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Quantum-correlated twin-atom laser from a Bose-Hubbard system
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We propose and evaluate a method to construct a quantum-correlated twin-atom laser using a pumped and
damped Bose-Hubbard in-line trimer which can operate in a stationary regime. With pumping via a source
condensate filling the middle well and damping using either an electron beam or optical means at the two end
wells, we show that bipartite quantum correlations build up between the ends of the chain and that these can be
measured either in situ or in the outcoupled beams. While nothing similar to our system has yet been achieved
experimentally, recent advances mean that it should be practically realizable in the near future.
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I. INTRODUCTION

The concept of the atom laser [1] first entered the scientific
literature very close to the time of the production of the first
dilute gas Bose-Einstein condensate. Wiseman and Collett
[1] proposed that dark-state cooling of a thermal atomic
cloud be used to occupy a condensed lasing mode, from
which atoms could coherently outcouple. This concept was
refined by Ballagh et al. [2] with a semiclassical analysis of a
two-component condensate, where the trapped component was
coherently coupled to an untrapped component by microwave
or radio-frequency transitions [2]. The first experimental
demonstration of a pulsed atom laser was reported by Mewes
et al. in 1997 [3], followed 4 days later by the observation
of interference of condensates released from a double trap
by Andrews et al. [4]. An overview of the early state of the
field was given by Ketterle in 2002 [5]. Since those early days,
there has been continual progress, with Robins et al. [6] having
produced a more recent review of progress.

Shortly after the concept of the atom laser was developed,
theoretical work began on the Bose-Hubbard model with
neutral atoms [7–10], wherein condensed modes of atoms
were trapped in the lowest energy states of an optical lattice.
This model has since been constructed experimentally [11],
with measurements of many of the theoretically predicted
mean-field effects.

We show here how these two fields can be combined
via recent advances in the techniques of configuring optical
potentials [12,13] and in the outcoupling of trapped atomic
modes utilizing either electron beams [14] or optical methods
[15] to produce a quantum-correlated twin-atom laser. Our
model uses an in-line Bose-Hubbard trimer, with coherent
pumping into the middle well and outcoupling from the two
end wells, and is a pumped and damped development of the
atomic mode splitter described by Chianca and Olsen [16]
and compared to an optical beam splitter [17]. As we show
in what follows, both the modes in the end wells and the
modes outcoupled from them possess nonclassical correlations
such as entanglement and Einstein-Podolsky-Rosen steering.
Squeezing of an atom laser output and quantum correlations
in a twin-atom laser have also been proposed using a single
unpumped condensate as a source, using either the collisional

interactions [18] or interaction with two-mode squeezed light
[19] to cause the quantum correlations.

Bose-Hubbard models with pumping and loss have pre-
viously been analyzed [20–23], predicting some interesting
physical effects, both in the mean fields and the quantum
statistical features. Kordas et al. [24,25] have also analyzed
triangular trimers and in-line chains with dissipation at one
well, predicting some interesting phenomena. A variety of
different theoretical techniques have been used to analyze
these systems, some approximate and some exact. We have
chosen to use the exact mapping of our system onto stochastic
differential equations in the positive-P representation [26],
which are able to be integrated numerically with no difficulties
for this damped system.

The parameters we have chosen in this work are consistent
with known experimental values. We have fixed the tunneling
rate at J = 1, which then sets the scale for all the other
parameters. Physically, the pumping rate and the loss rate can
be varied by adjusting well geometries and the strength of
the method used for outcoupling. J itself can be changed by
changes in the well depths and separation. The most difficult
parameter to change experimentally would be χ , which can
be changed using Feshbach resonance techniques [27]. Using
the published results of Albiez et al. [28] and setting their
tunneling equal to 1, we find that their χ ≈ 10−4 in our units.
While this is smaller than what we have used, deeper wells
would lower J and give a ratio of χ/J consistent with our two
values, or χ could be changed using Feshbach techniques. By
reference to the same article, we can also say that our system
is in the regime where the three-mode approximation is valid.

II. PHYSICAL MODEL, HAMILTONIAN,
AND EQUATIONS OF MOTION

Our system is as shown in the schematic of Fig. 1. In order
to provide a mathematical description, we begin with the Bose-
Hubbard unitary Hamiltonian for the open trimer,

H = h̄χ

3∑
i=1

â
† 2
i â2

i − h̄J [â†
2(â1 + â3) + â2(â†

1 + â
†
3)], (1)
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FIG. 1. Schematic of the system, showing the three wells, the
tunnel couplings, the pumping, and the losses.

where âi is the bosonic annihilation operator for the ith well,
χ represents the collisional nonlinearity, and J is the tunneling
strength. The pumping into the middle well is represented by
the Hamiltonian

Hpump = ih̄(εâ†
2 − ε∗â2), (2)

which is of the form commonly used for the pumping of
optical cavities. The basic assumption here is that this well
receives atoms from a coherent condensate, represented by
the c-number ε, which is much larger than any of the modes
we are investigating, so that it will not become significantly
depleted over the time scales of interest. The damping acts on
the system density matrix as the Lindblad superoperator

Lρ = γ
∑
i=1,3

(2âiρâ
†
i − â

†
i âiρ − ρâ

†
i âi), (3)

and γ is the coupling between the damped well and the atomic
bath, which we assume to be initially unpopulated. If the lost
atoms fall under gravity, we are justified in using the Markov
and Born approximations [29,30].

Following the usual procedures [31,32], we map the
Hamiltonian and the Lindblad term onto a Fokker-Planck
equation for the positive-P function. This is then mapped onto
stochastic differential equations in the Itô calculus [33]:

dα1

dt
= −(γ + 2iχα+

1 α1)α1 + iJα2 +
√

−2iχα2
1 η1,

dα+
1

dt
= −(γ − 2iχα+

1 α1)α+
1 − iJα+

2 +
√

2iχα+ 2
1 η2,

dα2

dt
= ε − 2iχα+

2 α2
2 + iJ (α1 + α3) +

√
−2iχα2

2 η3,

(4)
dα+

2

dt
= ε∗ + 2iχα+2

2 α2 − iJ (α+
1 + α+

3 ) +
√

2iχα+ 2
2 η4,

dα3

dt
= −(γ + 2iχα+

3 α3)α3 + iJα2 +
√

−2iχα2
3 η5,

dα+
3

dt
= −(γ − 2iχα+

3 α3)α+
3 − iJα+

2 +
√

2iχα+ 2
3 η6,

where the (αj ,α
+
j ) are the c-number variables corresponding to

the operators (âj ,â
†
j ) in the sense that the averages αm

j α+ n
k con-

verge in the limit over a large number of stochastic trajectories
to the expectation values of normally ordered operator products

〈â† n

k âm
j 〉. In general, αi and α+

i are not complex conjugates,
with this freedom allowing us to exactly represent quantum
evolution using classical c-number variables. In the above
equations, ε is the coherent pump amplitude from the large
reservoir condensate, γ is the loss rate at wells 1 and 3, and the
ηj are Gaussian random variables with the correlations ηj (t) =
0 and ηj (t)ηk(t ′) = δjkδ(t − t ′). These equations are solved
numerically, taking averages over a large number of stochastic
trajectories, of the order of 106 for the results presented herein.

Without the random noise terms, the above collapse to three
coupled semiclassical equations since the conjugate properties
are then preserved. These are useful for obtaining some semi-
classical results, although in general there are no analytical
solutions except in the case where χ = 0, with solutions

αss
1 = αss

3 = iε

2J
, αss

2 = γ ε

2J 2
. (5)

What the above solutions do tell us is that the phases
of α2 and α3 are the same, which is also obvious from the
symmetry of the system. The degree of entanglement between
these modes will depend on the extent to which their quantum
fluctuations are correlated. To calculate this we need to proceed
numerically. For the results given in this paper, we have
integrated Eq. (4) over at least 106 stochastic trajectories for
each parameter set, achieving good convergence of the results.
The fact that we are able to use the positive-P method at all
here is due to the damping of the system, without which the
equations for a Bose-Hubbard trimer in that representation
are highly unstable. We have used the parameters γ = 1,
J = 1 (which sets the time scale), and χ = 10−2 and 10−3

and values for the coherent pumping amplitude, ε, of 10 and
10

√
2. We found that the higher value of χ gave stronger

quantum correlations, as did increasing ε.
In Figs. 2 and 3 we show the dynamics of the intrawell

populations for χ = 10−3 and 10−2, for both the pump
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FIG. 2. The populations of the wells for χ = 10−3, γ = 1, and
two different pumping amplitudes. The solid lines are N1 and N3,
which are equal, while the dash-dotted lines are N2. The classical
noninteracting steady-state values are shown by the dotted lines. J t is
a dimensionless time and all quantities plotted in this and subsequent
plots are dimensionless.
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FIG. 3. The populations of the wells for χ = 10−2, γ = 1, and
two different pumping amplitudes. The solid lines are N1 and N3,
which are equal, while the dash-dotted lines are N2. The classical
noninteracting steady-state values are shown by the dotted lines.

amplitudes that we have considered. The semiclassical so-
lutions of Eq. (5) are plotted for comparison. For the lower
value of χ , we see that these are almost indistinguishable
from the quantum solutions after the initial transients. By way
of contrast, for χ = 10−2, the noninteracting and interacting
solutions are markedly different, and the populations of the
middle well become different to and greater than those in the
two outside wells. This effect can be understood by reference
to the closed trimer considered in Refs. [16,17], in which
situation the population initially in the middle well does not
transfer completely to the two outer wells when χ = 10−2

for initial populations of approximately 40 atoms. For higher
initial populations, which we see in the transients of the
middle well occupations in Fig. 3, the closed system enters
a macroscopic self-trapping-type regime where tunneling is
suppressed. While damping and loss change the details of
this process, what we see here does serve to demonstrate that
the collisional interactions are having a marked effect on the
system. We also note here that the time axis for χ = 10−2 is
truncated compared to that for 10−3 because the positive-P
equations ran into divergence problems after J t = 25.

III. QUANTUM CORRELATIONS AND
INTRAWELL RESULTS

A. Number correlations

There are a number of quantum statistical properties that
we can investigate, including the number statistics, quadrature
squeezing, and Einstein-Podolsky-Rosen (EPR) steering. We
found the number statistics of each well to be less than
1% different from Poissonian, which is as expected for a
coherently driven and damped system. The second-order equal
time normalized intensity correlation functions [34],

g(2)(NiNj ) = 〈â†
i âi â

†
j âj 〉

〈â†
i âi〉〈â†

j âj 〉
, (6)
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FIG. 4. The normalized number difference variance for wells 1
and 3. The solid and dashed lines are for ε = 10, while the dash-dotted
and dashed lines are for ε = 10

√
2. The two upper (lower) lines are

for χ = 10−3 (10−2).

between the wells are also very close to the coherent state
values of 1. Where we do find a difference from coherent
states is in the normalized variance in the number difference
between wells 1 and 3,

F (N1 − N3) = V (N1 − N3)

N1 + N3
, (7)

which has a value of 1 for two independent coherent states
and a value of 0 for two Fock states. We see from Fig. 4
that the difference in number between the end wells is sub-
Poissonian and that increasing the nonlinearity or the pump
acts to increase the intensity correlation between these two
wells. Having shown that the end wells possess what is often
called relative number squeezing, we now proceed to calculate
quadrature correlations.

B. Squeezing

We define the atomic quadrature operators as

X̂j (θ ) = âj e
−iθ + â

†
j e

iθ ,

Ŷj (θ ) = X̂j (θ + π/2), (8)

so that the Heisenberg uncertainty relation is
V [X̂j (θ )]V [Ŷj (θ )] � 1. It is well known in systems
with a Kerr-type nonlinearity that the maximum squeezing
will occur for θ �= 0 [22,35,36], and we find the optimal
angle for our correlations by calculating them at all angles
and finding the minima. Experimentally this can be done by
changing the phase of the local oscillator [37]. Squeezing in
a particular quadrature exists whenever its variance, defined
as V (Â) = 〈Â2〉 − 〈Â〉2 for any operator Â, is found to be
less than 1 at any angle. In Table I we show the minimum
steady-state squeezing values and the quadrature angles at
which they are found, for different values of χ and ε. We find
that V (X̂1) = V (X̂3) and that the main factor which affects
the squeezing is the collisional nonlinearity, with an increase
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TABLE I. Minimum steady-state squeezing values and quadra-
ture angles for different values of χ and ε.

Variance χ = 10−3 χ = 10−2

V (X̂1,3), ε = 10 0.93, 130◦ 0.69, 15◦

V (X̂1,3), ε = 10
√

2 0.89, 124◦ 0.68, 11◦

V (X̂2), ε = 10 0.89, 40◦ 0.70, 40◦

V (X̂2), ε = 10
√

2 0.80, 35◦ 0.61, 140◦

in this giving better squeezing. Increasing the pumping
amplitude has less effect, particularly on the variances of the
two end modes.

C. Entanglement and EPR steering

We now define the correlations we investigate to detect
bipartite mode entanglement. The first of these, known as
the Duan-Simon inequality [38,39], states that, for any two
separable states,

V (X̂j + X̂k) + V (Ŷj − Ŷk) � 4, (9)

with any violation of this inequality demonstrating the
inseparability of modes j and k. We call this correlation
function DS+

ij . The violation of this inequality is necessary
and sufficient to prove the inseparabilty and entanglement for
Gaussian states and is sufficient for non-Gaussian states. In
Fig. 5 we show the results for this inequality, demonstrating
a clear violation in the steady state. As with the quadrature
squeezing, we find that the increase in collisional nonlinearity
allows for a stronger violation, with increases in the pumping
having somewhat less of an effect. This suggests that in any
experimental measurement of these correlations, the ratio χ/J

should be as large as possible.
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FIG. 5. The values of the Duan-Simon correlation of Eq. (9), and
the angles of maximum violation of the inequality in the steady-state,
for different values of the pumping and nonlinearities. The solid line
is for χ = 10−3 and ε = 10, the dash-dotted line is for χ = 10−3

and ε = 10
√

2, the dashed line is for χ = 10−2 and ε = 10, and the
dotted line is for χ = 10−2 and ε = 10

√
2.

Jt
0 5 10 15 20

E
P

R
13

0

0.5

1

1.5

2

2.5

θ=129o

θ=124o

θ=55o

θ=11o

FIG. 6. The values of the Reid EPR correlation of Eq. (10), and
the angles of maximum violation of the inequality in the steady state,
for different values of the pumping and nonlinearities. The solid line
is for χ = 10−3 and ε = 10, the dash-dotted line is for χ = 10−3

and ε = 10
√

2, the dashed-line is for χ = 10−2 and ε = 10, and the
dotted line is for χ = 10−2 and ε = 10

√
2.

The presence of EPR steering [40–42] is signified by
violation of the Reid inequality for the inferred variances [43]

EPRij = V inf(X̂i)V
inf(Ŷi) � 1, (10)

where

Vinf(Âi) = V (Âi) − [V (Âi,Âj )]2

V (Âj )
, (11)

and V (Â,B̂) = 〈ÂB̂〉 − 〈Â〉〈B̂〉. This condition is optimal for
bipartite Gaussian systems, at least sufficient for non-Gaussian
systems, and also comprehensively demonstrates bipartite
entanglement, as such states are a superset of the EPR states.

The results for EPR steering are shown in Fig. 6, where
we see once again that a clearer violation is found for the
larger χ value. It is of interest to note here that the maximum
percentage violation of this inequality (>50%) is greater than
that for the Duan-Simon inequality (<40%), and thus may be
easier to measure experimentally. With regard to inevitable
experimental noise and any small multimode effects which we
have ignored in our analysis, this may be crucial.

IV. OUTPUT CORRELATIONS

Because our system is damped at the two outside wells
and the atoms can fall under gravity, we may also examine
any correlations in the outputs. We may treat the system
as Markovian [29,30] and therefore use the Gardiner-Collett
input-output relations, as long as the anharmonicity inside the
trap is smaller than the damping rate, which is the case for
the lower nonlinearity we have considered [44]. Since two
out of three wells are damped rather than only one out of
two [23], we find that the third- and fourth-order cumulants
are insignificant and may closely approximate the system as
Gaussian. In the steady state, this then allows us to treat
it as an Ornstein-Uhlenbeck process [33] and perform the
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standard linearized fluctuation treatment of quantum optics on
the output modes. We do not consider this treatment applicable
to the system with the higher collisional nonlinearity.

We proceed in exactly the manner followed in a previous
analysis of the nonlinear Kerr coupler [35], first dividing the
variables into mean-value steady-state parts plus fluctuations,

e.g., αj = αj + δαj . The spectral matrix for the fluctuations
is defined as

S(ω) = (A + iω)−1D(AT − iω)−1, (12)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ + 4iχN1 2iχα1
2 −iJ 0 0 0

−2iχα∗
1

2
γ − 4iχN1 0 iJ 0 0

−iJ 0 4iχN2 2iχα2
2 −iJ 0

0 iJ −4iχα∗
2

2 −2iχN2 0 iJ

0 0 −iJ 0 γ + 4iχN3 2iχα3
2

0 0 0 iJ −2iχα∗
3

2
γ − 4iχN3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

and x represents the steady-state mean of x, obtained from
the positive-P solutions as in Ref. [45]. The matrix D

is a 6 × 6 matrix with [−2iχα2
1,2iχα∗ 2

1 ,−2iχα2
2,2iχα∗ 2

2 ,

−2iχα2
3,2iχα∗ 2

3 ] on the diagonal. Because we have
parametrized our system using J = 1, the frequency ω is in
units of J . S(ω) then gives us products such as δαiδαj and
δα∗

i δα
∗
j , from which we construct the output variances and

covariances for modes 1 and 3 as

Sout(Xi,Xj ) = δij + γ (Sij + Sji). (14)

Formally, these quantities are Fourier transforms of two-
time correlation functions in the time domain. In quantum
optics the frequency ω has an obvious meaning as the shift
from a cavity resonance frequency in units of the inverse cavity
lifetime. In our atomic case, ω represents the initial spectral
energy distance from the mean steady-state mode energy in
each well.

ω (units of J)
-6 -4 -2 0 2 4 6

S
(D

S
13

)

3.5

4

4.5

5

5.5

6

FIG. 7. The spectral Duan-Simon output correlations between
wells 1 and 3 for χ = 10−3. The solid line is for ε = 10, at θ = 129◦,
and the dash-dotted line is for ε = 10

√
2, at θ = 124◦.

The results of this procedure for the Duan-Simon inequality
are shown in Fig. 7, showing a narrow range of entanglement
about the mean energy. The plots of the EPR inequality
shown in Fig. 8 also show violations over a narrow range,
with the spectrum developing more structure as the pumping
increases. The output modes from the two wells are also
individually quadrature squeezed, at the same angles as
shown in the plots. These results show that the two outputs
possess bipartite quantum correlations. Given that the number
difference statistics between the two wells are sub-Poissonian,
this system qualifies as a quantum-correlated twin-atom
laser.

V. CONCLUSIONS

We have combined recent advances in atomic trapping
and outcoupling to outline a proposal for the realization of
a quantum-correlated twin-atom laser. The new techniques
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FIG. 8. The spectral EPR-steering output correlations between
wells 1 and 3 for χ = 10−3. The solid line is for ε = 10, at θ = 129◦,
and the dash-dotted line is for ε = 10

√
2, at θ = 124◦.
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of potential painting along with the recent realization of
damping of individual wells via an electron beam, as well
as proposals for the homodyne measurement of atomic
quadrature fluctuations, allow for a system which would not
have been possible in the recent past. We also note here that an
equivalent system would not be possible using optical cavities
since, while not all cavities need to be pumped, they inevitably
undergo damping. An atomic system allows for the freedom of
choice over which individual wells will be damped as well as
which will be pumped. While the pumping condensate remains

undepleted, our system will produce two quantum-correlated
steady-state beams of atoms.
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