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In this work, we study many-body excitations of Bose-Einstein condensates trapped in periodic one-
dimensional optical lattices. In particular, we investigate the impact of quantum depletion onto the structure of the
low-energy spectrum and contrast the findings to the mean-field predictions of the Bogoliubov–de Gennes (BdG)
equations. Accurate results for the many-body excited states are obtained by applying a linear-response theory
atop the multiconfigurational time-dependent Hartree method for bosons equations of motion. We demonstrate
for condensates in a triple well that even weak ground-state depletion of around 1% leads to visible many-body
effects in the low-energy spectrum, which deviates substantially from the corresponding BdG spectrum. We
further show that these effects also appear in larger systems with more lattice sites and particles, indicating the
general necessity of a full many-body treatment.
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I. INTRODUCTION

The understanding of static and dynamic properties of
Bose-Einstein condensates (BECs) in trapped dilute ultracold
atomic gases has been a major research objective since
the experimental realization of BECs [1–5]. The standard
theoretical approach for these systems is to solve the Gross-
Pitaevskii (GP) mean-field equation which assumes that all
bosons reside in the same single-particle state [6–9].

Excited states have commonly been accessed by applying
linear-response theory atop the GP equation, yielding the
Bogoliubov–de Gennes (BdG) equations [8–13]. Several
experiments where the Bogoliubov excitations in BECs were
studied are reviewed in Ref. [14]. However, it has been
observed for various systems that many-body effects play
a crucial role. This concerns ground-state depletion and
fragmentation in finite systems [15–19] as well as the out-
of-equilibrium dynamics of trapped BECs [20–26], even
for almost fully condensed systems where the GP equation
was expected to accurately describe the condensate’s time
evolution [27].

In particular, BECs in one-dimensional (1D) optical lattice
potentials have been of high interest over the last two decades
[28–32]. Some experimental observations of excited states
in such systems clearly deviate from the BdG predictions.
As an example, the out-of-equilibrium dynamics in a large
1D lattice with a superimposed harmonic confinement shows
substantial differences with respect to the observed oscillation
frequencies of the superfluid phase and the BdG frequencies
[33,34]. Moreover, the quantum depletion in gaseous BECs
exposed to a 1D optical lattice only partly agrees with the
BdG theory [35].

In terms of many-body excitations, a contemporary study
shows the low-energy spectrum of excited states for four
bosons in a triple-well potential, utilizing a number-state
expansion of the exact wave function [36]. Our motivation
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for this work is to provide a general study of the many-body
effects in the low-energy spectrum of finite weakly interacting
BECs in one-dimensional lattices.

Analytic results from a recent study show that the single-
particle excitation energies of a weakly interacting BEC in a
trap are given exactly by the BdG predictions in the infinite-
particle (or mean-field) limit [37] (generalizing a previous
study on homogeneous systems [38]). The energies of excited
states where more than one particle is excited out of the
condensate are then obtained by multiples and sums of the
BdG energies. It remains unclear, however, what the excitation
energies are of a BEC in a trap with only a finite number of
particles, far from the infinite-particle limit. We address this
question in this work. Beside discussing general many-body
effects in the low-energy spectra, we investigate how far the
BdG mean-field energies deviate from the exact many-body re-
sults, especially when the system’s ground state is almost fully
condensed and a mean-field approach seems to be adequate.

To this end, we discuss the many-body excited states
of repulsive BECs in a shallow and deep triple well and
present numerically converged results for the energy levels.
By comparing the obtained many-body spectra with the
corresponding BdG predictions, we demonstrate that, already
in the limit of weak interactions and weak ground-state
depletion of the order of 1%, many-body effects occur which
cannot be explained by the BdG theory. We emphasize that, in
our study, we are far away from the regime of the superfluid-
to-Mott-insulator transition [39–41]. Furthermore, we show
that the same many-body effects also appear in larger lattices
where the number of particles and lattice sites is increased,
indicating that a many-body description for the excited states
in these systems is unavoidable.

We compute exact values for low-lying many-body exci-
tations by employing linear-response theory atop the mul-
ticonfigurational time-dependent Hartree method for bosons
(MCTDHB [42,43]), termed LR-MCTDHB, which has been
introduced in Refs. [44,45], successfully benchmarked in
Ref. [46], and recently applied to BECs trapped in harmonic
and double-well potentials [47]. In this work, we report
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on the development and application of our new numerical
implementation of LR-MCTDHB and show how it enables us
to find new physics.

The paper is structured as follows: In Sec. II, we describe
the theoretical framework, i.e., the system’s Hamiltonian
(Sec. II A), and elaborate on the many-body linear-response
method utilized (Sec. II B). Results are presented in Sec. III.
We separate the discussion of excited states of BECs in a triple
well (Sec. III A) and in larger systems where the number of
lattice sites and bosons in the trap is increased (Sec. III B).
A summary as well as concluding remarks are given in Sec.
IV. Further information on the numerical convergence of our
results, a special type of excited states (zero quasimomentum
modes) and a benchmark of LR-MCTDHB to the analytically
solvable harmonic interaction model are provided in the
appendixes A–C.

II. THEORETICAL FRAMEWORK

A. Hamiltonian and setup

In this work, we consider condensates of N interacting
bosons described by the general Hamiltonian

Ĥ =
N∑

i=1

ĥ(xi) +
N∑

i<j=1

Ŵ (|xi − xj |), (1)

with the one-body operator ĥ(x) = − 1
2� + V̂ (x) comprising

the kinetic energy and the external single-particle potential V̂ ,
and with the two-body interaction potential Ŵ . For the sake
of simplicity, we set h̄ = m = 1 where h̄ is Planck’s constant
and m is the boson mass. Dimensionless units are obtained by
dividing Ĥ by h̄2

d2m
with d being a length scale.

The external potential represents a one-dimensional lattice
given by

V̂ (x) = V0 cos2
(π

l
x
)
, (2)

where V0 is the lattice depth and l is the distance between two
adjacent lattice sites. We assume periodic boundary conditions
and separate the lattice sites by a distance of l = 1. V0 can be
expressed in terms of dimensionless units of the recoil energy

ER = h̄2k2
0

2m
with the lattice momentum k0 = π

l
.

The interaction between bosons is described by contact
interaction

Ŵ (|xi − xj |) = λ0δ(xi − xj ), (3)

where the parameter λ0 is chosen to be positive throughout
this work to account for repulsion. Interaction strengths are
expressed in terms of the dimensionless mean-field parameter
� = (N − 1)λ0 with λ0 = mg1D

h̄2n
where n is the density and

g1D is a coupling strength relating the scattering length
and the transverse confinement [48]. A translation of the
dimensionless parameters into real units can be found in
Ref. [49].

B. Methodology

In this section we present a brief description of the
linear-response method utilized in order to calculate the

many-body excitation spectra of repulsive BECs in one-
dimensional lattices. We apply linear-response theory atop
the multiconfigurational time-dependent Hartree method for
bosons, MCTDHB(M). The most important ingredient of
MCTDHB is the ansatz of the many-body wave function as
a superposition of permanents {|�n; t〉} comprising M single-
particle orbitals {φq(x,t)|1 � q � M},

|�(t)〉 =
∑

�n
C�n(t)|�n; t〉, (4)

where �n = (n1, . . . ,nM )t is a vector carrying the individual
occupation numbers of the orbitals and {C�n(t)} are the expan-
sion coefficients. The size of the configuration space is thus
given by Nconf = (

N+M−1
N

)
. Both the expansion coefficients

and the orbitals are time-adaptive and determined by the
Dirac-Frenkel time-dependent variational principle. In the
case of only one orbital, M = 1, MCTDHB(1) coincides with
the commonly used GP theory where all bosons reside in the
same self-consistent single-particle state.

The linear-response analysis is made atop the static mul-
ticonfigurational Hartree theory for bosons (MCHB) ground
state [50] which is obtained by imaginary time propagation
of the MCTDHB equations of motion. Given the ground-state
orbitals {φ0

q} and coefficients {C0
�n}, we compute the one- and

two-body reduced density matrices {ρ0
ij } and {ρ0

ijkl}.
Essential for our analysis in Sec. III is the notion of quantum

depletion of the system’s ground state. As a definition, we
use the eigenvalues {nk|n1 � n2 � . . . � nM} of {ρ0

ij }, often
termed the natural occupation numbers of the eigenvectors
which denote the so-called natural orbitals. If only n1 is of
order N , the system is said to be condensed. Otherwise, it is
in general depleted. The depletion f is measured by the sum
over all other occupation numbers,

f = 1

N

M∑
k>1

nk. (5)

Explicit values for depletion are given in percent consistently
throughout this work.

The linear-response equations are then obtained by lin-
earizing the MCTDHB equations of motion for the ground-
state orbitals and coefficients with respect to a small pe-
riodic time-dependent perturbation δĥ(x,t) to the single-
particle Hamiltonian, i.e., ĥ(x) → ĥ(x) + δĥ(x,t). This yields
the linear-response theory atop MCTDHB(M), termed LR-
MCTDHB(M). The lengthy but straightforward derivation of
the linear-response equations is described in Refs. [44,45].

We focus on the resulting eigenvalue equation given by

L

⎛
⎜⎜⎝

uk

vk

Ck
u

Ck
v

⎞
⎟⎟⎠ = ωk

⎛
⎜⎜⎝

uk

vk

Ck
u

Ck
v

⎞
⎟⎟⎠, (6)

with the 2(M + Nconf)-dimensional linear-response matrix
L = M−1/2PLPM−1/2, where M is a metric containing the
reduced one-body density matrix and P = 1 − ∑M

q=1 |φ0
q〉〈φ0

q |
is a projection operator onto the subspace orthogonal to
the ground-state orbitals. We stress that L is in general not
Hermitian.
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The eigenvalue ωk denotes the energy of the kth excited
state. Due to a special symmetry of L, they occur in pairs of
one positive and one negative root, i.e., ±ωk .

The corresponding eigenvectors (uk,vk,Ck
u,C

k
v)T collect the

corrections uk = {|uk
q〉} and vk = {|vk

q〉} to the ground-state
orbitals and the corrections Ck

u and Ck
v to the ground-state

coefficients.
The inner matrix L is built by four submatrices,

L =
(
Loo Loc

Lco Lcc

)
, (7)

where Loo contains the couplings between the individual
orbitals,Loc andLco contain the couplings between the orbitals
and the coefficients, and Lcc contains the couplings between
the coefficients. The general expressions for these submatrices
can be found in Ref. [45]. For the special case of the δ potential,
the (2M)-dimensional orbital matrix Loo is given by

Loo =
(

A B

−B∗ −A∗

)
, (8)

with

A = {Aij }, Aij = ρ0
ij ĥ + 2λ0

M∑
s,l=1

ρ0
islj φ

0,∗
s φ0

l − μ0
ij , (9)

and

B = {Bij }, Bij =
M∑

s,l=1

λ0ρ
0
ij lsφ

0
s φ

0
l , (10)

where {μ0
ij } is a Hermitian matrix containing Lagrange

multipliers.
For M = 1,L reduces to the Bogoliubov–de Gennes matrix

LBdG =
(

ĥ + 2�|φ0|2 − μ0 �(φ0)2

−�(φ0,∗)2 −(ĥ + 2�|φ0|2 − μ0)∗

)
,

(11)

with the chemical potential μ0. The eigenvalue equation Eq. (6)
therefore yields the particle-conserving BdG equations

PLBdGP
(

uk

vk

)
= ωk

(
uk

vk

)
. (12)

It is important to note that the BdG equations by construction
just have access to the single-particle excitations where only
one particle at a time is excited out of the GP ground state.
For � > 0, we term all excitations computed from Eq. (12)
mean-field excitations.

In contrast with Eq. (11), the linear-response matrix L from
the LR-MCTDHB(M) theory has a much more complicated
structure. Already the orbital matrix Loo from Eq. (8) is
more involved than LBdG because the bosons are permitted to
occupy more than just a single orbital. Due to the submatrices
Loc, Lco, and Lcc in Eq. (7), LR-MCTDHB gives access
to additional excitations which are multiparticle in nature,
i.e., where more than one particle is excited at a time.
Moreover, for nonzero repulsion, even the single-particle
excited states within LR-MCTDHB(M > 1) should be more
accurate than in the BdG case. This is because it has been
shown in Refs. [45,51,52] that, given the exact ground state

of the system, a linear-response analysis results in the exact
excitation spectrum. The description of the MCHB ground
state, however, can be systematically improved by increasing
the number of orbitals M .

We call all excitations computed from Eq. (6) many-body
excitations since they either (i) describe excitations where
more than one particle is excited from the ground state
which cannot be obtained from Eq. (12) directly, or (ii) go
beyond mean-field theory for � > 0, even for single-particle
excitations.

We close this section by elaborating briefly on the numerical
methods used. The results presented in the next section are
obtained by constructing the linear-response matrix L for
BECs in one-dimensional lattice potentials with a subsequent
diagonalization of L. For M > 1, we perform a partial
diagonalization due to the large sizes of the linear-response
matrices for the systems considered in this work. To this end,
we had to develop a new implementation of LR-MCTDHB
which is capable of constructing and partly diagonalizing such
large matrices. Without this, it would not have been possible to
obtain converged results for most of the systems in Sec. III. The
implementation uses the Implicitly Restarted Arnoldi Method
(IRAM) [53] and its implementation in the ARPACK numerical
library [54]. The IRAM is an iterative method that employs the
Arnoldi algorithm [55] to solve Eq. (6) with respect to a set of
roots which is of special interest. In our case, we consider the
lowest-in-energy positive roots, i.e., the low-energy spectrum
of many-body excited states.

For the corresponding BdG matrices a full diagonalization
is performed since their sizes are typically much smaller. A
more detailed description of the dimensionality of the linear-
response matrices used, together with other numerical details,
is given Appendix A.

III. RESULTS AND ANALYSIS

In this section, we investigate the spectrum of excited states
of interacting BECs in one-dimensional lattice potentials. In
Sec. III A we study spectra in a shallow and deep triple well
and compare the excitation spectra obtained from the BdG
equations with accurate LR-MCTDHB many-body results.
In Sec. III B, we discuss excitations in larger systems, i.e.,
with more lattice sites and particles and deduce some general
statements on excited states of BECs in one-dimensional
lattices.

A. Excited states within a triple well

To start our analysis, we consider N = 10 identical bosons
confined in a triple well. We distinguish the cases of a shallow
and deep triple well with potential depths V0 = 5.0 (1.01ER)
and V0 = 50.0 (10.13ER), respectively. Our primary goal is
to analyze the general structure of the many-body low-energy
spectra and show differences compared with the mean-field
spectra obtained by solving the corresponding BdG equations.
In a first step, we consider excitations of noninteracting BECs
with fully condensed ground states and introduce an intuitive
protocol for assigning meaningful quantum numbers to the
excited states. In a second step, we analyze the effect of
interparticle repulsion, and thus ground-state depletion, onto
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FIG. 1. (a) Low-energy part of the LR-MCTDHB(7) spectra of
excited states for BECs consisting of N = 10 bosons in a shallow
triple well with lattice depth V0 = 5.0 (1.01ER). Excitation energies
ωn = En − E0 are given relative to the ground-state energy E0.
Results are shown for different repulsion strengths �. The maximal
degree of ground-state depletion is f = 1.1% for � = 4.0. For
� = 0, the states can be separated into distinct levels, labeled in
ascending order. The twofold degenerate states from levels 1 and 5 are
single-particle excitations. They can be associated as the states with
quasimomentum p = ±1 from the first and second single-particle
band. All remaining levels solely consist of many-body excitations
where more than one particle is excited out of the condensate. By
increasing �, the degeneracies between states of the same level
are lifted and some levels change the order compared with the
noninteracting case. The dotted red lines indicate the first two BdG
lines for � = 4.0. (b) Same as in panel (a) but for the deep triple well
with depth V0 = 50.0 (10.13ER). The maximal degree of depletion
is f = 8.4% for � = 2.0, the dotted red line indicates the only BdG
line for this repulsion strength in the shown energy range. Notice the
different energy scales between the panels. See main text for details.
All quantities are dimensionless.

the excited states. We apply LR-MCTDHB(7) to compute the
many-body spectra which ensures numerically converged re-
sults. A more detailed discussion on the numerical convergence
is given in Appendix A.

The bottom curve in Fig. 1(a) shows the energies of the
first 26 excited states of the noninteracting BEC in the shallow
triple well. The excitation energy values ωn are computed
relative to the ground-state energy E0, i.e., ωn = En − E0

where En is the energy of the nth excited state. We obtain

seven distinct levels of excitations, each of them composed of
a certain number of degenerate states. To guide the eye, these
levels are enumerated in ascending order. Within the shown
energy range of the figure, we obtain two degenerate pairs of
single-particle excitations, given by the doublets of levels 1
and 5. These are single-particle excitations because the cor-
responding BdG spectrum for the noninteracting case yields
only those two pairs. All remaining states can thus only be
many-body excitations where more than one particle is excited
out of the condensate. In the absence of interparticle repul-
sion, all single-particle excitations are exact quasimomentum
eigenstates. They appear in bands composed of three states
each. The only possible eigenvalues are p = 0 and p = ±1,
where the states corresponding to the latter are energetically
degenerate.

We therefore identify the doublet from level 1 in Fig. 1(a)
as the p = ±1 eigenstates from the first single-particle band
and the doublet from level 5 as the p = ±1 eigenstates
from the second single-particle band. We can now use these
states to explain both the energies and the degeneracies
of the levels in the spectrum by populating the p = ±1
states with additional particles. To this end, we introduce
the notation (n(1)

+1,n
(1)
−1; n(2)

+1,n
(2)
−1) where the first two entries

in brackets denote the occupation of the p = ±1 states
from the first single-particle band and the last two entries
denote the occupation of the p = ±1 states from the second
single-particle band. For example, level 2 is composed of
three degenerate states which we identify as the excitations
(2,0; 0,0), (0,2; 0,0), and (1,1; 0,0).

Similar observations can be made for the spectrum of the
noninteracting BEC in the deep triple well, given by the
bottom curve in Fig. 1(b). Therein one obtains only one pair of
degenerate mean-field excitations given by the doublet of level
1, representing the p = ±1 states from the first single-particle
band. One thus needs only this level to explain the positions of
the many-body levels in the figure. The p = ±1 states from the
second single-particle band are significantly higher in energy
(ω ≈ 24.1, not shown).

Let us now consider repulsion between the bosons and study
how this affects the excitation spectra. In contrast to the fully
condensed ground states of the noninteracting systems, there
are now different degrees of ground-state depletion depending
on the repulsion strength �. For the shallow lattice, we obtain
f = 0.4% for � = 2.0, f = 0.73% for � = 3.0, and f =
1.1% for � = 4.0. We thus claim to be in the limit of weak
depletion for all values of � considered for the shallow lattice.
For the deep lattice, the ground states in general show stronger
depletion, given by f = 2.3% for � = 0.5, f = 4.7% for � =
1.0, and f = 8.4% for � = 2.0.

As a general observation, one can see from the upper three
curves in Figs. 1(a) and 1(b) that the low-energy spectra of
the shallow and deep lattices are growing monotonically in
energy when the repulsion is increased, i.e., the distance ωn to
the ground state becomes larger for all excited states shown.
Moreover, the order of levels in the shallow triple well changes
for growing values of �. For example, the third many-body
level which solely consists of multiparticle excitations (states
n = 12 to 16) crosses the second single-particle level (states
n = 10 and 11). Also levels 6 and 7 switch order compared
with the noninteracting case.
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In the following, we concentrate on many-body effects of
the excitation spectra for the cases � = 4.0 in the shallow
triple well and � = 2.0 in the deep triple well only. Comparing
the mean-field and many-body results, one can see that the
low-energy spectrum consists of a large number of many-body
excited states. For the � = 4.0 case in the shallow triple well,
two BdG lines for the energy range considered are obtained
[indicated by the dotted horizontal red lines in Fig. 1(a)]. For
the � = 2.0 case in the deep triple well we obtain one BdG
line [dotted red line in Fig. 1(b)]. As for � = 0, we identify
those states as the p = ±1 states from the first and second
single-particle bands. Whereas this identification was exact
in the noninteracting systems, this is not the case any more
for � > 0 since now the states are dressed by the interaction
potential. However, we keep the notion (n(1)

+1,n
(1)
−1; n(2)

+1,n
(2)
−1) to

label states from the low-energy spectrum because the upper
curves in Figs. 1(a) and 1(b) show that the excitations can still
be classified according to this level structure.

The first many-body effect one can observe is the splitting
of states from the same level in the presence of interaction.
For example, the state n = 5 in the upper curve of Fig. 1(a) is
slightly higher in energy (ω5 = 6.32) than the states n = 3, 4
with ω3 = ω4 = 6.19. Due to symmetry reasons, we identify
the two degenerate states as (2,0; 0,0) and (0,2; 0,0), whereas
the nondegenerate state is (1,1; 0,0). The splitting grows with
�. It is important to note that, in both the noninteracting and
mean-field cases, all states from the same level are degenerate,
and a distinction like that above is not possible. Thus, the
splittings in the many-body spectrum allow at least partly to
identify individual states of the same many-body level. More
generally, we observe that states where the modulus between
the total quasimomentum P given by

P = n
(1)
+1 + n

(2)
+1 − n

(1)
−1 − n

(2)
−1, (13)

and the number of sites L equals zero, i.e., mod(P,L) = 0, are
not degenerate. We call these states the zero quasimomentum
modes, or simply ZQMs, in the following. A more detailed
discussion on the ZQMs in the shallow triple well is given
in Appendix B. States from the same level with equal
|mod(P,L)| �= 0 remain twofold degenerate.

As a second many-body effect, we discuss the numerical
deviations of the BdG excitation energies from those obtained
from LR-MCTDHB(7). As mentioned in Sec. I, the BdG
energies give the exact values for the single-particle excitations
in the infinite-particle limit, i.e., for N → ∞ and λ0 → 0
such that � = (N − 1)λ0 = const. Again, the energies for
multiparticle excitations in this limit are exactly given by
multiples and sums of the BdG energies.

Figure 2 shows the deviations between the first BdG line,
BdG(1), and its first few multiples from the corresponding
exact many-body results for the shallow triple well with � =
4.0 [Fig. 2(a)] and the deep triple well with � = 2.0 [Fig. 2(b)].
For both systems, we already find clear deviations for the
first two mean-field-like excitations, n = 1 and 2. The exact
many-body energies for both systems are smaller than the
corresponding BdG energies. The reason is that, due to the
depleted ground state in both cases, there are now slightly
less particles in the condensed mode, and thus the effective
repulsion between the bosons in that mode is weakened. Many-

FIG. 2. (a) Comparison of the first BdG energy BdG(1) and
its multiples (open circles) with the LR-MCTDHB(7) many-body
results (colored symbols) for a BEC with N = 10 bosons in the
shallow triple well with depth V0 = 5.0 (1.01ER), repulsion strength
� = 4.0, and depletion f = 1.1% [cf. uppermost curve in Fig. 1(a)].
Shown are the energies ω of the first five levels where only the
p = ±1 states from the first single-particle band are occupied by
N (1) = n

(1)
+1 + n

(1)
−1. For the many-body results, the number of points

per level reflects the (N (1) + 1)-fold degeneracy (note that some points
lie atop of each other). The BdG(1) line and its multiples assign
too-high excitation energies ω to all levels shown. The deviation
grows with N (1). Inset shows the evolution of the relative error Erel =
| ωBdG(N (1))−ωMB(N (1))

ωMB(N (1))
| where ωMB(N (1)) denotes the LR-MCTDHB(7)

energy of the state from the level N (1) with the largest distance to
ωBdG(N (1)) = N (1)BdG(1). Already for N (1) = 4, Erel exceeds 10%.
(b) Same as in panel (a) but for the deep triple well with V0 = 50.0
(10.13ER), � = 2.0, and f = 8.4%. For this degree of depletion,
already BdG(1) itself and the corresponding many-body energy
ωMB(1) deviate by a relative error of Erel = 4.8% from each other.
Notice the different energy scales between the panels. See text for
more details. All quantities are dimensionless.

body linear-response atop the depleted ground state accounts
for this lower repulsion and, in comparison with the mean-field
result, yields a slightly lower excitation energy.

Another quantitative measure for the deviations is given
by the relative error Erel (see details on the computation of
Erel in the caption of Fig. 2). Whereas it is still moderate for
the shallow triple well, given by Erel = 0.3% for the first and
Erel = 0.5% for the second BdG line (not shown), it becomes
significantly larger in the deep lattice where we obtain Erel =
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4.8% for the first BdG line, cf. the insets of Figs. 2(a) and 2(b).
In other words, already for this first level of excited states
the energies of the mean-field and many-body spectra deviate
substantially from each other.

With respect to the multiparticle excited states, the devi-
ations become even larger. If the mean-field approximation
using multiples of the first BdG line (open circles in Fig. 2)
would be exact, all energies from the many-body spectrum
(colored symbols) would follow the straight line and lie atop
the BdG(1) multiples. However, in both cases (a) and (b) of
Fig. 2, the mean-field approximation tends to overestimate the
exact energies of the individual levels. The increase in the
deviation between multiparticle excitations and their corre-
sponding BdG multiples are in line with the above analysis of
lowered effective repulsion between the bosons remaining in
the condensed mode of the depleted ground state. Moreover,
it assigns by construction the same energy to all excitations
from the same level, which contradicts the previously made
observation of splittings. For the stronger depleted condensate
in Fig. 2(b), the discrepancies are substantial and the relative
error given in the inset exceeds 10% already for N (1) = 2. But
also for the weakly depleted condensate in Fig. 2(a) the relative
error grows quickly, given by Erel = 10.9% and 15.3% for the
levels N (1) = 4 and 5, respectively.

B. Larger systems

After having studied the many-body excitation spectra of
repulsive BECs in a triple well, we now investigate excitations
in larger systems, i.e., with more lattice sites and particles.
Treating below more particles and sites aims at solidifying
the above-found many-body effects and announcing better
computational capabilities of many-body excitation spectra
than reported previously in Refs. [44,47].

Figure 3(a) shows many-body excitation spectra for BECs
with N = 10 bosons in a shallow lattice (V0 = 5.0 = 1.01ER)
with 10 sites. The ground-state depletion for the different
repulsion strengths considered are given by f = 0.02% for
� = 0.1, f = 0.29% for � = 0.5, and f = 0.84% for � =
1.0. We are thus dealing with excited states in a similar
regime of weak depletion as we did for the shallow triple
well in the previous section. The many-body results are
numerically converged for LR-MCTDHB(7) (see discussion in
Appendix A).

As for the triple-well cases, the low-energy spectrum
contains a large number of many-body excitations, and the
spectrum grows monotonically in energy with growing repul-
sion. The excited states n = 1,2 and n = 10,11 are close to
the first two BdG lines. We identify these single-particle states
as quasimomentum eigenstates, dressed by the interaction
potential. However, in the larger lattice the spectrum of
quasimomentum eigenstates is denser, allowing for bands of
10 states with momenta p ∈ [−5,4]. Therefore, the states
n = 1,2 correspond to the dressed p = ±1 eigenstates and the
states n = 10,11 correspond to the dressed p = ±2 eigenstates
from the first single-particle band. All remaining states denote
many-body excitations with more than one particle being
excited at a time. Similar to the triple-well cases, the splitting
of states with different momenta becomes larger with increased
repulsion.

FIG. 3. (a) Same as in Fig. 1(a) but for a lattice with 10 sites. The
maximal degree of ground-state depletion is f = 0.84% for � = 1.0.
The states n = 1,2 and n = 10,11 are single-particle excitations;
all remaining states of the many-body spectra are multiparticle
excitations where more than one boson at a time is excited from
the ground state. With increasing �, several degeneracies of states
from the same level are lifted compared with the noninteracting
case. Dotted red lines indicate the two BdG mean-field energies for
� = 1.0 in the shown energy range. (b) Same as in Fig. 2(a) but for a
lattice with 10 sites and repulsion strength � = 1.0. The BdG(1) line
and its multiples assign too-high excitation energies ω to all levels
shown. The deviation grows with N (1). Inset shows the evolution of
the relative error Erel. See text for more details. All quantities are
dimensionless.

Figure 3(b) presents the comparison between the mean-field
approximation, i.e., BdG(1) line and its multiples, with the
many-body results for the first five levels, built by occupying
the p ± 1 states from the first single-particle band for the � =
1.0 spectrum from Fig. 3(a). As for the triple-well examples,
the multiples of BdG(1) assign too-high excitation energies
to the individual levels, and the deviation grows with N (1). It
is very interesting to see from the inset that the evolution of
the relative error yields values very similar to those from the
� = 4.0 case in the shallow triple well where the degree of
the ground-state depletion was of the same order [cf. inset of
Fig. 2(a)]. However, we emphasize that, in the lattice with 10
sites, the deviations appear already for weaker repulsion. The
physical origin lies in the denser spectrum of quasimomentum
eigenstates compared with the triple well, such that, already
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FIG. 4. Many-body excited states for a BEC with N = 100
bosons in a lattice with 10 sites and depth V0 = 5.0 (1.01ER). Results
are shown for different repulsion strength � and have been calculated
with LR-MCTDHB(3). The maximal depletion is f = 1.3% for
� = 8.0. Dotted red lines indicate the BdG mean-field energies for
� = 8.0 in the shown energy range. The many-body spectra show
similar effects like for the smaller systems with only ten particles,
e.g., the splitting of states from the same level. See text for more
details. All quantities are dimensionless.

for weak repulsion, several quasimomentum eigenstates are
occupied.

So far we considered systems with N = 10 bosons. We now
increase the number of particles. The motivation is to identify
convincing differences between the mean-field and many-body
spectra for a system which is closer to the infinite-particle limit
of the trapped condensate.

Figure 4 shows the excitation spectra for N = 100 bosons in
a shallow lattice with 10 sites for several interaction strengths.
We calculated the many-body energies with LR-MCTDHB(3).
In contrast to all results shown so far for N = 10 particles,
we do not claim to present fully converged energies in this
case. One probably needs to include M = 5 single-particle
orbitals or more into the linear-response analysis to obtain
fully converged excitation energies. Since the size of the
corresponding coefficients’ subspace is larger than 9 × 106,
the numerical effort to compute the low-energy spectrum for
M � 5 exceeds the scope of this work. Nonetheless, the results
are sufficient to show that clear deviations from BdG theory are
obtained because the quality of the ground state is improved.
In particular, adding more orbitals to the description of the
ground state cannot remove the many-body features in the
excitation spectra.

The degrees of ground-state depletion are given by f =
10−5% for � = 0.01, f = 0.36% for � = 4.0, and f = 1.3%
for � = 8.0. We are therefore within the same regime of
depletion as for the cases of N = 10 bosons in shallow lattices
discussed above.

First, we again see in Fig. 4 that a large number of
many-body excitations appear in the low-energy part of the
spectrum. Second, with increasing repulsion, several splittings
of excitations from the same level is observed, showing that
this many-body effect also appears in systems which are
already closer to the infinite-particle limit than the examples

with N = 10 bosons. Moreover, they occur within the same
regime of depletion which is around f ≈ 1%. With respect to
the repulsion strength, however, depletion sets in for higher
values of � because the closer one gets to the infinite-particle
limit, the more condensed is the system’s ground state for a
fixed interaction strength and thus one needs to increase the
repulsion to obtain stronger ground-state depletion.

IV. SUMMARY AND CONCLUSIONS

In this work, we have investigated excitation spectra of
repulsive BECs in one-dimensional lattice potentials with
periodic boundary conditions. Our study dealt with the low-
energy part of the spectra on the mean-field and many-body
level, computed from the BdG equations and LR-MCTDHB,
respectively. For all systems considered, we saw that the
LR-MCTDHB low-energy spectra consist of a large number
of many-body excitations and many-body properties which the
BdG equations cannot access by construction.

We presented numerically accurate results for excitation
spectra of BECs with N = 10 bosons in shallow and deep
triple wells. In both cases, many-body effects on the excitation
spectra set in as soon as there is ground-state depletion of the
order of about 1%. Those effects are mainly (i) the splitting
between several many-body excitations from the same level
which are degenerate in the corresponding mean-field spectra,
(ii) the numerical deviations between the BdG lines and the
corresponding many-body results from LR-MCTDHB when
the ground state is depleted, and, as a consequence of this,
we found (iii) that the multiples of the BdG lines do not
accurately account for the excitation energies of states where
more than one boson at a time is excited. The mean-field
approximation of taking multiples of the BdG energies quickly
becomes inaccurate, i.e., even for the lowest levels one can
see substantial differences compared with the many-body
results. This observation was made already for weakly depleted
condensates with f ≈ 1%. We conclude that one is clearly in
need of an accurate many-body description for the excited
states, even in the regime of weak depletion.

We extended our study to systems with additional lattice
sites and particles. For N = 10 bosons in a shallow lattice
with 10 sites, we found that the many-body effects described
above set in already for weaker repulsion than for the triple-
well examples. This is because the spectrum of low-energy
quasimomentum eigenstates is denser for the larger lattice.
From this we deduce that, in general, the excitation spectra of
condensates with a finite number of particles in larger lattices
are even more sensitive to the interaction strengths, i.e., many-
body effects set in at weaker values of � than in smaller
lattices.

For a larger system with N = 100 bosons, i.e., closer to the
infinite-particle limit, we obtain qualitatively similar excitation
spectra, containing clear many-body effects. However, the
repulsion strength needs to be larger in order to achieve
the same degree of ground-state depletion. We have again
demonstrated that once about 1% is depleted, many-body
effects can no longer be neglected.

063602-7



BEINKE, KLAIMAN, CEDERBAUM, STRELTSOV, AND ALON PHYSICAL REVIEW A 95, 063602 (2017)

ACKNOWLEDGMENTS

Computation time on the Cray XC40 cluster Hazel Hen at
the High Performance Computing Center Stuttgart (HLRS) is
acknowledged. Financial support by the IMPRS-QD (Inter-
national Max Plack Research School for Quantum Dynam-
ics), the Graduate Academy of Heidelberg University, and
the Minerva Foundation is gratefully acknowledged. O.E.A.
acknowledges funding by the Israel Science Foundation (Grant
No. 600/15).

APPENDIX A: DETAILS OF COMPUTATIONS AND
NUMERICAL CONVERGENCE

In this section, we present additional details on the numer-
ical computations and report on the numerical convergence
for the excitation spectra for all systems with N = 10 bosons
discussed in the main text.

In general, our computations have been carried out on a grid
with 16 or more discrete-variable-representation (DVR) grid
points per lattice site. For all simulations done, it turned out
that this is sufficient since increasing the number of grid points
per site did not change the obtained excitation energies. The
box sizes used are [−1.5,1.5) for the triple wells and [−5,5)
for the lattice with 10 sites.

To obtain the MCHB ground states from propagating the
MCTDHB equations of motion in imaginary time, we use
the MCTDHB implementation in the software package [56],
also available in the recently developed MCTDHB-Laboratory
package [57].

The linear-response matrices of the systems studied in this
work are of the dimensionality

Ndim = 2MNDVR + 2Nconf, (A1)

where NDVR is the total number of DVR grid points used.
Typically, the BdG matrices considered are small in size, i.e.,
Ndim(LBdG) < 1000. We therefore perform a full diagonaliza-
tion of these matrices. However, the linear-response matrices
for the many-body cases are usually much larger. For example,
the triple-well examples in the main text are carried out on
a grid with 32 DVR points per site, yielding Ndim = 17 360
for M = 7 and Ndim = 89 244 for M = 9 (see below and
Fig. 5). To deal also with such large matrices, we extended
our LR-MCTDHB implementation from Refs. [44–46], both
with respect to the construction and (partly) diagonalization of
L, which is planned to be reported and presented elsewhere.

Next we discuss the numerical convergence with respect
to the number M of single-particle orbitals used. Figure 5(a)
shows the low-energy spectrum for the same system as in the
upper curve of Fig. 1(a) for different numbers of orbitals M .
Already for M = 5 orbitals, the results obtained agree very
nicely with the more involved computations done with M = 7
and M = 9 orbitals. Only slight deviations can be observed.
Most importantly, the spectra for M = 7 and M = 9 coincide,
indicating that the usage of M = 7 orbitals for the quantitative
analysis in the main text is justified.

The same conclusion can be made for the example in
Fig. 5(c), where numerical convergence with M = 7 orbitals is
proven for the system of the upper curve of Fig. 3(a). Including
another two orbitals, i.e., M = 9 in total, shows no substantial

FIG. 5. (a) LR-MCTDHB spectra for a BEC with N = 10 in a
shallow triple well with V0 = 5.0 (1.01ER) with repulsion strength
� = 4.0 for different numbers of single-particle orbitals M . The
spectra for M = 7 and M = 9 lie atop of each other, indicating
numerical convergence for M = 7 orbitals. (b) Same as in panel
(a) but in a deep triple well with V0 = 50.0 (10.13ER) with repulsion
strength � = 2.0. Already the LR-MCTDHB(3) spectrum lies atop
of the spectrum for M = 7, with only very little exceptions for the
higher-lying states. (c) Same as in panel (a) but for 10 lattice sites
and repulsion strength � = 1.0. Notice the different energy scales
between the panels. See text for more details. All quantities are
dimensionless.

differences with respect to the resulting energies of excited
states.

Figure 5(b) shows a rather exceptional situation for the
numerical convergence of the system from the upper curve
of Fig. 1(b), i.e., N = 10 bosons in the deep triple well
with interaction strength � = 2.0. We emphasize again that
the corresponding ground state is depleted with f = 8.4%.
Although the depletion in this case is clearly higher than for the
two systems from Figs. 5(a) and 5(c), already for M = 3 one
obtains numerically accurate results for the excitation energies.
It has not been the case for the BECs in the shallow lattices.
The reason might be that the BdG lines in the low-energy
part of the spectrum are in this situation very far apart from
each other [BdG(1) = 9.3 and BdG(2) = 23.8]. Due to this,
the MCHB(3) ground state is most likely composed of three
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single-particle orbitals that are very close to the three states
of the first single-particle band from which all many-body
excited states of the low-energy spectrum are build. Since for
the BECs in the shallow lattices the first two mean-field levels
are not that much separated from each other, one needs at least
M = 5 orbitals in order to obtain reliable results.

Most importantly, in all cases considered, the many-body
effects atop BdG persist as the quality of the ground state
improves.

APPENDIX B: ZERO QUASIMOMENTUM MODES

In this appendix, we elaborate on the zero quasimomentum
modes (ZQMs) of the system with N = 10 bosons in the
shallow triple well with interaction strength � = 4.0. As a re-
minder, we define the ZQMs as the states where mod(P,L) =
0, i.e., where the modulus of the total quasimomentum P given
in Eq. (13) and the number of sites L equals zero.

To analyze the shape of the ZQMs, we calculate the
response densities

�ρk(x) = �ρk
o (x) + �ρk

c (x), (B1)

which have been introduced in Ref. [44]. In Eq. (B1),
the quantities �ρk

o (x) and �ρk
c (x) denote the orbitals’ and

coefficients’ contribution to the total response density of the
excited state k, respectively. For general stationary orbitals
{φ0

i (x)} and reduced one-body density matrix ρρρ0 = {ρ0
ij } these

contributions are given by

�ρk
o = (�0)†(ρρρ0)1/2(uk + vk,∗)

+ (uk + vk,∗)†(ρρρ0,∗)−1/2ρρρ0�0, (B2)

and

�ρk
c =

M∑
i,j=1

φ
0,∗
i φ0

j

(〈C0|â†
i âj

∣∣Ck
u

〉 + 〈
Ck,∗

v

∣∣â†
i âj |C0〉), (B3)

where the vector �0 = (φ0
1, . . . ,φ

0
M )t collects the stationary

orbitals. All position arguments in the latter two equations
have been omitted for the sake of simplicity. The response
densities should not be confused with the actual densities
of the excited states. Whereas the latter are normalized to
unity and real valued, the response densities from Eq. (B1) are
not normalized and are in general complex. Their intensities
signify the strength of the excitations’ contributions to the
response wave function [44,45].

Figure 6(a) shows the energies of the ZQMs up to the top
of the second single-particle band, given by the third BdG
line, BdG(3). We obtain in total 22 ZQMs up to this energy
where especially between the BdG(2) and BdG(3) lines the
density of ZQMs is high. We stress that all of these states are
many-body excitations and therefore are not included in the
corresponding mean-field spectrum. The response densities
indicate that the ZQMs can be characterized by their spatial
symmetry, which appears to be either gerade or ungerade with
respect to the individual lattice sites. We observe that, for all
pairs of ZQMs from the same many-body level and the same
magnitude |P |, one state of the pair is gerade and the other one
is ungerade. It explains why these ZQMs are nondegenerate.
As an example, Figs. 6(b) and 6(c) show the real parts of the

FIG. 6. (a) Energies of the zero quasimomentum modes (ZQMs)
for the system with N = 10 repulsive bosons with � = 4.0 in the
shallow triple well with V0 = 5.0 (1.01ER). Calculations are carried
out with LR-MCTDHB(7). Shown are all ZQMs up to the third BdG
mean-field excited state BdG(3) which indicates the top of the second
single-particle band. All ZQMs can be characterized by either gerade
(red dots) or ungerade (black squares) symmetry. All states shown
are many-body excitations and thus not included in the corresponding
mean-field spectrum. Note the different index nz which enumerates
only the ZQMs compared with the index n in the figures of the main
text which enumerates all excitations. (b) Real part of the density
responses for the states (3,0; 0,0) and (0,3; 0,0). (c) Real part of the
density responses for the states (4,1; 0,0) and (1,4; 0,0). Vertical lines
separate the lattice sites. Notice the different scales between panels
(b) and (c). See text for more details. All quantities are dimensionless.

response densities for two of such ZQM pairs. In particular,
several other ZQMs from the spectrum in Fig. 6(a) have the
same shape as the response density of the gerade excitation in
Fig. 6(b). One can assume that these states can be excited quite
easily in an experiment. For example, a slight driving of the
depth V0(t) = V0 + �V0 sin(ωt) with driving frequency ω and
amplitude �V0 should populate those excitations, especially
when ω is in the vicinity of the energy ωnz

of such an excited
state.
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TABLE I. Benchmark of the numerical method for N = 10
bosons in the one-dimensional harmonic interaction model. Shown
are the ground-state energy E0 and the energies ωi of the first ten
excitations. The trapping frequency is � = 1.0 and the interaction
strength is λ0 = 0.13, yielding ground-state depletion of f = 0.94%
which is in the same regime as for the systems discussed in the main
text. Underlined digits denote deviations from the exact values. See
text for more details. All quantities are dimensionless.

M = 1 M = 4 M = 6 Exact analytical

E0 9.137833 9.038151 9.038150 9.038150
ω1 1.000000 1.000000 1.000000 1.000000
ω2 n/a 2.000222 2.000000 2.000000
ω3 n/a 3.000432 3.000000 3.000000
ω4 3.655133 3.794752 3.794733 3.794733
ω5 n/a 4.011839 4.000012 4.000000
ω6 n/a 4.794870 4.794733 4.794733
ω7 n/a 5.022646 5.000020 5.000000
ω8 5.482700 5.692143 5.692100 5.692100
ω9 n/a 5.797912 5.794737 5.794733
ω10 n/a 6.142955 6.000624 6.000000

APPENDIX C: BENCHMARK TO ONE-DIMENSIONAL
HARMONIC INTERACTION MODEL

To benchmark our numerical implementation of LR-
MCTDHB, we use the one-dimensional harmonic interaction
model (1D-HIM) and compare the numerical results with the
exact analytic excitation energies. In the 1D-HIM, both the
trapping potential V̂ (x) = 1

2�x2 and the two-body interaction
potential Ŵ (|xi − xj |) = λ0|xi − xj |2 are of harmonic type.
The analytic excitation energies can be found in, e.g., Ref. [58].

Table I shows results for a BEC with N = 10 bosons in a
trap with trapping frequency � = 1.0 and interaction strength
λ0 = 0.13 which yields a comparable degree of depletion (f =
0.94%) as for the systems in the main text. LR-MCTDHB(1) ≡
BdG only gives a converged result for the first center-of-mass
excitation ω1. All other excitations that are accessible within
BdG show clear deviations from the analytic values. By adding
additional orbitals to the description of the ground state, all
missing lines are obtained, and the accuracy of all excitations
is clearly improved. For M = 6 orbitals, the agreement with
the analytic values becomes highly accurate for the first ten
excitations.
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