, one can use, as a seed, isotropic
vortex-solitons solutions of Eq. (16) for the large component,
u+, with vorticities S+ = ±1, which are known from the study
of the single-component dipolar BEC [46]. Then, Eq. (15)
generates vorticity S− = S+ + 1 in the small u− component.
We have found that both species of the resulting composite
modes, with (S+,S−) = (1,2) and (−1,0), are unstable against
splitting into a pair of fragments (not shown here in detail). In
fact, splitting is a common instability mode of vortex solitons
[10–12,47], although nonlocality may stabilize some of them
[46,48].

C. Physical parameters for the gap solitons in the
Bose-Einstein condensate

It is relevant to estimate actual parameters of the BEC
solitons, which can be created according to the results reported
above in the scaled form. To this end, we translate the
results into physical units corresponding to the experimental
realization of SOC [20–22,36], taking values of the magnetic
moment for 52Cr or 164Dy atoms, and the strength of the
transverse trapping potential ω⊥ ∼ 100 Hz. We thus conclude
that the stable quasi-2D solitons may be created with the
number of atoms in the range from Nat ∼ 103 (near edges
of the band gap) to Nat ∼ 104 (deeper in the band gap),
and physical lateral sizes lphys ∼ 10 μm. The corresponding
relations between the physical quantities and scaled ones
displayed in Figs. 1–7 is

Nat ∼ 103N,(x,y)phys ∼ (x,y) × 20 μm. (18)

Further, the magnetic field necessary for inducing the appropri-
ate ZS is estimated as H ∼ 0.1–1 G. In addition to the magnetic
realization, the use of a spinor BEC built of small molecules
carrying electric dipole moments [49] may be feasible too.
Another possibility for the realization of the stable 2D solitons
predicted above is to use the DDI between moments induced
by an external dc magnetic or electric field [50].

IV. MOBILITY AND COLLISIONS OF THE ISOTROPIC
AND ANISOTROPIC SOLITONS

Soliton mobility in the system under the consideration is a
nontrivial issue, as Eqs. (4) and (5) are not Galilean invariant,
although they conserve the total momentum,

P = i

∫
[(∇φ∗

+)φ+ + (∇φ∗
−)φ−]dr, (19)

and their asymptotic version, which amounts to the single
equation (17), remains Galilean invariant. The mobility was
tested, in the framework of the system without the contact in-
teractions (g = g̃ = 0), by applying kick η to stable quiescent
solitons in the x or y direction, which correspond to simulating
Eqs. (4) and (5) with input

φ±(x,y,t = 0) = u±(x,y){eiηx,eiηy}, (20)

the components of the respective momentum (19) being Px,y =
Nη. An example of stable motion of a kicked isotropic GS
(semivortex) is shown in Fig. 5(a). The velocity of the moving
isotropic soliton, Vx , is displayed in Fig. 5(b) as a function
of the kick’s magnitude, η. It is seen that the mass of kicked
isotropic GSs is negative, as they move in the direction opposite
to the kick. It is relevant to mention that the negative dynamical
mass is a generic feature of GSs known in other settings,
including 2D GSs [9,25,51].

The effective mass of the isotropic solitons in the x and
y directions, defined as Mx,y(N ) = Px.y/Vx,y , is displayed in
Fig. 5(c1) as a function of N (strictly speaking, the motion
makes the soliton slightly anisotropic). Naturally, the mass
increases almost linearly with the norm. Close to the bottom
edge of the band gap, where N is very small, the mass is
isotropic, Mx ≈ My , as the corresponding Eq. (16) is isotropic
too. Farther from the band gap edge, the mass features a weak
anisotropy. On the other hand, the anisotropic solitons feature
a positive mass, which also grows almost linearly with N , as
shown in Fig. 5(c2). In the course of its motion, the kicked
solitons show very weak transverse displacement, due to the
Magnus force acting on the small vortical component [52].
Additional high-accuracy simulations are needed to study the
latter effect in detail.

It is natural too to study collisions between stable GSs
set in motion by opposite kicks ±η. The simulations reveal

FIG. 5. (a) Stable motion of an isotropic GS (semivortex) with N = 5.1 and μ = −8.41, which was kicked in the y direction with strength
η = +3, as per initial conditions (20). (b) Velocity Vx of the isotropic GS, kicked along x, versus η, for N = 2.01 (black squares), 21.36 (red
circles), and 44.47 (blue triangles), respectively. (c1), (c2) Negative and positive effective masses, Mx and My , for isotropic and anisotropic
solitons, respectively.

063613-6



TWO-DIMENSIONAL DIPOLAR GAP SOLITONS IN FREE . . . PHYSICAL REVIEW A 95, 063613 (2017)

FIG. 6. (a1)–(c1): Collisions between stable isotropic GSs with N = 2.013,μ = −9.7. The solitons were set in motion by opposite kicks:
(a1) η = ±1, (b1) ±2, (c1) ±5. (a2)–(c2): The same for anisotropic GSs, with N = 2.004,μ = 9.94, and kicks (a2) η = ±1, (b2) ±2, (c2) ±5.

three generic outcomes of the collisions, for the isotropic
and anisotropic solitons alike: merger into a single breather
[Figs. 6(a1) and 6(a2)], elastic collision [Figs. 6(c1) and
6(c2)], and transformation into diffracting quasilinear beams
[Figs. 6(b1) and 6(b2)], at, small, large, and intermediate
values of η, respectively.

V. EFFECTS OF THE CONTACT INTERACTION

The local mean-field nonlinearity, induced by interatomic
collisions, is always present in the bosonic gas, therefore it
is relevant to explore effects of the contact interaction on the
soliton families obtained above in the absence of the contact
terms in Eqs. (7) and (8). Here, we perform this analysis in the
framework of the asymptotic equations (16) and (17), as they
are sufficient to capture main effects produced by the local
nonlinearity, as shown below.

First, Eq. (16), which includes the contact-interaction
term ∼g, implies that, due to the possibility of the critical
collapse [42] in the same 2D equation, the norm of wave
function u± cannot exceed a critical value, which is determined
by the scaled norm of the Townes’ soliton, NTownes ≈ 5.85
[42], viz., N± < NTownes/(±g�). In other words, for given
norm N , isotropic and anisotropic self-trapped modes exist,
respectively, at

g < g
(iso)
Townes = NTownes/(�N ),g > g

(aniso)
Townes = −NTownes/(�N )

(21)
(recall � = 10 is fixed in this paper).

Furthermore, inside the existence regions (21), systematic
simulations of Eq. (17) have revealed an intrinsic stability
boundary, g = g(±)

cr ≈ ±0.25, such that the isotropic and
anisotropic stationary GSs are stable, respectively, at g <

g(+)
cr and g > g(−)

cr , while in the remaining intervals, g(+)
cr <

g < g
(iso)
Townes and g

(aniso)
Townes < g <g(−)

cr , the GSs are unstable,
spontaneously transforming into persistent breathers, as shown
in Fig. 7. Thus, we conclude that the stationary GSs exist and
remain completely stable when the arbitrarily strong contact
interaction is self-repulsive, in terms of Eqs. (16) and (17)

(which corresponds to g < 0 and g > 0 for the isotropic
and anisotropic GSs, respectively), being compensated by the
effectively attractive DDI. In the limit of very strong local

FIG. 7. (a), (b) Simulations of the evolution of isotropic GSs, in
the framework of Eqs. (4) and (5) which include the local nonlinear
terms with (a) g = 0.2 and (b) g = 0.28, while the norm of the
large zero-vorticity component is fixed as N+ = 2. The results are
displayed for the cross section of |φ+(x,y,t)|2 at y = 0. (c) The
chemical potential of isotropic solitons with N+ = 2 versus g. Black
solid and red dotted segments represent, severally, stable stationary
solitons and persistent breathers, which replace unstable solitons at
g > gcr ≈ 0.25 . The vertical dashed line is the existence boundary for
self-trapped modes, where the collapse sets in, g = g

(iso)
Townes ≈ 0.29,

see Eq. (21). (d) The chemical potential of the anisotropic solitons
with N− = 2 versus g. The meaning of the black solid and red dotted
segments is the same as in (c), the boundary between them being
gcr ≈ −0.25, while the existence-collapse boundary is marked by the
vertical dashed line at g = g

(aniso)
Townes ≈ −0.29.
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FIG. 8. The relative strengths of the DDI, εdd, defined as per Eqs. (22)–(24), are displayed as functions of g. Black solid and red dotted
segments, as well as the vertical dashed lines, have the same meaning as in Fig. 7. (a) The εdd(g) dependence for isotropic solitons with N+ = 2.
(b) The same for anisotropic solitons with N− = 2.

self-attraction, the solitons become very broad, corresponding
to δμ → 0 in terms of Eq. (16), i.e., μ → −� and μ → +�,
in terms of Figs. 7(c) and 7(d), respectively. Note an essential
difference of these limits from those shown in Figs. 1(b1)
and 1(b2): in the latter case, the soliton’s norm vanishes at
the edges of the band gap, while in the cases displayed in
Figs. 7(c) and 7(d) the soliton branches keep the fixed finite
norm, N± = 2.

To explicitly compare strengths of the competing contact
interactions and DDI, we define the relative strength,

εdd ≡ g
(iso,aniso)
eff

/
g, (22)

where g
(iso,aniso)
dd are effective DDI coefficients for the isotropic

and the anisotropic GSs, respectively, which are defined, for
the definiteness’s sake, at centers of the solitons, as follows:

κu+(r = 0)
∫

Riso(0 − r′)|u+(r′)|2dr′

≡ g
(iso)
eff |u+(r = 0)|2u+(r = 0), (23)

κu−(r = 0)
∫

Raniso(0 − r′)|u−(r′)|2dr′

≡ g
(aniso)
eff |u−(r = 0)|2u−(r = 0). (24)

Here, we adopt conditions |u+(r)|2 � |u−(r)|2 and |u−(r)|2 �
|u+(r)|2 for the isotropic and anisotropic GSs, respectively, as
Figs. 7(c) and 7(d) clearly demonstrates that these conditions
hold at the critical (most essential) points.

The so-defined relative DDI strengths (22) are displayed,
as functions of g, in Fig. 8, for isotropic and anisotropic GSs
at g > 0 and g < 0, respectively. A natural conclusion is that
the GSs suffer the destabilization when the DDI becomes too
weak in comparison with the contact interaction.

On the contrary to the setting with the competing contact
interaction and DDI, the interplay of the local and nonlo-
cal nonlinear interactions with identical signs leads to the
destabilization of the solitons in the present system, as is
shown by Figs. 7(c) and 7(d). Overall, the present situation
qualitatively resembles that reported in Ref. [53], in which a
binary BEC represented a mixture of two atomic states coupled

by a microwave field. In such a setting, nonlocal attraction
between the components, mediated by the microwave field,
was sufficient for the existence and stability of two-component
solitons in the presence of arbitrarily strong local self-repulsion
and cross repulsion.

VI. CONCLUSION

The objective of this work is to propose a setting for
the creation of stable quasi-2D gap solitons and embedded
solitons in free space. The system is based on the spinor
dipolar BEC, whose components are coupled by the spin-orbit
interaction. For quasi-2D states, the kinetic-energy terms in the
spinor GPEs are negligible in comparison with SOC, which
gives rise to simplified couple-mode equations, with the band
gap provided by the Zeeman splitting. Stable isotropic and
anisotropic 2D solitons were thus found, in the quasianalytical
and numerical forms, for the dipoles polarized perpendicular
and parallel to the system’s plane, respectively. Both families
continue as ESs into adjacent spectral bands, the isotropic-ES
branch being partly stable. Mobility and collisions of the
solitons were studied too, concluding that the mass of the
isotropic (anisotropic) ones is negative (positive). Effects of
contact interactions, added to the dipole-dipole interaction,
were studied too, with a conclusion that the stationary GSs
persist and remain stable in the presence of the arbitrarily
strong local self- and cross-component repulsion, compensated
by the effectively attractive DDI.

A challenging possibility is to extend the present analysis
from solitons to quantum droplets in binary dipolar BEC, in
the presence of SOC. Droplets stabilized by beyond-the-mean-
field effects were recently created in single-component dipolar
condensates [54,55].
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