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Bose-Einstein condensation of photons in a plasma
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We study the Bose-Einstein condensation of photons in a plasma, where we include the cases of both transverse
photons and plasmons. We consider four-wave mixing processes of photon and plasmon modes in a relativistic
isotropic plasma to determine the coupling constant to lowest order. We further show that photon condensation
is possible in an unbounded plasma because, in contrast with other optical media, plasmas introduce an effective
photon mass. This guarantees the existence of a finite chemical potential and a critical temperature, which is
calculated for both transverse photons and plasmons. By considering four-wave mixing processes, we derive the
interactions between the photons in the condensate. We also study the elementary excitations (or Bogoliubov
modes) of the condensed photon and plasmon gases, and determine the respective dispersion relations. Finally,
we discuss the kinetics of photon condensation via inverse Compton scattering between the photons and the
electrons in the plasma.
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I. INTRODUCTION

Despite the fact of Bose-Einstein statistics being first
derived for photons [1], the idea of photon condensation itself
has received much criticism from the physics community
and therefore remained elusive. Two main reasons are at
the origin of such reservations: first, photons are massless
particles, which makes a vacuum in the lowest energy state
(i.e., with infinite wavelength) impossible; second, it is difficult
to implement a physical system where the number of photons
is kept constant, a feature that is necessary to ensure a
second-order phase transition. Strictly speaking, the existence
of a chemical potential is crucial for photons to undergo
Bose-Einstein condensation. Such problems do not arise—or,
at least, are not that critical—in other bosonic systems. Indeed,
successful experiments of Bose-Einstein condensates (BECs)
with atoms [2–6], exciton-polaritons [7–9], and, more recently,
magnons [10,11] are routinely reproduced nowadays. A way
to circumvent the photon mass problem was first advanced in
Refs. [12,13], where the photon mass appears as a consequence
of the quantization of the electromagnetic modes along the
axis of the cavity (actually, this mechanism also gives mass to
the photon component of exciton-polaritons in semiconductor
microcavities [9,14]). However, no thermalization process is
discussed in Ref. [13], and thus one can hardly imagine how
condensation can indeed take place.

The recent observation of photon condensation in a Fabry-
Perot cavity [15], where the number of photons is nearly
constant, has renewed the interest in the issue. In that work,
the photons acquire an effective mass inside the cavity and pile
up at the lowest level (i.e., the cavity cut-off frequency) due to
the thermal equilibration resulting from the balance between
absorption and reemission events with the dye molecules.
Since some losses are present (e.g., imperfections in the
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mirrors), a quasiconstant number of particles is achieved by
pumping the cavity. Although a particle equilibration based
on a delicate pump-loss balance does not necessarily lead to
thermal equilibrium, a subsequent work by the same authors
has produced compelling arguments favoring the observation
of a genuine, second-order phase transition characterizing
Bose-Einstein condensation of photons [16]. Another recent
and appealing theoretical proposal, based on the concept of
slow light [17,18], has been put forward by Boichenko and
Slyusarenko [19], who considered the coexistence of photonic
and atomic BECs. Moreover, a comprehensive theory of
photon condensation in optical cavities in the presence of a
medium has been developed by Kruchkov [20].

Another interesting physical medium where one could
imagine photons to undergo Bose-Einstein condensation is
plasma. As it is well known, photons have an effective mass and
an effective charge in a plasma [21]. This effective mass could
reveal the existence of a vacuum process providing mass to
the elementary particles, as first suggested by Anderson [22].
This is the so-called Higgs mechanism [23–25], where an
appropriate scalar field in vacuum replaces the free electrons in
plasma. On the other hand, the existence of an effective charge
could explain the ponderomotive force of laser pulses in a
plasma, as well as the observed photon acceleration processes
[26,27]. As such, plasmas naturally solve the aforementioned
photon mass problem and provide the finite chemical potential
for BEC to occur. Contrary to the case of the experiments
in optical cavities of Refs. [15,16], photon condensation in
a plasma is a bulk phenomenon, arising in homogeneous
and unbounded systems. This is particularly relevant in
the astrophysical context, where external trapping potentials
are absent. Indeed, the possibility of photon BEC in a plasma
was first considered by Zel’dovich and Levich in 1968 [28],
in relation to the famous distortion of the cosmic microwave
background radiation through inverse Compton scattering, the
so-called Sunyaev-Zel’dovich effect [29,30], but the subject
did not received much attention since. However, reference
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should be made to more recent literature [31,32], where
nonlinear aspects of plasma-radiation interaction are treated. A
comprehensive review on classical wave turbulence—a situa-
tion where phenomena closely related to photon condensation
may arise—is provided in Ref. [33]. In any case, because
a connection with fundamental aspects of Bose-Einstein
condensation is still lacking, it is not surprising that the plasma
case is not mentioned in the recent reviews [14].

In the present work, we perform a comprehensive study
of the different aspects of photon condensation in a plasma.
We provide a systematic quantum formulation of photon
BECs in a relativistic plasma and a kinetic description of
the Compton scattering, a number-conserving mechanism that
allows photons to thermalize with the plasma electrons. We
extend the discussion to the important case of plasmons (i.e.,
longitudinal photons), which has not been considered in the
aforementioned works. The photon mass, chemical potential,
and critical temperature are explicitly calculated. By consider-
ing four wave-mixing processes in the plasma, we are also able
to determine the interaction constant between the BEC photons
at the leading order. The low-frequency elementary excitations
are consequently analyzed and comparison with the usual
Bogoliubov spectrum of atomic BECs is established. In this
paper, photons and plasmons will be referred as quasiparticles,
as they represent collective excitations of the electron (and
eventually ion) population mediated by the photon.

This paper is organized as follows. In Sec. II, we state
the wave equations governing the dynamics of photons and
plasmons in isotropic plasmas. For generality, the plasmas
are considered to be relativistic. In Sec. III, we describe the
nonlinear mode coupling between quasiparticle modes, and
after discussing the cases of photons and plasmons separately,
we propose a global formulation of the nonlinear evolution
equations. The field quantization of the two kinds of plasma
quasiparticles is performed in Sec. IV. In Sec. V, we derive
the expressions for the critical temperature, using the standard
Bogoliubov procedure [34–36], and in Sec. VI we discuss the
elementary excitations of the condensed quasiparticle gas. A
wave-kinetic equation describing the thermal equilibration of
photons via Compton scattering is studied in Sec. VII. Finally,
in Sec. VIII, some conclusions are stated.

II. PLASMA WAVE EQUATIONS

Transverse photons and plasmons in isotropic plasmas are
described by the vector potential A and the scalar potential
V , respectively. In the Coulomb gauge, these potentials satisfy
the following wave equations [37](

∇2 − 1

c2

∂2

∂t2

)
a = k2

p

γ

n

n0
u⊥, (1)

and

∇2φ = e2

ε0mec2
(n − n0). (2)

Here, n is the electron density and n0 is the equilibrium (ion)
density. We have introduced the reduced vector and scalar
potentials, a = eA/mec and φ = eV/mec

2, where e and m

are the electron charge and mass. We define the electron
plasma wave number as kp = ωp/c, where ωp =

√
e2n0/ε0me

is the electron plasma frequency. Also, we have introduced the
covariant velocity u and the relativistic gamma factor defined
as

u = γ
v
c
, γ =

√
1 + u2. (3)

The transverse velocity component u⊥ satisfies the condition
∇ · u⊥ = 0. The electron density n, and the velocity u can be
determined by the relativistic electron fluid equations

∂n

∂t
+ c∇ ·

(
nu
γ

)
= 0, (4)

and

∂u
∂t

+ cu
γ

· u = − e

mec

(
E + cu

γ
× B

)
− ∇P

nmec
. (5)

The electron pressure P can be related with the plasma density
by using an appropriate equation of state, which assuming one-
dimensional compressions of the electronic density simply
reads P = 3Ten. The fields E and B can be written in terms of
the normalized potentials as

E = −mec

e

(
∂a
∂t

+ c∇φ

)
, B = mec

e
(∇ × a). (6)

We can linearize the above equations with respect to the
perturbations. For transverse photons, we linearize with
respect to a and assume that the density perturbations are
equal to zero, ñ ≡ n − n0 = 0. This is so because the vector
potential is perpendicular to the wave vector, which means
∇ · a = ik · a = 0. In contrast, for plasmons (longitudinal
waves), we linearize with respect to φ and ñ and neglect
fluctuations in the vector potential, a = 0. We can then derive
two distinct wave equations, which can be cast into a single
equation of the form(

∇2 − 1

c2
σ

∂2

∂t2

)
aσ = ω2

p

c2
σ

aσ . (7)

Here, we have considered the three independent polarization
(spin) states, σ = {0,±}. The state σ = 0 corresponds to
longitudinal electrostatic waves, or plasmons, and σ = ±
represent the two possible states of the transverse photons.
For plasmons, we can use the scalar potential a0 ≡ φ, and
the characteristic velocity is determined by the electron
thermal velocity c0 ≡ Se, where Se = √

3Te/me. On the
other hand, for the transverse photons, the normalized vector
potential is a±1 = a and the characteristic velocity is the light
speed c±1 ≡ c. For waves evolving in space and time as
aσ ∝ exp(ik · r − iωt), Eq. (7) leads to the dispersion relations

ω ≡ ωσ,k =
√

ω2
p + k2c2

σ = 1

h̄

√
m2

σ c4 + p2c4, (8)

where ωp =
√

e2n0/ε0me is the plasma frequency and
p = h̄k is the quasiparticle momentum. For modes propagat-
ing along the ẑ direction, for plasmons we have k = kez, while
for photons a · ez = 0. The two circular polarizations are then
characterized by the unit polarization vectors ek = ak/ak , such
that ek = (ex ± ey)/

√
2.

Relativistic effects can be introduced by dividing ω2
p and S2

e

by the relativistic gamma factor associated with thermal cor-
rections, γth = √

1 + S2
e /c

2. For transverse electromagnetic
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modes, thermal effects are usually negligible. We notice that
the dispersion relation (8) allows us to introduce an effective
mass for both plasmons and photons, which is given by

mσ = h̄ωp

c2
σ

. (9)

The existence of a finite mass is crucial for the existence
of a finite critical temperature, allowing for Bose-Einstein
condensation in an unbound plasma. This will be discussed
in Sec. V. On the other hand, these quasiparticles are not
free, but rather weakly interact with each other. As we show
next, such an interaction is provided by wave mixing, which is
supported by the nonlinear properties of the medium. Similarly
to the case of BECs in alkali-metal atoms, interactions are at
the origin of important quantum effects.

III. NONLINEAR MODE COUPLING

We now study the nonlinear evolution of wave excitations
in a plasma. Returning to the basic equations, and making a
perturbative analysis where the different modes are assumed
to satisfy the linear dispersion relations (8), we arrive at the
nonlinear equation governing the weak nonlinear interaction
(weak turbulence [33]) between the plasma quasiparticles. To
clarify the discussion, we consider the cases of plasmons and
photons separately.

A. Plasmon coupling

For the electrostatic modes, the central equations governing
the electron density n and velocity v evolution are

∂n

∂t
+ ∇ · (nv) = 0(

∂

∂t
+ v · ∇

)
v = − ∇P

men
− e

∇V

me

∇2V = e

ε0
(n − n0) (10)

with n0 denoting the equilibrium electron density. Contrary to
the linear case in Eq. (7), we keep fluctuations in the electron
density ñ = n − n0 and in the electrostatic potential V up to
third order to obtain the following equation:(

∂2

∂t2
+ ω2

p − S2
e ∇2

)
ñ = F2(ñ) + F3(ñ). (11)

The second- and third-order nonlinear terms are given by the
auxiliary functions F2(ñ) and F3(ñ) reading

F2(ñ) = − e

me

∇ñ · ∇V − ω2
p

ñ

n0
ñ, (12)

and

F3(ñ) = ∇ · [v∇ · (nv) + nv · ∇v]. (13)

We now introduce a Fourier expansion for the perturbed den-
sity ñ ≡ ñ(r,t), velocity v ≡ v(r,t) and electrostatic potential
V ≡ V (r,t), of the form

(ñ,v,V ) =
∫

(ñ,v,V )k exp(ik · r)
dr

(2π )3
. (14)

As such, Eq. (11) can be recast into the following wave-mixing
equation (

∂2

∂t2
+ ω2

k

)
ñk = F2k + F3k, (15)

where the mode frequency is determined by ω2
k = ω2

p + S2
e k

2.
The second- and third-order nonlinear terms are determined
by

F2k = −ω2
p

n0

∑
k′

(
1 + k′ · k′′

k
′′2

)
ñk′ ñk′′ , (16)

where we have used k′′ = k − k′, and

F3k = −ω2
p

n0

∑
k′k′′

[(
k · k′

k
′2

)(
k′′ · k′′′

k
′′′2

)

+
(

k · k′v

k′v2

)(
k′′′ · k′v

k
′′′2

)]
ñk′ ñk′′′ ñk′v (17)

with k′v = k − k′ − k′′′ = k′′ − k′′′. In order to derive Eq. (16)
and (17), we have followed the weak-turbulence approxi-
mation, which allows us to replace the quantities inside the
nonlinear terms by their linear expressions, namely

vk = ωk

k2

ñk

n0
k, Vk = − eñk

ε0k2
. (18)

In the above expressions, the summations are to be replace by
integrals over the spectrum∑

k

→
∫

dk
(2π )3

,
∑
kk′

→
∫

dk
(2π )3

∫
dk′

(2π )3
. (19)

We notice that the nonlinear terms F2k and F3k represent
a resonant coupling between three- and four-wave modes
inside the plasmon spectrum. The first ones were established
assuming that ωk − ωk′ ± ωk′′ = 0, and the second ones are
satisfied for ωk − ωk′ = ωk′′′ − ωk′v . It can be readily seen that
three-wave mixing is suppressed inside the plasmon spectrum,
if the three modes involved are close to the plasma frequency
ωp where condensation is expected to arise (see Fig. 1 for
a schematic illustration). In fact, three-wave mixing would
involve modes in the linear part of the spectrum, ω ∼ ck, which
are strongly damped via photon Landau damping [38,39]. In
contrast, four-wave mixing is possible in the same region of
the spectrum. In what follows, we will therefore neglect the
second-order term F2k . Thus, we can now rewrite Eq. (15) in
terms of the (normalized) potential perturbations φk as(

∂2

∂t2
+ ω2

k

)
φk = −

∑
k′k′′′

C0(k,k′,k′′′)φk′φk′′′φk′v , (20)

with the plasmon coupling coefficients

C0(k,k′,k′′′) = mec
2

eμ0

[(
k · k′

k
′2

)(
k′′ · k′′′

k
′′′2

)

+
(

k · k′v

k′v2

)(
k′′′ · k′v

k
′′′2

)](
k′k′′′k′v

k

)2

, (21)

where μ0 = 1/c2ε0. These equations will allow us to study the
main properties of plasmon condensation.
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FIG. 1. Schematic representation of the Compton scattering
leading to the thermalization of photons in a plasma. The photon
dispersion relation in the plasma ω2

k = ω2
p + c2k2 (solid line) is

compared to the photon dispersion in vacuum ω = ck (dashed line).
The red downward arrows indicate the inverse Compton scattering for
photons with initial temperature larger than the plasma temperature,
leading to the piling of photons at the bottom of the dispersion
(Bose-Einstein condensation). Compton processes with hot photons
(blue upward arrows) leads to the spread of the photon distribution,
thus preventing condensation.

B. Photon coupling

We now turn to the case of photons in a plasma, by going
back to Eq. (1) and performing the same perturbative analysis.
We notice that, in the case of photons, the linear plasma
response implies that ñ = 0 and u⊥ = a. This means that the
main source of nonlinearity is the relativistic gamma factor γ .
We can then rewrite Eq. (1) into a more amenable form(

∇2 − 1

c2

∂2

∂t2

)
a = k2

p

γ
a, (22)

where the relativistic factor, neglecting thermal corrections,
can be written as γ = √

1 + a2. We now proceed to a
Fourier decomposition of the photon field, a ≡ a(r,t) =∑

k ak exp(ik · r), which, assuming circular polarization,
yields

γ =
√

γ 2
a + S, γa =

√
1 +

∑
k

|ak|2 (23)

with

S =
∑
k 
=k′

(ak · ak′) exp[i(k − k′) · r]. (24)

In our description, the quantity γa is not time dependent. As a
matter of fact, if linear polarization was considered instead, γa

would strongly evolve in time and would lead to the generation
of a large spectrum of harmonics [27]. By expanding the factor
1/γ on the right-hand side of Eq. (22), we can obtain [37](

∇2 − 1

c2

∂2

∂t2
− k2

p

γa

)
a = k2

p

γa

a
∑

	

C	

(
S

γ 2
a

)	

. (25)

This expansion is valid for arbitrary intensities, because the
inequality (S/γ 2

a ) � 1 is always verified. We should also notice
that the first coefficients in this expansion are C1 = −1/2,

and C2 = (2/3)3 < C1. Due to the increasing powers of γ −2	
a ,

the higher-order terms can be neglected, and only the first
nonlinear term, corresponding to 	 = 1, will be retained.
Using ak = akek , where the unit polarization vectors satisfy
(e∗

k · ek) = 1 and the described circularly polarized states, we
can recast Eq. (25) into(

∂2

∂t2
+ ω2

k

)
ak = −

∑
k′k′′

C±(k,k′,k′′)ak′ak′′ak′′′ , (26)

where we have used the dispersion relation ω2
k = (ω2

p/γa) +
k2c2, and defined k′′′ = k + k′′ − k′. The nonlinear coupling
coefficients are determined by

C±(k,k′,k′′) = k2
p

2γ 3
a

(ek′ · ek′′ )(e∗
k · ek′′′ ). (27)

IV. FIELD QUANTIZATION

We are now ready to establish the quantum description
of the plasma modes, which are classically governed by
Eqs. (20) and (26). This will then be used to determined the
basic properties of a plasma condensate. For that purpose, we
start by introducing the total energy associated with the two
quasiparticle populations. We use

Wσ = δσ

∑
k

Wσ,k, (28)

where δσ accounts for both plasmon and photon polarizations
(δ0 = 1 and δ± = 2). The energy density per mode is deter-
mined by

Wσ,k = ε0

2
|Ek|2

(
∂εσ (ω)

∂ω

)
. (29)

For plasmons, the energy is equally divided between electro-
static energy and kinetic energy of the electrons. In contrast,
for photons, the energy is equally divided between electric and
magnetic energy. Here, we have defined the dielectric functions
as

ε0(ω) = 1 − ω2
p

ω2
− k2S2

e

ω2
, ε± = 1 − ω2

p

γ 2
a ω2

− k2c2

ω2
. (30)

Notice that, in isotropic plasmas, the two polarizations states
σ = ±1 are degenerate. The same would not true for a
magnetized plasma. Using these expressions in Eq. (29), we
get

Wσ,k = ε0

2
fσ (ω)

(mec

e

)2
|aσ,k|2, (31)

with the auxiliary functions defined as

f0(ω) = 2k2c2, f±(ω) = ω2

(
1 + ω2

p

γ 2
a ω2

)
. (32)

In a first step, we neglect the interaction energy due to the
nonlinear mode coupling. This will be considered later. We
now introduce the field operators

âσ,k(r,t) = βσ,k[b̂k(t)eik·r + b̂
†
k(t)e−ik·r]σ , (33)

where βσ,k are normalization constants, to be defined below,
and the operators (b̂k,b̂

†
k) satisfy the usual boson commutation
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relations

[b̂k,b̂
†
k′ ] = δ(k − k′), [b̂k,b̂k′ ] = [b̂†k,b̂

†
k′] = 0. (34)

It can easily be seen that

|âσ,k|2 = |βσ,k|2(b̂†kb̂k + b̂kb̂
†
k)σ . (35)

Comparing this expression with that of the classical energy
density in Eq. (31), we can define the Hamiltonian Ĥσ,k for
which the classical energy would be its expectation value,
Wσ,k = 〈Ĥσ,k〉, yielding

Ĥσ,k = ε0

2
fσ (ω)|βσ,k|2(b̂†kb̂k + b̂kb̂

†
k)σ . (36)

Using the normalization factor

βσ,k =
√

h̄ωσ,k

ε0fσ (ω)
, (37)

we can rewrite the free Hamiltonian in Eq. (36) as

Ĥσ,k = h̄ωσ,k

(
b̂
†
kb̂k + 1

2

)
σ

. (38)

From here, we can establish the Heisenberg equations for the
temporal evolution of the mode operators, using the general
expression

db̂k

dt
= 1

ih̄
[b̂k,Ĥσ,k],

db̂
†
k

dt
= − 1

ih̄
[b̂†k,Ĥσ,k]. (39)

Using the above commutation relations, we can easily get

db̂k

dt
= −iωkb̂k,

db̂
†
k

dt
= iωkb̂

†
k, (40)

with the obvious solutions

b̂k(t) = b̂k(0) exp(−iωkt), b̂
†
k(t) = b̂

†
k(0) exp(iωkt). (41)

These solutions are only valid in the linear regime, when
mode-mode coupling is disregarded. Generalization to the
nonlinear regime implies a similar calculation for an inter-
action Hamiltonian Ĥσ,int, such that the total Hamiltonian
becomes

Ĥ =
∑
σ,k

Ĥσ,k + Ĥσ,int. (42)

We proceed below to such a calculation. Dropping the
polarization state σ for simplicity, we can then refine Eqs. (40)
replacing them by

db̂k

dt
= −iωkb̂k + 1

ih̄
[b̂k,Ĥint],

db̂
†
k

dt
= iωkb̂

†
k − 1

ih̄
[b̂†k,Ĥint], (43)

By iterating the latter, we can obtain

d2b̂k

dt2
+ ω2

k b̂k = −ωk

h̄
[b̂k,Ĥint] (44)

with a similar equation for b̂
†
k . Comparing this with the classical

mode equations above, we can then construct the appropriate

interaction Hamiltonian for each polarization mode as

Hσ,int = 1

2

∑
k,p,q

Cσ (k,p,q)b̂†σ,k+pb̂
†
σ,q−pb̂σ,kb̂σ,q. (45)

Here, the summation indices were rearranged for future
convenience. The corresponding mode coupling coefficients
read

Cσ (k,p,q) = ασCσ (k + p,q − p,q), (46)

where we have defined

α0 = ωk

h̄
, α± = 1

ε0

(mec

e

)2
(

1 + ω2
p

γ 2
a ω2

k

)−1

. (47)

In the case of photons, we explicitly obtain

C±(k,p,q) = m2
e

eε0γa

(ek+p · eq−p)(e∗
k · eq)

1 + γ 2
a ω2

k/ω
2
p

. (48)

The Hamiltonian operator in Eq. (45) describes a quantum gas
of plasmons or photons, where these quasiparticles weakly
interact through four-wave mixing processes.

V. CRITICAL TEMPERATURE

We can now consider such a bosonic gas of quasiparticles,
in thermal equilibrium, and establish the main properties of
Bose-Einstein condensation. We assume that the number of
quasiparticles is conserved, which agrees with most experi-
mental conditions for both photons and plasmons. However,
in the general case, the plasma should be considered as an
open system, where bosons are injected from an external
source in order to compensate the small but unavoidable
losses. For plasmons, losses are mainly due to electron Landau
damping, and for photons due to inverse bremsstrahlung.
In any case, for a condensed gas with ω � ωp, these loss
mechanisms are strongly suppressed. In order to determine the
critical temperature, below which condensation is achieved,
we assume that the expectation value for the mode number
operators satisfies the Bose-Einstein distribution

Nσ (k) ≡ 〈b̂†kb̂k〉σ = 1

exp(h̄ωσ,k − μσ )/Tσ − 1
, (49)

where the temperature of the photon gas Tσ can be different
from the plasma temperature, as shown below. Here, the mode
frequency ωσ,k still satisfies the dispersion relation (8), and μσ

is the chemical potential to be determined below. Using the
quasiparticle momentum p = h̄k, we can also write

Nσ (p) = 1

exp(εσ,p − μσ )/Tσ − 1
, (50)

where εσ,p = h̄ωσ,k is the quasiparticle energy, as defined by

εσ,p =
√

m2
σ c4 + p2c4

σ , mσ = h̄ωp

c2
σ

. (51)

Notice that the equivalent masses for plasmons and photons
are quite different,

m0 = h̄ωp

S2
e

= h̄

λDeSe

, m± = h̄ω

c2√γa

, (52)
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with λDe = Se/ωp denoting the electron Debye length. The
photon effective mass m± is much smaller than the plasmon
effective mass m0 [actually, m±/m0 = S2

e /(c2√γa) � 1]. The
two polarization states usually coexist in equal parts in a
plasma, so we should use, for the total number of quasiparticles

nσ = 2δ

∫
Nσ (k)

dk
(2π )3

→ 2δ
∑

k

Nσ (k). (53)

We can also define the quasiparticle fugacity

zσ = exp
[(

μσ − mσc2
σ

)
/Tσ

]
. (54)

Replacing this in Eqs. (50)–(53), we obtain

nσ = 2δ

∫
1

z−1
σ exp(wσ/Tσ ) − 1

dk
(2π )3

(55)

with the quasiparticle kinetic energy defined by wσ = εσ −
mσc2

σ . The critical temperature Tc,σ for quasiparticle conden-
sation is determined by the condition nσ = 0, which implies
that wσ = μσ − mσc2

σ = 0. Condensation is therefore defined
at the bottom of the dispersion p = 0, which corresponds
to the following value for the chemical potential at critical
temperature

μσ (Tc,σ ) = mσc2
σ = h̄ωp√

γσ

, (56)

and the corresponding critical fugacity zσ (Tc,σ ) = 1. Assum-
ing isotropic quasiparticle spectrum inside the plasma, we can
make the replacement dp → 4πp2dp in the integral and obtain

nσ = 2δ

4π2λ3
σ

∫ ∞

0

√
x dx

exp(aσ

√
1 + x − aσ ) − 1

, (57)

where we have introduced the following dimensionless quan-
tities

x = p2

m2
σ c2

σ

, aσ = mσc2
σ

Tc,σ

, λσ = h̄

mσ cσ

. (58)

We should also note that

aσ = h̄ωp

Tc,σ

√
γσ , λσ = λC

m

mσ

c

cσ

, (59)

where λC = h̄/mc is the Compton wavelength. After some
algebraic manipulation, Eq. (57) can be transformed into an
infinite series, of the form

nσ = 2δ

2π2λ3
σ

∞∑
ν=1

exp(νaσ )

νaσ

K2(νaσ ), (60)

where K2(x) is the modified Bessel function of the second
kind, also known as the Macdonald function. For photons,
this coincides with Eq. (16) of Ref. [32]. In the low
density (or strongly relativistic) limit, such that aσ � 1, or
γσ � (h̄ωp/Tc,σ )2, we can use the approximation of K2(z) for
z large [see Ref. [40], Eq. (9.7.2)], which yields

nσ � 2δ

(2π )3/2λ3
σ

∞∑
ν=1

1

(νaσ )3/2

[
1 + 15

8

1

νaσ

+ · · ·
]
. (61)

To the leading order, we obtain the critical temperature as

Tc,σ � π
h̄2

mσ

n2/3
σ . (62)

Apart from a meaningless factor of order one, this is the same
result for an ideal Bose gas with mass m and density n [34,35].
The only difference here is the inclusion of the effective mass
mσ and the quasiparticle density, which is typically the total
electromagnetic energy density divided by the plasmon energy,
nσ ∼ ∑

k Wk,σ /h̄ωp. On the other hand, when we compare
photons and plasmons, we notice that the photon effective
mass is smaller, by a factor (S2

e /c
2), than the mass of plasmons.

This means that the critical temperature is much higher, by the
same factor, and for the same total electromagnetic energy.
We conclude that it is much easier, at least in principle, to
condensate photons than plasmons in a plasma.

VI. ELEMENTARY EXCITATIONS

In order to study the elementary excitations on top of the
plasmon or photon condensate, we consider the total Hamilto-
nian in Eq. (42), introduce the many-body Hamiltonian

Ĥσ = Ĥσ − μσ N̂ (63)

and assume the photon and plasmon gas independently. Fol-
lowing the Bogoliubov prescription, we write the quasiparticle
number operator as

N̂ ≡
∑

k

b̂
†
kb̂k � N0,σ +

′∑
k

b̂
†
kb̂k, (64)

where N0,σ is the number of condensed quasiparticles, and the
sum

∑′ excludes the condensed state k = 0. Replacing b̂
†
0 and

b̂0 by
√

N0,σ in Eq. (42), we can divide the Hamiltonian as

Ĥσ = Ĥ0,σ + Ĥ1,σ + Ĥ2,σ , (65)

with the lowest-order term given by

Ĥ0,σ = (h̄ωp − μσ )N0,σ + 1
2Cσ (0)N2

0,σ , (66)

the first-order term is

Ĥ1,σ = 1

2
N0,σ

′∑
k

Cσ (k)[(b̂†kb̂
†
−k + b̂−kb̂k)

+ (b̂†kb̂k + b̂
†
−kb̂k)]σ +

′∑
k

εk,σ b̂
†
kb̂k, (67)

with εk,σ = h̄ωk,σ − μσ and, finally, the second-order term

Ĥ2,σ = 1

2

√
N0,σ

′∑
k,p

Cσ (k,p)

{
(b̂†k+pb̂kb̂p + b̂

†
k+pb̂

†
−kb̂p)σ

+ 1

2

′∑
k,p,q

Cσ (k,p,q)(b̂†k+pb̂
†
q−pb̂kb̂q)σ

}
. (68)

For a large number of condensed quasiparticles, N0,σ � 1, we
have Ĥ0,σ � Ĥ1,σ � Ĥ2,σ , where the zero-order Hamiltonian
describes the ground state, and the first-order term contains
the main contributions from both quantum and thermal fluc-
tuations. In order to appropriately describe such fluctuations,
we should retain the expansion up to Ĥ1,σ . This term can be
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more appropriately written as

Ĥ1,σ =
′∑
k

[(
εk + gσ,kN0

)
b̂
†
kb̂k + 1

2
gσ,kN0(b̂†kb̂

†
−kb̂−kb̂k)

]
σ

,

(69)

which represents the free quasiparticle energy, and define the
interaction parameter gσ,k = Cσ (k)/N0,σ . We notice that for
both cases of plasmons and photons this quantity is positive,
gσ,k > 0, which means that the nonlinear interactions inside
the plasmon or the photon gas are always repulsive. We
therefore concede that there is no plasmon of photon collapse
after condensation.

At this point, it should be noticed that the term “plasmon
collapse” has occasionally been used in the literature [41],
but this is due to an attractive plasmon interaction mediated
by phonons. For plasmons, such attractive interactions would
appear as the three-wave mixing processes described above,
if one of the mixing waves is an ion acoustic wave. This
has been ignored here because we have focused on the Bose-
Einstein condensation of isolated plasmon (or photon) gas,
disregarding the lower-frequency oscillations associated with
the ion motion. As discussed in Sec. II, only the high-frequency
oscillations associated with the electron plasma response
were retained, and the ions were assumed as an immobile
background. This means that the concept of plasmon collapse
does not apply to Bose-Einstein condensation of a plasmon
gas. However, the ion motion will eventually play a role in the
plasmon thermal fluctuations, and its influence of the dynamics
of the BEC should be addressed in a separate study.

Going back to the Hamiltonian in Eq. (69), we can simplify
it by evoking a Bogoliubov-Valatin transformation [34–36],
valid for every polarization state σ , as

α̂k = ukb̂k + vkb̂
†
−k, α̂

†
−k = ukb̂

†
−k + vkb̂k, (70)

where the new operators satisfy usual boson commotion
relations: [α̂k,α̂

†
k′] = δkk′ , and [α̂k,α̂k′] = [α̂†

k,α̂
†
k′ ] = 0. The

appropriate coefficients uk and vk , will have to satisfy the
hyperbolic relation u2

k − v2
k = 1. In this case, the Hamiltonian

Ĥσ = Ĥ0,σ + Ĥ1,σ can be written in a diagonalized form, as

Ĥσ = E0,σ +
′∑
k

h̄ω̃kα̂
†
kα̂k, (71)

where the first term represents the energy of the quasiparticle
condensate, as determined by

E0,σ = gσN2
0,σ − 1

2

′∑
k

[(εk,σ + gσ,kN0,σ ) − h̄ω̃σ (k)], (72)

where gσ ≡ gσ,0 and ω̃(k) is the frequency of the elementary
excitations of the condensed gas, satisfying the dispersion
relation

h̄ω̃σ (k) = √
εk,σ (εk,σ + 2gσ,kN0,σ ). (73)

These excitations correspond to sound waves in the quasipar-
ticle gas, not to be confused with the well-known ion-acoustic
waves that can be excited in the plasma itself. Noting that for
condensed quasiparticles, we should take the limit k2 → 0,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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0.5
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/
p

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5
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1.5
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3.0

Sek/ p

/
p

(a) (b)

FIG. 2. Dispersion relation of the (a) photon and (b) plasmon
condensate excitations. In both panels, the lighter solid line cor-
responds to the weakly relativistic case γa ∼ 1 and mec

2 � h̄ωp ,
while the darker solid line illustrates the relativistic case γa ∼ 5 and
mec

2 = 10h̄ωp . A roton minimum appears in the photon condensate
dispersion relation as a consequence of the stimulated emission in
dense photon gases. The red dashed line is the usual Bogoliubov
excitation of dilute atomic gases with contact interaction constant
g = n0C(0).

we can use the (polariton) approximation for the plasmon and
photon dispersion relations, such that

εk,σ = h̄

√
ω2

p + c2
σ k2 − μσ � h̄2k2

2mσ

. (74)

Replacing this in Eq. (73), we obtain

ω̃2
σ = k2V 2

σ,k + h̄2k4

4m2
σ

. (75)

Here, we have used the dispersive (k-dependent) quasiparticle
sound velocity Vk,σ , as defined by

Vσ,k =
√

gσ,kN0,σ

mσ

. (76)

This new class of oscillations is possible due to the weak
interaction between the plasma quasiparticles. The latter is
mediated by the four-wave mixing process, as described by
the coupling parameter gσ 
= 0. Notice that this is different
from the second sound velocity, because the second sound
involves coherent oscillations of both the background medium
density (the electron plasma density, in present case) and the
quasiparticle density. Here, in contrast, only the quasiparticle
density are supposed to oscillate. The main features of the
dispersion relation of Eq. (75) are depicted in Fig. 2.

A possible coupling of these elementary oscillations with
other plasma modes should also be investigated. In particular,
elementary oscillations of photons could couple with plas-
mons, and elementary oscillations of plasmons could couple
with ion acoustic waves (first sound). For instance, the photon
BEC excitations can be coupled to the plasmon modes at the
intersection between the two dispersion curves. This occurs
when

ω̃(k)2 = ω(k)2 ≡ ω2
p + k2S2

e , (77)

or, equivalently, at the wave vector kc such that

k4
c = 4m2

±
h̄2

[
ω2

p + k2
c

(
V 2

k,± − S2
e

)]
. (78)
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Usually, we have V 2
k,± < S2

e , but, for a cold plasma, we could
possibly attain equality V 2

k,± = S2
e , which would lead to

k2
c = 2m±

h̄
ωp = 2

ω2
p

h̄c2
. (79)

We should also notice that, for k2
c � ω2

p/S2
e , plasma waves are

strongly damped by electron Landau damping. Resonant cou-
pling between the BEC excitations and plasmon oscillations
could then provide an efficient heating transfer mechanism to
cool down and damp the thermal oscillations of the condensed
photon gas.

VII. KINETIC DESCRIPTION OF THE
COMPTON THERMALIZATION

We now consider the processes leading to thermal equilib-
rium in a system composed of a fully ionized plasma and a
photon gas. As such, we are neglecting eventual absorption
and emission of photons from neutral atoms and assume that
the photon thermalization is the result of Compton scattering
only. The evolution of the photon spectral distribution N (k) ≡
Nσ (k) is given by the Boltzmann equation [42,43]

∂N (k)

∂t
= c

∫
dp

∫
d�

dσ

d�
{f (p′)N (k′)[1 + N (k)]

− f (p)N (k)[1 + N (k′)]}, (80)

where f (p) is the electron distribution function. This equation
describes energy transfer via Compton scattering events of the
form p + h̄k → p′ + h̄k′ and vice versa. The photon scattering
rate from momentum h̄k′ to h̄k is given by the first term
of the right-hand side of Eq. (80). The proportionality to
N (k′) and f (p′) is standard in the Boltzmann equation, while
the term [1 + N (k′)] accounts for stimulated emission and
the Bose-Einstein statistics of the photons. In the rest frame
of the electron, the Compton relation provides

ωk′ = ωk

1 + h̄ωk

mc2 (1 − cos θ )
, (81)

where θ is the scattering angle. The differential cross section
is given by the Klein-Nishina formula

dσ

d�
= 3

16π

(
ωk′

ωk

)2[
ωk′

ωk

+ ωk

ωk′
− sin2 θ

]
σT , (82)

where σT = 8πr2
c /3 is the Thomson cross section and

rc = e2/(4πε0mc2) denotes the electron classical radius. A
detailed analysis of the evolution of the spectrum N (k) in
the presence of successive scatterings off relativistic electrons
is difficult, as the energy transfer per scattering is large
and involves solving a nonlinear integrodifferential equation.
Fortunately, we may be interested in the region of the spectrum
where photon condensation takes place, i.e., close to the
plasma frequency ωp, such that the soft photon condition
ωk′ − ωk � ωp may be used, yielding

dσ

d�
� 3

16π
(1 + cos2 θ )σT . (83)

Moreover, the energy transfer is small compared to the
electron kinetic energy, � ≡ h̄(ωk′ − ωk)/Te � 1, which for

nonrelativistic electrons distributed as

f (ε) = n0

(2πmeTe)3/2 e−ε/Te , ε = p2

2me

, (84)

and energy shift ε′ � ε − �Te, yields

f (ε′) �
(

1 + � + �2

2

)
f (ε)

N (ωk′) � N (ωk) + �Te∂ωN (ωk) + 1

2
�2T 2

e ∂2
ωN (ωk), (85)

where a change of variables has been used for convenience,
With this approximation, Eq. (80) becomes local in k (simi-
larly, in ωk) and reads

∂N

∂t
= [N ′ + N (N + 1)]I1

+
[

1

2
N ′′ +

(
N ′ + N

2

)
(1 + N )

]
I2, (86)

where N ≡ N (x) and N ′ = ∂xN (x), with x = h̄ωk/Te and the
integrals defined as

I1 = c

∫
dp

∫
d�

dσ

d�
�f (p),

I2 = c

∫
dp

∫
d�

dσ

d�
�2f (p). (87)

In order to compute the integrals in Eq. (86), we must de-
termine � for each individual Compton (or, strictly speaking,
Thomson) scattering event. As such, we make use of the energy
and conservation laws in the process

h̄ωk + ε = h̄ωk′ + ε′

h̄k + p = h̄k′ + p′, (88)

Solving for the second expression for p′ and replacing in the
first, we obtain, to first order in � (and neglecting the terms
proportional to �/ωk), the following estimate

h̄� � h̄2

2me

p · (k − k′). (89)

By using the dispersion relation ω2
k = ω2

p + c2k2, we then
compute the phase-space integrals to order O(T 2

e /m2
ec

4) to
explicitly obtain

I1 = σT n0

Te

h̄

√
ω2

k − ω2
p

mec

(
4Te − h̄

√
ω2

k − ω2
p

)
I2 = 2

TeσT n0

mec

(
ω2

k − ω2
p

)
. (90)
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Finally, by defining the dimensionless variable κ =
h̄

√
ω2

k − ω2
p/Te and the so-called Compton time τ =

(n0σT Te/mec
2)t , we are able to arrive at the Kompaneets

equation [42], which is now modified to take into account
the fact that photon modes with ωk < ωp can not propagate in
the plasma

∂N

∂τ
= f (κ)

κ2

∂

∂κ

[
κ4

(
∂N

∂κ
f (κ) + N + N2

)]
, (91)

where f (κ) = κ(κ2 + h̄2ω2
p/T 2

e )
−1/2

is the transformation
Jacobian.

We notice that the steady-state solution to Eq. (91) may
not be a Planck distribution, as a consequence of the particle-
number conservation in the “Comptonization” process. This
can be readily seen by taking the stationary solution ∂N/∂τ =
0, which yields ∂N/∂κ = − 1

f (κ)N (N + 1). For the partic-
ular case f (κ) = 1, i.e., in the absence of the plasma, an
analytical solution provides the Bose-Einstein distribution
N (κ) = 1/(zeκ − 1), with z = e−κ0 the fugacity. To illustrate
the condensation dynamics in the case of a finite value of the
plasma frequency, we solve Eq. (91) numerically. We employ a
split-step spectral method and assume the photon distribution
to be initially Planckian, Ninitial = 1/(exp(h̄ωk/Tγ ) −1) [44],
where Tγ is the initial temperature of the photon gas. The
results are illustrated in Fig. 3. As we can observe, for Tγ < Te,
the distribution with reaches a steady state corresponding to a
Planck distribution at the temperature Te. In contrast, for Tγ >

Te, inverse Compton scattering provides the accumulation
of photons near the mode k = 0 (i.e., at the bottom of the
dispersion ωp). This effect is accompanied by the formation
of a thermal cloud of photons at the temperature Te, thus
suggesting that Bose-Einstein condensation of photons, in the
thermodynamical sense, may indeed take place. According to
our simulations, this process takes place after τ ∼ 1, which is
of the order of the Compton time. We moreover observe that,
when the plasma is sufficiently dense (h̄ωp ∼ Te), the photon
thermalization is accompanied by the formation of peaks near
ωp, being the most prominent that located at the bottom of the
dispersion k = 0.

VIII. CONCLUSIONS

As we have discussed, transverse and longitudinal photons
(in short, photons and plasmons) in a plasma acquire a mass
due to their interaction with the electrons. Such an effective
mass then results in a finite chemical potential of the photon
gas, which, given its bosonic statistics, may undergo Bose-
Einstein condensation. By establishing a statistical analysis,
we have been able to compute this temperature explicitly,
observing that it follows the same density dependence ∼n2/3

as in more conventional (e.g., alkali-metal atoms) systems. By
performing the canonical quantization of the electromagnetic
energy of a photon gas in the plasma, we derived a Hamiltonian
for the free quasiparticles. Moreover, by considering the
four-wave mixing processes in the plasma, and proceeding to
the quantization, we introduced an interaction Hamiltonian for

(a) (b)

(c) (d)

FIG. 3. Photon thermalization due to Compton scattering, as
resulting from the numerical simulation of the Kompaneets equation
for a massive photon of dispersion ω2 = ω2

p + c2k2. (a) and (c)
[(b) and (d)] depict the normalized distribution function k2Ñ (k) =
k2T 2

e N (k)/(h̄2c2) for the situation where the photon temperature is
initially larger (smaller) than the electron temperature in the plasma.
We have considered the dilute h̄ωp � Te and the dense h̄ωp ∼ Te for
illustration, observing that in the latter situation the inverse Compton
scattering leads to the formation of harmonics before the photon
condensation.

the photons in the condensate. This allowed the discussion of
the elementary excitations on top of the condensate, which
we compared with the Bogoliubov spectrum. Finally, we
have derived a kinetic equation that describes the Compton
and inverse Compton scattering in the plasma that leads to
the thermalization of the photon gas and, eventually, to its
condensation.

Although our approach involved an unified description
of both photons and plasmons, there are substantial aspects
that distinguish them. For example, under certain density
and temperature conditions, plasmon (Langmuir) waves may
significantly interact with the ion-acoustic waves, which
implies taking into account the three-wave mixing processes
neglected here. As discussed in the literature, this would result
on the collapse of Langmuir waves and, therefore, compromise
some of our conclusions. Careful consideration of such effects
will most likely deserve our attention in the future. Moreover,
the kinematic analysis performed in Sec. VII for photons
may be not directly applicable to the case of plasmons. The
first modification would be the time scale at which thermal
equilibrium may be achieved, which is expected to be increased
by a factor of c/Se, the ratio between the speed of the light
and the electron thermal velocity. The second, and more im-
portant, modification relates the effect of Brillouin scattering,
which may impact both the thermalization dynamics and the
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condensate depletion. Finally, because the interactions near the
bottom of the dispersion are dominated by four-wave mixing,
a self-consistent dynamics of the condensate must involve
the description of both the thermal cloud, in the spirit of the
Zaremba-Nikuni-Griffin model [45,46], and the coupling to a
Boltzmann equation for the plasma reservoir, similar to that of
exciton-polariton condensates pumped out-of-resonance [47].
It is our judgment that those important questions should be
addressed in future works.
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