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Recent experiments have shown that (quasi)crystalline phases of Rydberg-dressed quantum many-body systems
in optical lattices (OL) are within reach. Rydberg systems naturally possess strong long-range interactions due
to the large polarizability of Rydberg atoms. Thus a wide range of quantum phases has been predicted, such as
a devil’s staircase of lattice-incommensurate density wave phases as well as the more exotic lattice supersolid
order for bosonic systems, as considered in our work. Guided by results in the “frozen”-gas limit, we study
the ground-state phase diagram at finite hopping amplitudes and in the vicinity of resonant Rydberg driving
while fully including the long-range tail of the van der Waals interaction. Simulations within real-space bosonic
dynamical mean-field theory yield an extension of the devil’s staircase into the supersolid regime where the
competition of condensation and interaction leads to a sequence of crystalline phases.
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I. INTRODUCTION

Despite the high tunability of ultracold atomic systems as
analog quantum emulators, strong long-range correlations still
represent an important challenge in the field. While Feshbach
resonances give access to tunable local interactions [1], recent
experimental breakthroughs allow for the trapping, cooling,
and control of ultracold polar molecules, as well as magnetic
[2] and Rydberg atoms [3]. The significance of Rydberg
excitations for creating strong nonlocal correlations has been
pointed out [4-6].

Recent experiments have studied the statistical properties of
dissipative Rydberg gases [7,8] and especially of superatoms
[9-11], where the Rydberg blockade effect was analyzed.
Using electromagnetically induced transparency, the occur-
rence of diffusive Forster energy transport has been shown
[12]. Also, ultralong-range Rydberg molecule formation has
already been observed [13], while crystallization of Rydberg
atoms has been achieved up to a small number of excitations
in the “frozen” limit [14,15]. There the system behaves like
a spin—% model with imbalanced interactions, as analyzed in
numerous theoretical works [15-20], predicting a series of lat-
tice incommensurate ordered phases (“devil’s staircase”). The
opposite limit of weak Rydberg dressing has extensively been
investigated in theory [6,21-25], predicting the formation of
(droplet) supersolids (SSs), while its experimental realization
remains an open challenge [9,26-28].

II. SYSTEM

In this work we focus on the far less understood interme-
diate regime of finite hopping at near-resonant and coherent
excitation of the Rydberg state. Previous work in this regime
so far has considered only either the nearest-neighbor (NN)
limit for the interactions in a Gutzwiller mean-field simulation
[29] or the low-dimensional case [30] with vanishing single-
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particle hopping [31]. In the following we will introduce our
approach for obtaining a ground-state phase diagram. The
combination of a frozen-limit model and a real-space extension
of bosonic dynamical mean-field theory (RB-DMFT) allows
for an efficient quantitative analysis of the phase diagram for
an arbitrary range of the interaction. We first introduce the
two-species frozen-limit model, which we solve in the Hartree
approximation. Then we outline the calculation of the phase
diagram using RB-DMFT. Finally, we discuss the obtained
quantum phases and the different types of long-range order
observed.

Considering both ground |g) and Rydberg excited |e) states,
our full grand-canonical Hamiltonian (in natural units z = 1)
can be written in terms of bosonic annihilation operators l;(,,i
acting on site i of a square optical lattice (OL), where A7 =

133,1.13(,,[ and o = g,e:

N
H = Hppxin + Z(HZBH,loc,i + Hr.i + Huaw.i),

1

6]

with the kinetic energy given by hopping of strength J
and nJ between all pairs of NN (i,j) as Hoppkin =
=y (B;ilsg,, + nﬁzyil;e,j + H.c.) and local interaction
terms for a two-species model included in

8

HapH oci = U[%(ﬁ‘f — 1) + AAfas + X%’(ﬁf - 1)]
= (A +af), 2)

where U, AU, and AU are the strengths of the three Hubbard
interaction terms and w is the chemical potential. The excited
electronic (Rydberg) states of the atoms are populated via
coherent driving, which leads to Rabi oscillations. This process
is induced by the interaction with the laser light field [see, for
example, Eq. (A.11) in Chap. V of [32]]. So, when using the
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interaction picture, for a given atom we have
HY =—d-Egcos(wrr)

:%(e—ith +eith)6_+(t)
+ %*(e—ith +eiwL[)6'_(t). (3)

The time dependence of the (pseudospin-flip) 6* operators

is given by the transition frequency wy, while w; is the
frequency of the light field. If we thus insert 6+(t) = 6(?Eeii ot
into (3) while also replacing &Oi by appropriate products of
bosonic creation and annihilation operators, we obtain the full
expression in the interaction picture:

Hl(el) Z%(efiAt +€i(wL+w0)t)EIBg
+ %*(efi(wL+a)g)t + eiAt)Bgée. (4)

We can then assume that the Rabi frequency €2, as given
by the dipole moment of the transition and the strength
of the light field, is a real quantity. The detuning A =
wr — wo defines the slow time scale. Terms oscillating with
fast frequencies can be discarded if A < wp + wy, yielding
the rotating-wave approximation [33]. The time-independent
Hamiltonian in the rotating-wave approximation follows from
the unitary transformation, defined by the time-dependent
unitary transformation matrix U = U(t) = 13;135, T eidplb,:

dU Q oain
Hy =UH{ U™ + iEU“ = E(bz,be + blby) — AR°.

®)
d

This follows straight from [U, 5-] = —(‘ii—lt]), which simply has
to be inserted into the Schrodinger equation, while the wave
function transforms as vy = U1r. Thus the Rabi process for
each lattice site in the rotating-wave approximation takes the
following form:

Hyi = S jbei +b] 1byi) — AiS. (6)

In addition we also consider the nonlocal van der Waals
(vdW) interaction between Rydberg states. At distances
relevant in OLs, it is dominated by its long-range tail; thus
for atoms at sites i and j

nene

Vv i
Hywi = —= Y 1, (7)
2 il

where Vyuw = Ce/a®, with the vdW coefficient Cs and
the lattice parameter a. This model has been previously
investigated only in the limit of NN interactions by applying
Gutzwiller mean-field theory [29]. In our study we go beyond
this common approximation and show that the phase diagram
is far richer.

Many of the above model parameters are easily adjustable
in experiments, some even over several orders of magnitude.
The Rabi parameters can be directly controlled via the laser
intensity (Rabi frequency €2, which also depends on the matrix
elements of the chosen transition) and laser detuning A [1],
while the vdW interaction is determined by the Rydberg level
considered. The remaining parameters are not as simple to
control. The hopping of Rydberg-excited atoms is not yet
an experimentally well controlled parameter since the OL,
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trapping the ground-state (GS) atoms, is not the same for
Rydberg states by default. Often, it is even of opposite sign
[34-36]. Here we focus on the limiting case n = 0, motivated
by the fact that the Rydberg part of the Hilbert space is
dominated by the vdW interaction and the Rabi frequency,
while the total kinetic energy contribution from |e) will be
small compared to |g) due to low Rydberg fractions (similar
to [6], see Appendix B). As the Rydberg states are perturbed
by the Rabi process, their localization will be lifted anyway
due to hybridization of |e) with |g).

Local interactions are fixed by considering the quantum
Zeno effect [37-39]. It describes the observation that loss
channels with a bare loss rate yy > U are strongly suppressed
in the lattice, as this corresponds to a strong measurement of
the lossy states, thus keeping them fixed at zero occupation.
Experiments have shown the large cross section of molecular
ion formation in Rydberg gases [9]. Due to the different
electronic structures of such ions, they are not trapped by the
confining potential, implying a large bare loss rate y,. The local
quantum states susceptible to molecule formation or ionization
correspond to Fock states of the form [n, > 0,n, > 0). We can
model their loss-induced suppression by choosing “arbitrary”
large values for both A and X (2).

III. FROZEN-LIMIT MODEL

Due to the many possible spatial crystalline orderings, an
efficient method to distinguish them is needed. Therefore
we first analyze the frozen limit, where all spatial hopping
terms are zero (J = 0). This allows for a simple analytical
investigation of the ground-state manifold with few approxi-
mations. Moreover, it makes for a useful exact starting point
for considering finite hopping (J # 0), which we simulate
within RB-DMFT. Assuming a mean lattice filling 71 < 1,
whereii = Y, ((7f) + (A¢))/ N, only empty or singly occupied
sites are to be expected. We may also assume that such a
system always has a spatially periodic ground state. For such
crystalline order, we consequently need to consider only those
sites i of the full Hamiltonian which are nonempty in order to
calculate the energy:

H; =2(b! be; + b bei) — A
or . Viaw A7AS ®)
— (A g+ 5=
2 il

Any periodic superlattice structure can be constructed
from a set of spanning vectors [one per spatial dimension,
Fig. 1(al)], which in our case are restricted to the discrete set of
points given by the OL. Applying the Hartree approximation
for a given set of spanning vectors (a;,a;) (given in units
of lattice spacings a), the Hamiltonian reduces to a set
of self-consistent single-site problems with at most Al-a2)

cluster
different self-consistent values n = (i), where A1+ is the
area (in units of lattice sites) spanned by the given vectors.
Due to low filling 7 < 1 we consider only two values (n%,n%),
where each corresponds to one of the two sublattices defined
by their sets of sites A and B [indicated by open and solid
circles in Fig. 1(a2)] of a checkerboard version of the spanned

superlattice.
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FIG. 1. (al) Spanning vectors (a;,a;) define the Bravais cell
of a superlattice for the underlying OL (gray). Black solid circles
correspond to occupied sites, while the remaining sites are empty.
(a2) Possible checkerboard generalizations of (al), where spanning
vectors connect two different sublattices (solid and open circles).
Mapping to the striped versions (I and II) is explained in the text. In
(b) and (c) different crystalline phases of the frozen-limit model can
be distinguished by A% (explained in the text). (b) shows devil’s
staircases (for values of the long-range interaction, increasing from
bottom to top, as given in the legend) for the logarithmic approach to
A/Q = -3/4atuy/ Q2 = —1/4[solid lines in (c1) and (c2)]. Phases
above white lines in (c1) and (c2) correspond to two-sublattice order
with canted state orientation.

For given vectors (a;,a,) two further versions are indicated
by I and I in Fig. 1(a2), where one of the two transformations
a;, — aj 52 = A12 + Ay was applied. This allows for energy
optimization via canted state orientation, which is equivalent
to canted Ising antiferromagnetic (CIAF) order and becomes
important for increased lattice fillings. Generally, frozen states
(within the Hartree approximation) can be written as

N
(W) =[] Jccosild); + €™ singil1) ). ©)

C ieC

where the state of the full system is given by a product over a
lattice of unit cells C containing N sites each, with an internal
structure given by the set of ¢; € [0,7/2] and 6; € [0,27] for
i=1,...,N. Setting at least one ¢; & {0,7/2} yields CIAF
order. In the case of the Mott-like frozen limit, the not yet
specified quasispin states can, in principle, be any set of two
bosonic Fock states, including the empty vacuum state [n, =
0,n, = 0). Note that the use of different particle numbers for
the states at site i, for example, the combination of an empty
site with any allowed Fock state on this site, implies ¢; =
0,7 /2. Also note that 6; = m combined with (| , 1) = (g,e)
corresponds to a dark state, as is used for an s-state to s-state
transition (required for isotropically interacting *’Rb Rydberg
states) to suppress decay via the intermediary p state. An
example of CIAF order is schematically shown in Fig. 2, where
the two sublattices correspond to the A and B sites.
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FIG. 2. Schematic representation of a one-dimensional CIAF
state in an optical lattice. Colored circles correspond to the ground
(blue, bottom row) and excited (red, top row) Fock states, and the
opacity is related to the amplitudes in the local linear combinations
(9). A complete polarization of the state is suppressed by the Rabi
process induced by the incident light field (small black waves and
arrows).

For the interaction energy for each sublattice within the
Hartree approximation we obtain (A <> B)

Hartree __ N3 § <ni‘i> § : (n%)
HvdW,A - V”deA 6 + 6 ) (10)
jeA\O J jeB J

where j points from a given site (0) of A to any site of both A
and B. Thus the site-averaged grand-canonical potential f is
simply given by f =3, (H)/AGuw) = 3,_, 5 YA with
the vdW interaction evaluated by (10).

Minimizing f with respect to a set V; of spanning vectors
then yields the many-body ground-state phase diagram in the
frozen limit for 7 < 1, as shown in Figs. 1(b) and 1(c). For this
variational minimization it is useful to represent the remaining
sums over the sublattices A and B as functions of the spanning
vectors,

1 1
V:f = Z j—6, W:lz = Zj_é’

jeA\O jeB
while it is furthermore helpful to introduce
R = Ry = max(V2, W) /min(V2, Wi) (1)

as the crystal-structure-dependent ratio of the long-range
interaction sums. The dependence of R}’ on the spanning
vectors is shown by the contour lines in Fig. 3. It should
be noted that there is no dependence on the actual form
of the interaction, as we use a scale-free long-range interaction
in the present case. In order to perform the minimization
procedure, we generate a set Vs (as shown in Fig. 3), which
needs to at least represent the whole range of superlattices,
which can in principle be expected in the regime under
consideration. In our frozen model (8) the on-site interaction
U is neglected for 7 < 1. With Q as the energy scale, only
Veaw, A, and p remain as tunable parameters, defining the
region to be investigated.

Especially, V 4w is important for the choice of Vi, as
it defines the blockade radius R, = (Cs/2)!/¢ for Rydberg
excitations, which corresponds to a radius of up to 5 OL sites
for Vygw < 10°Q. On a square lattice this would correspond
to a volume of up to 25 lattice sites. In order to allow for
even lower fillings, enabled by the chemical potential or the
detuning, we will consider volumes of up to 12 x 12 lattice
sites. The complete set Vs of spanning vectors used here
is shown in Fig. 3, modulo similarity transformations for
each pair.

If we then also define V = Vyqwmin(V;?, W;?) and use the
Rabi frequency 2 as the energy scale, the self-consistency
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FIG. 3. Each colored (grayscale) marker represents a pair of tested spanning vectors (each in units of lattice spacing a) from the set V.
Their coordinates are given by the larger vector, after a combined scaling and rotation of both vectors, so that the smaller vector is mapped onto
(0,1). They can thus appear only outside of the unit circle (thick black line). Their color and size correspond to the area of each crystal unit

y)

cell. In addition, also some contour lines for ng;i) are shown. Crossed markers correspond to crystal structures actually appearing as ground
states of the atomic limit model in the blue-detuned regime for V,qy < 10*Q.

cond%tions for nf ,p = (A% ) in the many-body ground state
are given by

né g =1 —n;/Bw(neB/A +an;/3) —A

+ \/1 + (V(n 0 + RS ) — NN

The solutions of this effective model, where R is just the
ratio of any inter- and intrasublattice interactions, are shown
in Fig. 4 for some relevant values of R (compare Fig. 3).

As f=)._ AB %ﬁ within these limits and approxima-
tions, its minimization with respect to our set V; yields the
many-body ground-state phase diagram in the atomic limit for

12)
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FIG. 4. Various solutions of the effective frozen model (12) for
R =2,7. Shown are the Rydberg fractions n, for each of the two
sublattices, which are respectively indexed by whether the sublattice
with high or low Rydberg fraction is considered. Canting appears if
nov = nl'®" and at least one of them is not equal to unity.

ii < 1, as shown in Figs. 1(b) and 1(c). In the comparison of
all lattice structures from the set V;, as shown in Fig. 3, the
configurations of minimal energy anywhere in the analyzed
parameter region [compare parameter ranges in Figs. 1(b)
and 1(c)] are marked by crosses. Those points primarily
accumulate where they correspond to either triangular order,
a = (\/3/2, 1/2), or a square lattice, a; = (1,0). Points with
increased R > 10, on the other hand, are more susceptible
to the formation of CIAF order (as can be seen in Fig. 4).
If one then considers only one of the two sublattices, for
example, the one with the increased Rydberg fraction, it again
resembles triangular order more closely, which is possible
without the canted order while keeping the lattice filling
constant. On the other hand, no spanning vectors with minimal
energy are to be found beyond a radius of 2; in particular, the
point (2,0) is the most distant (see Fig. 3), which rules out
stripelike order.

From (8) in the Hartree approximation it furthermore
follows that the chemical potential p, determining the
transition to the vacuum state, is given by

A+ V2 +A?
> :

Approaching this limit by varying either u, A, or Q2 yields
a devil’s staircase of fractional lattice-commensurate fillings
[see Fig. 1(b)], stabilized by the long-range interactions. Note
that our ansatz allows only for fillings of the form }l withn e N
(see also [40,41]).

Mo = 13)

IV. ITINERANT CASE WITHIN RB-DMFT

We now use the frozen-limit results as an exact starting point
for our RB-DMFT simulations since both models map to each
other in the Hartree approximation for vanishing J and 7 < 1.
However, for nonzero J we cannot expect the crystal symmetry
to always be given by the frozen-limit results. Therefore other
crystalline structures corresponding to similar mean interatom
distances are also simulated. Furthermore, RB-DMFT requires
a truncation of the local Fock space. Since a hard cutoff,
using only the first N. Fock states, strongly restricts the
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maximum observable local particle number in a condensate,
we instead use a soft cutoff utilizing the coherent-tail state
> . % |n) [42], where N, = 4, leading to a negligible error
in the calculated observables, which is maximal for values of
J/ 2 > 0.1, where it is on the order of a few percent (< 3%).
The ground state is then found by comparing the resulting
lattice-averaged grand-canonical potentials f = (H)/Acluster
for each of the considered crystal structures. In order to allow
for checkerboard order on all cluster types (even those of
odd-valued volume), we always simulate clusters generated
by the spanning vectors (2 - a;,2 - ap).

Calculating f is not straightforward within RB-DMFT,
as the kinetic energy Eyin = (Hapm kin) 1S given in terms of

nonlocal expectation values (1337 :b,;), which therefore cannot
directly be calculated from the self-consistent local Anderson
impurity models used by RB-DMFT. But it can be shown that
within the RB-DMFT self-consistency conditions, Eyj, can
also be written in terms of connected local Green’s functions
Gg ; and Anderson impurity hybridization functions A, ;, for
which we will now give a short introduction regarding their
role within DMFT.

A. Kinetic energy and connected Green’s functions

Starting from the connected normal real-space Green’s
function at equal times, with time ordering fixed by the
infinitesimal time difference € < 0, we have

lim GZ%i(e.0) = = (8] 1B j) — (8] ){ba )
00 ei(u,,e
Jim ) —=Golilion  (14)
for the connected Green’s functions Gg’}i(iw,,) in bosonic
Matsubara frequencies. The anomalous part is accordingly
given by

Jim G75%(€,0) = = ((bo,ibo ;) = (b1} (bo. )

o,ji

iwy€

G (iw,). (15)

e—0F ﬂ o.ji
n=

Thus expressing the total kinetic energy in terms of connected
real-space Green’s functions yields

Exin=—Y J5(b} b,

ijo

S eia),le c
=> J im Y —Gw) — ¢ 00 |-
e—>0F ,3 ’ ’

ijo n=—o00

A

where ¢, ; = (b,;) is the local condensate order parameter of
the atomic state o at lattice site i, while JZ is the matrix of
allowed hoppings in the system. This expression can be further
simplified by employing both the local [(16) as in (36) from
[43]] and lattice [(17) as in (37) from [43]] Dyson equations
in Nambu notation, as regularly used within RB-DMFT. Here
we suppress the state index o, as this part of the derivation is
independent of the atomic state. In Nambu notation for n > 0
the real-space lattice Green’s functions are represented as
G (+iwn) = [GSiw)In and G5(=iw,) = [GS ()],

PHYSICAL REVIEW A 95, 063608 (2017)

while the anomalous term is given by G]Ci“(—i-iwn) =
[G]Ci(iwn)]lz = G,C,-a(—iwn) and [Gfi(iwn)hz = [Gfi(iwn)]§|~
So

Gl (iw) ™" = iw,0, + pnly + Ai(iw,) — Zi(iw,),  (16)

[GE(iw,) ' 1ij = Jijla + 8ijliwao, + pnla — i(iw,)], (17)

where the Pauli matrix o, is used due to Nambu notation. These
equations are given in terms of local self-energies X;(iw,),
the Anderson impurity hybridization function A;(iw,), and
the local impurity Green’s function Gic(ia),,) =[G (iwy)]ii
(DMFT self-consistency). Inserting ¥; (i w, ) from (16) in (17),
combined with a matrix multiplication by G¢(iw,) from the
right, where we are interested in only the diagonal elements,
yields

> IGC (iw,) 1[G (iwn)]i
J
=Y Uil = 8ij[Aiiwn) — Gf (iw,) ™ G (i)
J

Further using the self-consistency property of the impurity
Green’s function leads to the identities

D TG (0] = Ai(io,)G (i), (18)
J
where only the diagonal parts are of interest to us. Considering

the symmetries in Nambu notation, they allow us to simplify
our expression for Eyiy,:

Exin :% lim Z Re{[Aa’[(iwn)(}gi(iwn)]11ei“)'*€}
ion=0

Tr[ A0, (0)GS ;(0)]

25 19)

- Z Ji(;¢;,i¢0?j -

ijo

The remaining problem is due to the cutoff imposed on the
Matsubara frequencies in the numerics, which implies that the
limit of equal times is not simply given by setting € = 0. One
can instead account for the cutoff by requiring that the particle
number is given correctly:

1 ) |
B Z Gg,a.ii(i“)n)elw"E + &5, P0i = <ﬁ?>A1M' 20)

For every site and species this yields a value of €, which can be
used to calculate the kinetic energy in the local representation
(19), thereby allowing the complete calculation of the lattice-
averaged grand-canonical potential f for each of the various
crystal structures.

B. Hybridization functions A, ; of the effective impurity model

The essence of RB-DMFT simulations is the mapping of
a lattice model onto a set of self-consistent quantum impurity
models. The primary aim of the mapping for each site is an
optimal representation of the total action S in terms of an
effective local impurity action Se¢. Suppressing the pseudospin
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o, one has

B ,
S[b*.p] = / dt (Z b;‘(r)% + H) =S8+ C+ AS,
0 i
(21

with H given by the model Hamiltonian (1) in terms of the
boson fields b;(7) as functions of imaginary time 7. For a given
site i = 0 we also introduce both

p b U
S():/ drt bf‘j—o — ubiby + —bol* ),
0 It 2

AS = / dr y (—tobbi — 1307 bo).

0 0,)

In an approximative way, by integrating over the rest of the
system, we derive the effective action S, for a given sitei = 0
via

Seft =So +/ dt Z (t0i b5
0

Ve + 150 (bf) )

1
‘Eﬁ‘”ﬁ dnlby () bo(t M) [boln) D17
|
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where we introduce the cavity expectation value (-)~ for the
system where the site of interest has been removed:
[1i0 J Db Dbix exp(=C)
(x)e == (22)

[1ic0 / Db;Db; exp(—C) '

Then one further obtains

Miy(z.m) = ) toitg; LB (0BT e — (i) e (b5 e,
i,j

Mx(t,n) = ngito_j[(bf(f)bj(ﬁ»c — (b7 (D) c(bj(m)c],
i

M(T,n) = Zloﬂoj‘[(bi(f)bj(n))c —(bi(T))c(bj(m)cl,
ij

My (t,n) = Zl&-fgj[(bf(f)bf(ﬂ))c — (b () cbim)cl.

ij
On the other hand, we use exact diagonalization to solve
the effective impurity model, representing the hybridization
function in (16) for each site via a corresponding effective
impurity bath. In this case for each site i = 0 an effective
impurity model is defined as (with the internal degrees of
freedom reinstated)

n

4. U, A . X .
HE =" bl oboo + A (5 1) = bl ol D tatboi)c | —boo| D 1o (b
- .

o

+ VvdWZ | |6 —A 5;05&0"_
J#0

Q A ~ AL A
E(b;()be,o + b ybeo) + UraSal (23)

+ Z [61,6&;’0&1,0 + (VLUCAIIT,OEU,Q + Vlika&l.aéjy,() + "V],g&[ﬁaﬁo + W* CAIITGE:; 0)]

l,o

where 0 = g,e, so U, = U and U, = AU. The hybridization
function matrix A, o(iw,) of this impurity model is given by
all the bath terms H/__, which include any of the bath creation

imp?
and annihilation operators &,T’J and d; . It has the form
(AN ARGw,)
AU,O(la)n) - <A31 (la)n) Aiz(ia)n) s (24)

where the different matrix elements are given by

R
7 €0 — lw,, € +iw,

o Wio | ViaVio
A?}(iw,,)— L Lo h

€0 —iwy el—i—lwn

A(l,z(la),,)— (VldWla Wla )

1wy, €5 +iw,

Wl(er(r

ela_ wy

‘/I(TWZ(I

Aﬂwa— S
n

!
imp

(

All parameters V,W,e are fixed self-consistently, so that the
effective impurity-bath hybridization is the best fit of the actual
impurity-lattice hybridization as extracted from (16). When
self-consistency has been achieved, the relation A, o(iw,) =
M, (iw,) holds, where M, (iw,) is the representation of
M, (t,n) = M, (7 — n) in terms of Matsubara frequencies.

V. RB-DMFT PHASE DIAGRAM

Minimizing f, as calculated in the described RB-DMFT
scheme, with respect to the relevant crystal orders yields the
ground-state phase diagram shown by the lines in Fig. 5(e).
For selected points, we also show the spatial distribution of
important local observables, such as the occupation numbers
n{, squared condensate order parameters |¢7 1%, and (5; ilSe, i),
with the latter related to in-plane magnetization of the
pseudospin. The phase boundaries are obtained from kinks
(second order) and jumps (first order) in the spatially averaged
observable i, = Y, (ﬁf)/A(a"aZ) [see Fig. 5(e)], which acts as

cluster
an order parameter. Thus we find various ground-state phases,
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FIG. 5. Lines in (e) show the phase diagram of the two-species extended Bose-Hubbard model with vdW-interacting excited Rydberg
species (1). Shown is the dependence of the average GS Rydberg fraction 77, on detuning and hopping, while the fixed parameters of the
model are given in the inset. The occurrence of a finite condensate order parameter at finite J is marked by the green (gray) line with dots.
Transitions between different phases of supersolid (SS) order above this line, as well as between density wave (DW) ordered phases below, are
separated by black lines (circles for second order, points for first order). As it has the simplest order beyond a homogeneous superfluid (SF),
we specifically label the checkerboard supersolid (CB-SS) in the diagram. All DMFT results in the region between the red (gray) line without
dots and vacuum have lattice-averaged grand-canonical potentials f > 0. (e) Lattice-averaged Rydberg fraction 77, (with the smallest values
for A/ < 0), which is strongly related to the effective lifetime of Rydberg states [21]. (a)—(d), the inset in (e), and (f)—(i) show depictions
of the spatial distribution of specified local observables. These plots correspond to different points indicated in the phase diagram in (e). If
mentioned in a diagram, the values for excited states are rescaled by the indicated factor.

starting with the well-known homogeneous superfluid (SF) and
the devil’s staircase in the density wave (DW) regime at small
hopping, separated by a peculiar series of supersolids. We can
distinguish two distinct regimes of supersolids, dominated by
either weak or strong Rydberg dressing, arising due to two
competing effects. One is the melting, induced by a large
hopping amplitude J, while the other is the crystallizing effect
of the detuning A. Since blue detuning facilitates Rydberg
crystallization at higher densities, as well as a higher Rydberg
fraction in general, the latter effect is easily understood.
Traversing the phase diagram in the supersolid regime,
starting at high A [Fig. 5(e), inset] and reducing its value
continuously, one first finds a series of GS supersolids with
growing wavelength, until there is a sudden drop in the
wavelength, accompanied by a rising Rydberg condensate and
a fast drop of the Rydberg fraction for the sites with the highest
admixture of the Rydberg state [Figs. 5(a)-5(d)]. Contrary to
the devil’s staircase in the DW regime, the staircase in the SS
regime does not end in an empty or homogeneous system, but
instead with short-wavelength supersolids, most notably the
checkerboard supersolid (CB-SS) [see also Fig. 5(c) and 5(d)],
which is the only previously predicted SS phase [29]. The
competition between crystallizing and melting effects becomes
especially evident in the two cases where two supersolids meet,
which both have the same number of sites in their unit cells,
while their spanning vectors differ [Figs. 5(c) and 5(d) and
5(h) and 5(i)]. There the crystallizing effect dominates for
small hopping, as the excitations minimize interaction energy

by maximizing their NN distances. For increased hopping the
system then prefers the configuration with slightly reduced
NN distances while restoring a spatial order commensurate
with the OL. Additionally, the eight-site unit cells are almost
degenerate, while the unit cell less favored by V,,;w has a
transition into SF at lower J. Regarding the two distinct SS
regimes with strong and weak dressings, the narrow phase
dominated by a long-range order with a unit cell of 32 sites
[Fig. 5(a)] implies crossover behavior. This phase marks the
boundary between the two regimes, as it consists mostly
of CB-SS (with the CB order strongly visible in <l3i,,,»l3€,i)),
interspersed by a low density of strongly dressed atom or
impurities suppressing the short-range CB order.

Another noteworthy configuration appears in a band
with a width A/Q = 0.2, starting slightly above resonance
[Fig. 5(b)]. There the ground-state condensate and the nearly
Fock state Rydberg excited atoms are spatially separated from
one another, as is the case for most of the interaction-dominated
part of the SS regime. But in addition, the excitations are
aligned in a triangular lattice, while the condensate is arranged
on its dual honeycomb lattice, at least as much as possible on
a square lattice.

Finally, since the effective total decay rate of excitations
is directly proportional to the fraction n, of their occupation
[21], this quantity [Fig. 5(e)] implies that the region with low
Rydberg occupation should be most suitable for experiment.
Even at detunings A > 0, Rydberg blockade causes a value
of 71, which is nearly two orders of magnitude less than the
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FIG. 6. Here we show the different averaged order parameters one may use to distinguish the different supersolid phases as explained in
the text. (a) and (b) Spatially averaged condensate order parameters |¢,| = Y, |¢7|/A. Averages are normalized by the size A of the system
simulated within RB-DMFT. Both species have opposite but spatially constant phases, as one might expect from a dark state. (c) Difference
quotient Af/AJ of the mean grand-canonical potential f by the hopping amplitude J. (d) Spatial average of the local fluctuations (l;;il;e_i)
induced by the Rabi term (6) of the Hamiltonian (1). A nonzero value is related to in-plane magnetization of the pseudospins o = {g,e}, while its

. . . . . 2
magnitude grows near resonance and with total particle number. (e) and (f) Spatial variance Var(|¢,|) = |¢po |> = [¢s| of the condensate order
parameters. Note that for the excited state the maximum is close to A /2 & 0, while in the ground state A/ > 1 leads to the largest values.
Lines correspond to those shown in Fig. 5(e), where circles represent second-order transitions, simple lines represent first-order transitions,

and the line with crosses signifies the regime of f > 0, as explained in Fig. 5(e).

full resonant excitation of single atoms, thus increasing the
feasibility of realizing the corresponding supersolids.

In conclusion, while dressed models break down close to
resonant Rydberg dressing, the combined effort of an analyti-
cally solvable frozen-limit model and RB-DMFT simulations
at finite hopping allows for the analysis of the rich phase
diagram of (1). In particular we find two distinct regimes of
supersolid order dominated by either weak or strong dressing
reminiscent of the bistable behavior in nonitinerant dissipative
systems [44—46]. Due to our limitation to periodic systems
with finite unit cells, the behavior at the crossover remains an
open question. It should also be noted that the Rabi frequency
was taken to be in the range of a few megahertz, while so far
realized values of hopping amplitudes reach only a fraction of
this. But considering the phase diagram of the Bose-Hubbard
model, the transition to supersolid phases can be expected at
strongly reduced hopping for values of u close to zero where
the assumption of low filling 7 < 1 breaks down, leaving this
regime open for further research.
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APPENDIX A: FURTHER OBSERVABLES

The phase boundaries for finite hopping J, shown in
Fig. 5(e), were obtained via the spatially averaged values of
the local observables, which act as order parameters of the
system. As can be seen in Fig. 6, they exhibit either jumps
or kinks at certain points in the phase diagram, allowing us
to determine the phase boundaries as well as the order of the
phase transitions. As the Rydberg fraction 71, exhibits the most
prominent changes [see Fig. 5(e)], it was used to obtain the
phase boundaries between the various SS and DW phases.
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FIG. 7. (a) and (b) Averaged occupation numbers 7i, = y_, n? /A, where A is the normalization due to the considered number of sites. Note
that A /Q > 0 favors 7i, over i1, in the DW phases. (c) The inverse of the average lattice filling becomes an integer in the DW regime. The values
of these integers correspond to the area defined by the spanning vectors introduced earlier (e.g., equal to 12 in the lower left; compare also
Fig. 1 in the main text). Lines correspond to those shown in Fig. 5(e), where circles represent second-order transitions, simple lines represent
first-order transitions, and the line with crosses signifies the regime of f > 0, as explained in Fig. 5(¢). The dashed lines represent the case of

resonant detuning A = 0.

Due to the complex nature of the model (1), additional
observables allow for further characterization of its ground-
state phases. While nonzero condensate order parameters
o7 = (l;m ;) determine the occurrence of a superfluid (SF)ON
[see Figs. 6(a) and 6(b)], the suppression of the spatial average

|p.| at large A /2 is a result of the dominant interactions. The

spatial variance Var(|¢,|) = |¢5|> — wz of the condensate
order parameters [see Figs. 6(e) and 6(f)] further extends
and justifies the picture of two supersolid regimes due to
the distinct behavior at small and large A/S2. A vanishing
value of these variances marks the loss of crystalline order
and thus the transition from SS to a homogeneous SF. The
large spatial variances in ¢7, on the other hand, are due to
suppressed condensation on sites occupied by atoms strongly
dressed with a Rydberg state. At the crossover between the
two SS regimes, the observable related to the Rabi process
(6), (5;’i13€,i), also undergoes a significant change in behavior
[see Fig. 6(d)]. Regarding the transitions between the various
supersolid phases, we want to point out that divergences of
Af/AJ [seeFig. 6(c)] are almost absent in between SS phases
and remarkably also at the SS-SF transition.

Note that in the region where the ground-state contribution
iy vanishes [see Fig. 7(a)], the Rydberg states become almost
pure number states [compare Figs. 7(b) and 7(c)]. As the
corresponding property, namely, that 77, nearly equals 3, where
q is the area of the unit cell corresponding to the inverse of
the mean lattice filling at a vanishing condensate fraction,
also extends into the region with a finite condensate, the
Rydberg state can be understood to remain in a Fock state
even for increased hopping amplitudes. Condensation then
happens purely in the ground-state species, which implies that
the condensate part spatially separates from the long-range
interacting part of the system.

APPENDIX B: INFLUENCE OF RYDBERG HOPPING

To further probe our assumption that we can limit itinerant
behavior to the |g) component, namely, by setting n = 0, we

also compare our results to selected simulations with n = 1.
As can be seen in the comparison of the average Rydberg
fraction 71,, shown in Fig. 8, hopping of Rydberg states has
only a minor influence on the phases observed in the paper. It
primarily leads to changes in parameter regions, where given
phases are almost degenerate. This can be seen as one of the
four-site unit cells vanishes for the chosen parameters, leading
to one less step in Figs. 8(c) and 8(d). Otherwise, there are
only small deformations of the boundaries.

Ne
=R R RIS C PN |

0.03
0.025
0.02

2 0.015
0.01
0.005

FIG. 8. (a), (c), and (d) Averaged Rydberg-state occupation
numbers n, = i, of (mostly) converged RB-DMFT simulations for
parameters as given in the main text, except for 7, which is given in
the legend, with (a) A/Q = —1, (¢c) —0.415, and (d) —0.303. The
dashed lines in (a) mark J./$2 where f changes sign, so results at
low J/ 2 have a higher energy as the vacuum state |n, = 0,n, = 0).
(b) The position of the sign change corresponds to a kink in the
logarithmic plot | f|.

063608-9



GEIBLER, VASIC, AND HOFSTETTER

APPENDIX C: COHERENT-TAIL-
STATE TRUNCATION

In order to benchmark the choice of the Fock-space
truncation, where we used a soft cutoff scheme, which
replaces the highest Fock state N. by the coherent-tail state
04 ZZ‘;N % [42], we probed the influence of a changed

truncation (i.e., changing N, ) on the observables and especially
on the lattice-averaged grand-canonical potential f. We did
this in a parameter region where the largest deviations are
expected. As the lattice filling increases above 3 atoms per
site, thus close to the used cutoff N. = 4, for small A and
large hopping [see Fig. 7(a)], we chose A/Q = —0.8 and
J/ 2 > 0.05 for the benchmark. Figures 9(a), 9(b) and 9(c)

depict the observables Ge.ile, and (13;136), which have the
largest deviations. As can be seen, changing N, from 4 (used
for all the main results) to 5 barely has any influence on
these observables. The most pronounced changes appear for
J /2 > 0.1, with only minor numerical changes in the values
of the observables, while the SF <> CB-SS is shifted only
very slightly. This can be seen from the kink in 7., as shown
in Fig. 9(b) and its inset. f also experiences only minor
deviations, which have a maximum around J/Q =~ 1.3, as
shown in the inset of Fig. 9(d). We therefore conclude that
our results can be considered converged with respect to the
Fock-space cutoff.
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