
PHYSICAL REVIEW A 95, 063425 (2017)
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A concrete mechanism of angular-momentum transfer in photoionization process is proposed for electron
photoemission from deep inner atomic shells. It is demonstrated that the leading contribution to angular-
momentum transfer is provided by postcollision interaction of the photoelectrons and Auger electrons. The
standard theoretical approach to postcollision interaction has been considerably improved by taking into account
angular-momentum transfer. The theory developed is applied to the photoionization of 1s2 shell in Ar. Calculations
show the noticeable influence of angular-momentum transfer on the photoelectron angular distribution.
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I. INTRODUCTION

Photoionization of an inner atomic shell is followed by
different decay processes of the inner vacancy. The dynamics
of the decay can be rather complicated, although in the simplest
case it is reduced to the ordinary single Auger decay that
leads to the emission of an Auger electron and creation of two
vacancies in an outer shell. Coulomb interaction between the
photoelectron, the Auger electron, and the ion of the atomic
target is known as postcollision interaction (PCI). PCI leads to
distortion of the energy and angular distributions of the emitted
photoelectrons and Auger electrons, which has been widely
investigated during the last few decades (see, e.g., reviews
[1,2]). In the classical picture, PCI distortion of the energy
distribution implies an energy exchange between the emitted
Auger, photoelectrons, and residual ion whereas distortion
of the angular distribution means that the photoelectrons
and Auger electrons change direction during their emission.
Generally speaking, one can expect the emitted electrons to
exchange also the angular momentum due to the PCI. Such
an exchange can also lead to modifying the electron emission
angular pattern.

In the past years, the attention of the investigators was
mainly drawn to the study of the energy distribution of the
emitted particles. A novel manifestation of PCI distortion in
the spectra of the photoelectrons and Auger electrons was
considered in the case of single, double, and multiple Auger
decay processes both theoretically and experimentally [3–10].
The manifestation of PCI on electron angular distributions
has been much less documented. Angular-dependent pho-
toionization cross sections distorted by PCI were obtained
within the semiclassical [6,11] and eikonal [12,13] approaches.
These models predict a strong PCI influence on the angular
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distribution of the photoelectrons and Auger electrons under
condition of low relative velocity of the escaping electrons
[14] in the case of electron-electron coincidence experiments.
It should be noted that the semiclassical and eikonal models
rely upon the assumption that the emitted electrons are far
apart and their trajectories are a straight line, which is justified
under many real experimental conditions. The direct Coulomb
interaction between the photoelectrons and Auger electrons,
which is taken into account more or less precisely in these
models, leads to PCI distortion of the angular distribution of the
emitted electrons. The theoretical predictions were confirmed
by recent coincidence measurements [15,16]. However, in
the case of noncoincidence measurements, when only the
angular distribution of the photoelectrons is recorded, the PCI
distorted factor being considered within the semiclassical and
eikonal approaches proves to be equal to 1 [14,17]. In other
words, within theses approximations the influence of Auger
electrons on the photoelectron angular distribution disappears
with averaging over all directions of Auger emission. It follows
that these approaches do not allow describing correctly the
angular-momentum exchange and more accurate quantum
mechanical treatment should be employed.

In the case of near-threshold photoionization of a deep
atomic shell followed by a single Auger decay, the exiting PCI
theories predict negligible photoemission angular distortion:
photoionization results in the creation of a low-energy pho-
toelectron and a fast Auger electron, which leaves quickly
the reaction zone. Therefore, the PCI energy distortion is
determined mostly by the interaction of the slow photoelectron
with the ionic field, which varies in the course of the Auger
decay of the inner vacancy. The interaction between the
photoelectrons and Auger electrons plays a minor role. That
is why numerous quantum mechanical models considering the
PCI problem as a two-body problem [18–23] are adequate
in this case for the description of PCI distorted energy
distribution.
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The amplitude of the process considered within these
models is proportional to the overlap integral between the
wave functions of the slow electron moving in fields of
the intermediate and the final ionic states. In the intermediate
state, prior to Auger decay, the photoelectron propagates
in the field of a singly charged ion whereas after Auger
decay (in the final state) it moves in the field of a doubly
charged ion. In first approximation, the models neglect the
influence of the Auger electron on the photoelectron. Thus,
the photoelectron is considered as having a constant value
of angular momentum. Hence, the angular distribution of
the photoelectron is determined by the angular momentum
of the ionized shell, e.g., in the case of inner ns2 ionization the
photoelectron is a p electron (l = 1). In the case of linearly
polarized photons, the photoelectron angular distribution can
be written [24] dσ/d� = σ/(4 π ) [1 + β P2(cos θ )], where σ

is the total cross section, θ is the angle between the axis of
linear polarization of the incident photon and the direction of
the outgoing photoelectron, and β is the asymmetry parameter.
For ns2-shell photoionization, the value of the asymmetry
parameter is equal to β = 2 [25]. Accounting for Coulomb
interaction between the fast Auger electron and the slow
photoelectron within the semiclassical and eikonal approaches
[14,17] does not change this result because of the assumption
of straight line electron trajectories. Such an approach neglects
angular-momentum transfer.

As far as we know, there was only one attempt to take
into account the possibility of angular-momentum exchange
for slow photoelectrons [26]. The authors assumed that the
angular momentum of the outgoing photoelectron in the final
state differs from its value in the intermediate state in order to
explain the structures observed in the measured energy spectra
of the emitted photoelectron [27,28]. However, no specific
physical mechanism of angular-momentum exchange has been
considered.

There are several known mechanisms of angular-
momentum transfer in photoionization processes [25,29], e.g.,
a rearrangement of the open outer shells of the ion, intershell
electron correlation, and the photoelectron scattering on the
anisotropic field of the ion. The latter has been reported
to affect the asymmetry parameter β in the photoionization
of the outer atomic s shells [25]. In inner-shell atomic
photoionization followed by Auger decay considered here, the
role of intershell correlations seems to be negligible because of
the large energy difference between the ionized deep ns2 shell
and other subshells. At the same time, a different source of
angular-momentum exchange appears, namely the interaction
between Auger and photoelectrons.

The goal of the present paper is to reveal the leading
mechanism of angular-momentum transfer due to PCI in
deep inner-shell ionization and estimate its effect on the
asymmetry parameter β at the photoionization threshold. For
this purpose, we have developed a quantum mechanical theory
of PCI, which accounts for the angular-momentum exchange
due to interaction of the photoelectron with both the Auger
electron and the residual ion. Due to the large velocity of the
Auger electron, its interaction with the slow photoelectron is
treated perturbationally. In zeroth approximation our approach
coincides with the existing PCI two-body theories [18–23]. In
the first Born approximation, we obtain a nonzero angular-

momentum transfer leading to a noticeable shift in the asym-
metry parameter β. The analysis performed demonstrates that
this interaction between photoelectrons and Auger electrons
is the main mechanism for angular-momentum transfer. The
role of the interaction between the photoelectron and the
residual ion in angular-momentum exchange is negligible. This
situation is opposite to the PCI distorted energy distribution,
which in the case of near-threshold ionization is governed by
the photoelectron-ion interaction while the influence of fast
Auger electrons is negligible.

The paper is organized as follows. In Sec. II, we develop
the theory of angular-momentum transfer between Auger
and photoelectrons. In Sec. III, the theory is extended for
photoelectron-ion interaction. In Sec. IV, we apply the devel-
oped approach to the calculation of the asymmetry parameter
β in the case of Ar 1s2 photoionization followed by single
Auger decay. The atomic unit system |e| = me = h̄ = 1 is
used throughout.

II. ANGULAR-MOMENTUM TRANSFER BETWEEN
PHOTOELECTRONS AND AUGER ELECTRONS

In this section, we consider the mechanism of angular-
momentum transfer between the outgoing photoelectron and
Auger electron. Deep inner-shell photoionization followed by
Auger decay of the atomic inner-shell vacancy is a two-step
process that can be represented by the scheme

γ + A → eph(ε0 + i	/2) + A+∗

→ eph(p1) + eA(p2) + A2+. (1)

In the first step, the incident photon ionizes the ns2 shell of the
target atom resulting in the creation of a long-living metastable
autoionizing state of the A+∗ ion with autoionization width 	

and a photoelectron eph with complex energy ε0 + i	/2 (ε0 is
the excess of photon energy above the threshold) moving in
the field of the singly charged ion. In the second step, the long-
living intermediate autoionizing state of the A+∗ ion decays
via Auger process resulting in the emission of a fast Auger
electron eA and the shake-off of the photoelectron motion by
sudden change of the ion field from the potential of the A+∗
ion to the field of the doubly charged ion A2+. The amplitude
A of the two-step process (1) is given by the product of the
photoabsorption amplitude M1 and the amplitude M2 of the
Auger decay of the autoionizing state A+∗ and subsequent PCI
processes [23,30]:

A = M1 〈
p1,p2 �A2+|M̂2|
ε0+i	/2�A+∗〉. (2)

The photoabsorption amplitude M1 slightly depends on
the photon energy and below we will consider it a constant
factor. In contrast, the second part of amplitude A has a strong
resonant dependence on the energy of the outgoing photoelec-
tron and describes the energy and angular-momentum transfer
during PCI. Therefore, we consider below this part of the
amplitude in details. In Eq. (2) �A+∗ is the wave function of
the long-living intermediate autoionizing state and 
ε0+i	/2

is the outgoing Coulomb partial wave of photoelectron eph

in the intermediate state of process (1). This function describes
the propagation of the photoelectron in the field of the A+∗
ion. It can be obtained as a solution of the inhomogeneous
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Schrödinger equation with complex energy ε0 + i	/2 [23].
The real part of this energy ε0 is the excess of photon
energy above the inner-shell ionization threshold, while its
imaginary part is determined by the autoionization width 	 of
the inner-shell vacancy. We assume that the photoelectron is
emitted from the deep ns2 shell of target atom A and therefore
has the angular momentum l = 1. The operator of the Auger
decay is denoted here by M̂2. The wave function of the final
state is given by the product of doubly charged ion wave
function �A2+ and the two-body wave function 
p1,p2 of the
photoelectrons and Auger electrons moving in the field of A2+
with momenta p1 and p2, respectively.

In our approach, the two-body wave function 
p1,p2 is
considered in the 3C approximation (the so-called BBK
function) [31]. This approximation takes into account the
interaction between the photoelectrons and Auger electrons, as
well as their interaction with the ion field, and has the correct
asymptotical behavior. Such a two-body function has the form


p1,p2 (r1,r2) = 
p1 (r1)
p2 (r2)φ(r1 − r2). (3)

where 
p1,2 (r1,2) are the single-particle Coulomb functions
of photoelectrons and Auger electrons moving in the field of
the doubly charged ion and the function φ(r1 − r2) describes
their relative motion. According to the 3C approximation
[31] this function can be represented by the Coulomb wave

p1−p2 (r1 − r2) of the relative motion as

φ(r1 − r2) = 
p1−p2 (r1 − r2)e−i(p1−p2)·(r1−r2). (4)

The following approximations are based on the fact that
the Auger electron is very fast p2 � 1. In this case, the wave
function of the relative motion φ can be written in the eikonal
approximation [32]

φ(r) = exp

(
i

∫ ∞

0

e2dt

|r − vt |
)

, (5)

where r = r1 − r2 and v = v1 − v2 are the vectors of relative
position and velocity of the photoelectrons and Auger elec-
trons, respectively.

Evaluating amplitude A, Eq. (2), one notes that the energy
and angular distribution of the emitted photoelectrons are to a
greater extent connected to the photoelectron wave functions in
the Auger matrix element. It is important that the Auger decay
operator M̂2 acts on the atomic and Auger electron coordinates,
and does not effect directly the photoelectron coordinates.
Evaluation the Auger decay amplitude M2 is preformed on
the atomic scale distances, r2 ∼ 1, while the overlap integral
of the photoelectron wave functions is evaluated on the much
larger spatial scale, r1 � 1. Therefore, the relative electron
coordinates r = r1 − r2 in the amplitude A actually coincide
with the photoelectron coordinates r 	 r1. This fact decouples
the integrations over Auger and photoelectron coordinates and
the amplitude A is reduced to the product of M1,2 amplitudes
and the overlap integral

A = M1 M2(p2,L,M) 〈
p1 (r)φ(r)|
ε0+i	/2(r)〉. (6)

Amplitude M2(p2,L,M) of the Auger decay depends on the
angular momentum L and its projection M of the doubly
charged ion in the final state. Apart from this, amplitude M2

may depend on the direction of the Auger emission. However,

it does not affect the angular distribution of the photoelectrons
if the polarization of the resulting A2+ ion is not fixed. It
can be demonstrated that during the evaluation of the cross
section, after summation over all angular momentum states M

of the A2+ ion, the angular dependence of |M2(p2)|2 vanishes
for reasons of symmetry. Indeed, the Auger electron eA(p2)
and the residual ion A2+ yield the same angular momentum L

with opposite projections ±M . The Auger amplitude depends
on M and p2 as M2(p2,L,M) ∝ YLM (p2). Thus, the sum
of |M2(p2,L,M)|2 over M eliminates its dependence on
the direction of p2 since

∑
M |YLM (p2)|2 = (2L + 1)/4π .

So amplitudes M2 and M1 are considered from now on as
numbers.

Evaluating the overlap integral in Eq. (6), we can simplify
the eikonal form of function φ in Eq. (5). Namely, we have to
take into account a large value for the Auger electron velocity,
v2 ≈ v � 1. Hence, the exponential function in Eq. (5) can be
expanded in a power series keeping only the first two terms. In
the zeroth approximation φ(r) = 1, and amplitude A reduces
to the well-known expression for the PCI amplitude [23,30]

A(0) = M1 M2 〈
p1 (r)|
ε0+i	/2(r)〉. (7)

This approximation neglects the interaction between the slow
photoelectron and the fast Auger electron, the PCI distortion
is caused by the shake-off process due to the Auger decay, and
this approximation does not take into account the angular-
momentum transfer. The outgoing photoelectron eph(p1)
carries the same angular momentum l = 1 as the intermediate
photoelectron eph(ε0 + i	/2). The corresponding differential
cross section reads as

d2σ (0)

dεd�
= M

∣∣Y10(n) Rε 1,ε0 1

∣∣2

= 3 M

4 π

∣∣Rε 1,ε0 1

∣∣2 ∑
k=0,2

(
Ck0

10 10

)2
Pk(cos θ ), (8)

where Ck0
10 10 is the Clebsch-Gordan coefficient, M is the

numerical factor containing the product of |M1M2|2 that
depends smoothly on ε; Rε l,ε0 1 is the overlap integral between
the radial parts χ (r) of the photoelectron wave functions in the
intermediate and final states:

Rε l,ε0 1 =
∫ ∞

0
χε, l(r)χ (+)

ε0+i 	
2 , 1

dr. (9)

Functions χ are normalized to 2πδ(ε′ − ε) and have the
standing wave asymptotic

χε,l(r) = 2√
p1

sin

(
p1r + 2 e2

p1
ln(2p1r) − πl

2
+ δl

)
(10)

for an outgoing photoelectron with energy ε = p2
1/2 and

asymptotic of the outgoing partial wave

χ
(+)
ε0+i 	

2 ,1
(r) = 1√

p0
exp

[
i

(
p0r + e2

p0
ln(2p0r) − π

2
+ δ1

)]
.

(11)

for the intermediate photoelectron with the energy ε0 +
i	/2 = p2

0/2.
Angular-momentum transfer can only be taken into account

within the next approximation, which is equivalent to the first
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Born approximation with respect to the Coulomb interaction
between the photoelectrons and Auger electrons. The corre-
sponding amplitude A(1) is obtained by keeping in expression
(6) the second term of the exponential function expansion for
φ:

A(1) = −i M1 M2 〈
p1 (r)|
∫ ∞

0

e2dt

|r − vt | |
ε0+i	/2(r)〉. (12)

Note that this approximation is equivalent to the approach
that considers the distortion of the outgoing photoelectron
wave function by the time-dependent external potential
V (t,r) = e2/|r − vt | provided by the Coulomb field of the
classically moving fast Auger electron. Indeed, considering
such an external potential as a small perturbation acting
during a short time, one gets in first approximation exactly
expression (12).

An evaluation of expression (12) is presented in the
Appendix. It is shown that amplitudes A(0) and A(1) do
not interfere in the cross section integrated over the Auger
electron directions. Thus the cross section is given by the
sum of zero-order contribution σ (0) (8) and contribution of the
processes of the angular-momentum transfer. The latter one
denoted here as σ (2) is represented as sum over all nonzero
values of transferred angular momentum l �= 0:

d2σ (2)

dεd�
= 3M

4π

(
e2

v2

)2 ∑
k

Pk(cos θ )Ck0
10 10

×
∑

l1,l2,l>0

ei(δl1 −δl2 )il2−l1 (−1)l+l1+l2

×Rε l1,ε0 1 R∗
ε l2,ε0 1

(2l + 1)

l2(l + 1)2

√
(2l1 + 1)(2l2 + 1)

×
{

l l2 1
k 1 l1

}
Ck0

l10 l20C
l10
l0 10C

l20
l0 10. (13)

Here, factor M has the same value as in Eq. (8), v2 is the
velocity of the Auger electron, l1,2 denote the possible values
of angular momenta in the final photoelectron state for given
values of the transferred angular momentum l and the angular
momentum l = 1 of the intermediate photoelectron state.
The overlap integrals Rε l1,2,ε0 1 are defined by expression (9),
the phases δl1,2 of the outgoing photoelectron wave func-
tions are chosen according to Eq. (10). Note that ac-
cording to the properties of the Clebsch-Gordan coeffi-
cient Ck0

10 10, index k only runs through two values, k =
1,2, similarly to Eq. (8). This results from the averaging
over all residual ion states and Auger electron emission
directions.

III. ANGULAR-MOMENTUM TRANSFER FROM
THE TARGET ION

In this section, we consider angular-momentum transfer
between the residual ion and the emitted photoelectron. The
interaction with the Auger electron considered in the previous
section will be here neglected. There are various mechanisms
such angular-momentum transfer, e.g., a rearrangement of
the open outer shells of the A2+ ion or intershell electron
correlation in the A2+ ion [25,29]. However, we are restricted

here to processes that are not accompanied by a considerable
energy transfer. Thus, rearrangement of the ionic outer shell,
which changes the ionic energy by a value larger than the
autoionization width, shifts the photoelectron energy far from
the PCI resonance region. Therefore, we consider here neither
rearrangement of outer shells nor intershell electron correla-
tion. The latter is weak due to the large energy difference
between the A2+ ion shells. Angular-momentum transfer
without energy exchange may occur through photoelectron
scattering on the asymmetrical part of the ionic potential. In the
case of photoionization from a deep ns2 shell of the spherical
atom with closed shells considered here, an asymmetry of
the mean-field potential appears only after Auger decay. At
this time, the photoelectron is removed far from the target
atom by a distance r ∼ v1/	 � 1. At these distances, the
higher multipoles of Coulomb interaction are rather small
and hence the coupling between the angular momenta of the
photoelectron and the residual ion is weak. In this case, the
most effective mechanism for angular-momentum transfer is
the precession of the angular momentum, which changes its
projection while keeping its magnitude constant.

Such mechanism of angular-momentum transfer in single
photoionization process of outer atomic shells had been
described in Refs. [24,25]. Here, we apply this method to
deep atomic shell photoionization followed by Auger decay.
Our approach is based on the fact that after the fast Auger
electron is gone, the system of an outgoing photoelectron
and a residual ion eph + A2+ conserves its total angular
momentum L. The stationary state of such a system with the
total angular momentum L and its projection M is given by
the superposition

|
LM〉 =
∑
m,ma

CLM
lmLama

∣∣�Lama

lm

〉
, (14)

where �Lama
denotes the wave function of the A2+ ion with

angular momentum La and its projection ma , 
lm is the
photoelectron partial wave with angular momentum l and
its projection m. Since we neglect here the direct interaction
between the photoelectron and the Auger electron, φ = 1 in
Eq. (3), the angular momentum of the photoelectron does
not change with the Auger decay, i. e., l = 1,m = 0 in the
case of ns2 photoionization. During precession, the angular-
momentum magnitude conserves, l = 1, while its projection
m varies. Therefore, the final-state wave function of the system
eph(p1) + A2+(La,mf ) is written as:

|�Lamf

p1〉

= 2π√
p1

∑
mLM

CLM
lm Lamf

Y ∗
lm(p1)e−i(δ(La,L, l)− πl

2 )|
LM〉,

(15)

where δ(La,L, l) is the phase shift of the photoelectron wave.
Here, we use the partial wave expansion for 
p1 , Eq. (A1).
Now, we can substitute the final-state wave function (15) into
Eq. (2) for amplitude A. The integration over the coordinates
of operator M̂2 is similar to the one used in Eq. (6) and
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leads to

A(p1p2Lamf )

= 2π M1√
p1

∑
mmiLM

CLM
lmLamf

Ylm(p1)ei(δ(La,L, l)− πl
2 )

×M2(p2,La,mi)C
LM
10 Lami

R(La,L,ε l,ε0 1), (16)

where mi is the angular-momentum projection of the A2+ ion
just after the Auger decay event and we introduce the notation

R(La,L,ε l,ε0 1) =
∫ ∞

0
χ

La,L
ε,l (r) χ

(+)
ε0+i 	

2 ,1
(r) dr (17)

for the overlap integral of the radial parts of the photoelectron
wave functions before and after the Auger decay. It differs
from the similar integral (9) by the dependence of the χ

La,L
ε,l (r)

function on the angular momenta L,La .
The Auger decay amplitude M2(p2,La,mi) depends on the

direction of the Auger electron emission as Y ∗
Lami

(p2). With the
averaging of the cross section over the direction of an Auger
electron emission the dependence of |M2(p2,La,mi)|2 on np2

vanishes and terms with different values mi do not interfere
due to the orthogonality of the spherical harmonics.

The cross section is given by the square of the modulus of
amplitude (16). Additionally, we have to sum the cross section
over the projections mf of the final ion states and to integrate
over the Auger electron momenta, taking into account energy
conservation. The product of the photoelectron spherical
harmonics is written through Legendre polynomials Pk(cos θ )
in Eq. (A8), whereas the sums over the angular-momentum
projections m,mf and mi,M are carried out with the help of
Eq. (A9). The resulting cross section is given by the sum of
partial cross sections corresponding to different values of the
residual ion angular momentum La:

d2σ

dεd�
=

∑
La

d2σ (La )

dεd�
=

∑
La

Ma

(2l + 1)

4π (2La + 1)

×
∑
kLL′

Pk(cos θ )(2L + 1)(2L′ + 1)
(
Ck0

l0 l0

)2

×
{

l l k

L L′ La

}2

R(La,L,ε l,ε0 1)

×R∗(La,L
′,ε l,ε0 1)eiδ(La,L, l)−iδ(La,L

′, l), (18)

where l = 1, Ma are the numerical factors proportional to
Ma ∝ ∫ |M2(p2,La,mi)|2dnp2 and their sum

∑
a Ma = M

equals to the same constant as in Eq. (8).
Note that the angular-momentum transfer mechanism de-

scribed is based on the dependence of phases δ(La,L, l) and
overlap integrals R(La,L,ε l,ε0 1) on the total angular momen-
tum L. If we neglect these dependencies, Eq. (18) immediately
reduces to Eq. (8). The overlap integrals R(La,L,ε l,ε0 1)
have resonance maximum at ε 	 ε0. The main contribution
comes from the distances r ∼ v1/	 � 1 corresponding to the
position of photoelectron at the moment of the Auger decay.
At these distances, the coupling between angular momenta of
eph and A2+ is weak and the angular-momentum transfer due
to angular-momentum precession is suppressed, as can be seen
in Eq. (18).

Let us consider the case of an extremely long-living
autoionizing state, 	−1 � 1. The main contribution to
the overlap integral (17) comes from the overlapping of
the incoming part of the standing partial wave χ

La,L
ε,l (r) with

the outgoing partial wave χ
(+)
ε0+i 	

2 ,1
(r) of the photoelectron on a

large radius scale where the asymptotic expressions (10), (11)
are valid. Therefore, R(La,L,ε l,ε0 1) ∝ exp[−iδ(La,L, l)]
and the corresponding phase factor in Eq. (18) cancels out.
Hence, the dependence on L in Eq. (18) vanishes and it reduces
to Eq. (8). It means that the photoionization process accompa-
nied by angular-momentum transfer caused by the precession
of angular momentum does not contribute to the leading
resonance part of the photoionization cross section in Eq. (18).
Angular-momentum transfer between eph and A2+ manifests
itself only in the nonresonance terms that are smaller than
the leading resonance term by the parameter (	/8ε0)2 � 1.
This conclusion does not concern the precession mechanism of
angular-momentum transfer solely but is true for all processes
of angular-momentum transfer between the target ion and
photoelectron. Indeed, this type of angular-momentum transfer
is caused by the asymmetrical part of the ionic potential that
appears due to the Auger decay when the photoelectron is
located far from the ion, which in turn significantly reduces the
efficiency of such an angular-momentum transfer. According
to the arguments outlined above the influence of any processes
of angular-momentum transfer between eph and A2+ on the
photoelectron emission cross section will be suppressed in the
region of the PCI resonance by a small factor (	/8ε0)2.

IV. RESULTS AND DISCUSSION

The differential cross sections obtained in Secs. II [Eqs. (8),
(13)] and III [Eq. (18)] lead to similar angular distribution,
which can be written as the sum of the two first Legendre
polynomials Pk(cos θ ),k = 0,2:

d2σ

dεd�
= σ

4 π
[1 + β P2(cos θ )], (19)

where σ is the total photoionization cross section and θ is
the angle between the direction of photoelectron emission
and the photon polarization vector (we consider here the
case of linearly polarized photons). It is worth noting that
in such angular distribution pattern we fix neither the direction
of the Auger electron emission nor the polarization of the
residual ion. Cross section (19) has been integrated over p2

and summed over all states of the residual ion. The only
predominant direction is the photon polarization vector, so
the photoemission angular distribution is characterized by
a single parameter, β, known as an anisotropy parameter.
In the case of the zero angular-momentum transfer, when
the emitted photoelectron carries the angular momentum of
the photon, l = 1,m = 0, the photoionization cross section is
given by Eq. (19) with β = 2 [25]. Therefore, deviation of
β from this value, �β = 2 − β, indicates the occurrence of
angular-momentum transfer.

As an example, we will apply the theory developed above
to the photoionization of the 1s2 shell of argon. The decay
of the inner 1s vacancy shows a rather complicated dynamics
[7,33]. The main channel leading to the creation of the Ar2+
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ions includes the radiative decay of the inner vacancy 1s−1 →
2p−1 + γ followed by the Auger decay 2p−1 → 3p−2 + eA

with emission of fast Auger electron eA (EA 	 200 eV)
[33]. The widths of the 1s and 2p vacancies are equal to
	1s = 690 meV [34] and 	2p = 118 meV [35], respectively.
This channel is in competition with the weaker direct Auger
decay of the inner 1s vacancy 1s−1 → 3p−2 + eA with the
Auger electron energy EA 	 3150 eV [33].

First, we examine the angular-momentum transfer between
the photoelectron and the Auger electron, and determine
the corresponding anisotropy parameter β according to the
approach developed in Sec. II. The main channel for the 1s

vacancy decay of Ar+∗ is a cascade process, as seen above,
instead of a simpler direct Auger decay considered in our
theory. Nevertheless, the results of Sec. II, in Eqs. (8) and
(13), can be applied to the Ar 1s photoionization. Indeed, the
first radiative decay 1s−1 → 2p−1 + γ of the inner vacancy
occurs after long delay τ1s = 1/	1s when the photoelectron
has already moved away from the ion. Thus, the radiative
decay will add some weak higher multipoles to the Coulomb
interaction of Ar+∗ and eph, which can be neglected here.
The ionic mean field undergoes a considerable change only
at the moment of the Auger decay. Therefore, consider-
ing angular-momentum transfer between photoelectrons and
Auger electrons, we can treat for simplicity the two-step decay
process as a single Auger decay with the effective decay time
τeff = τ1s + τ2p and corresponding effective autoionization
width 	eff = 	1s 	2p/(	1s + 	2p) [7]. In our case, it gives
	eff = 101 meV.

We have calculated the photoionization cross sections as
a sum of zeroth, σ (0), and first Born, σ (2), approximation
contributions with respect to the eph-eA interaction according
to Eqs. (8) and (13) for photon energy excess above the 1s

threshold ε0 = 2 eV. This energy is smaller by two orders
of magnitude than the Auger electron energy 200 eV [33],
assuring the applicability of the approximations employed.

The outgoing partial wave function χ
(+)
ε0+i 	

2 , 1
(r) of the

intermediate electronic state in the overlap integrals Eq. (9)
has been calculated in the Hartree-Fock (HF) approximation
as a solution of the inhomogeneous Schrödinger equation by
the method described in Refs. [23,36]. The wave functions
χε, l1,2 (r) of the photoelectron moving in the field of the final
ionic state Ar2+ with two 3p holes were also calculated
in the HF approximation. In our calculations, we take into
account 12 partial photoelectron waves with angular momenta
0 � l1,2 � 11, although convergence of the results was
achieved at l1,2 	 7.

The results obtained are presented in Fig. 1(a) as a
function of photoelectron energy. The solid red and blue
dashed lines show the total photoionization cross sections
σ (0) and σ (2) calculated in the zeroth, Eq. (8), and the first
Born, Eq. (13), approximations, respectively. We also plot
the partial contributions from transferred angular momentum
l = 1 and l = 10, as olive dotted and magenta dash-dotted
lines respectively. All curves in Fig. 1(a) show the resonance
behavior that results from the properties of the overlap inte-
grals Rε l1,2,ε0 1 (9). The overlapping between the radial wave
functions of the final, χε,l(r), and the intermediate, χ (+)

ε0+i 	
2 ,1

(r),

photoelectron states is maximal if their momenta coincide.

(a)

(b)

FIG. 1. (a) The total photoionization cross sections as a function
of photoelectron energy. The solid red line shows the cross section
σ (0), Eq. (8), calculated in zero approximation, the dashed blue
line presents the cross section σ (2) × 10, Eq. (13), calculated in
the first Born approximation, the olive dotted line represents the
partial contributions to σ (2) from transferred angular momentum
l = 1 multiplied by 10 and the magenta dash-dotted line shows
the partial contributions to σ (2) from transferred angular momentum
l = 10 multiplied by 103. (b) The alteration of the parameter β

as a function of photoelectron energy. Black solid line shows �β

calculated according to Eqs. (8), (13) for the eph-eA interaction. Blue
dashed line shows �β × 103 calculated according to Eq. (18) for the
eph-Ar2+ interaction.

Physically it means that, at the time of the Auger decay,
the photoelectron momentum does not change. Consequently,
neglecting Coulomb interaction, the resonance condition is
ε 	 ε0. PCI between the photoelectron and the ion affects this
condition, resulting in the well-known distortion of the cross
section shapes [19]. Attraction of the outgoing photoelectron
by the Coulomb field of the double-charged ion decreases
its kinetic energy by a factor of two compared to the single-
charged ion field. This effect shifts the photoemission energy
distribution towards the negative energy difference ε − ε0 < 0.
Larger energy difference corresponds to smaller electron-ion
distances at which the Auger decay takes place and vice
versa. Larger distances lead to larger values of the overlap
integral forming the left shoulder of the PCI peak. At positive
energy difference ε − ε0 > 0, the resonance condition for
maximal wave functions overlap can not be fulfilled at any
distances. It leads to the sharp cutoff of PCI peak above
the resonance.
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Angular-momentum transfer also leads to the energy dis-
tortion due to same mechanism as for the Coulomb interaction
described above, but the direction of the distortion is opposite
[26]. Indeed, angular-momentum transfer increases the pho-
toelectron angular momentum and corresponding rotational
energy. The increase of outgoing photoelectron energy shifts
in turn the PCI peak position in the positive direction. This
effect can be seen in the behavior of the partial contributions
of σ (2) presented in the Fig. 1(a). The energy shift of the
partial contribution of the transferred angular momentum l = 1
(olive dotted line) is practically zero. This happens because
one value of the possible angular momentum of the outgoing
photoelectron l1,2 = l − 1 = 0 is smaller than the angular
momentum of the intermediate state while another value l1,2 =
l + 1 = 2 is larger. For higher transferred angular momenta the
outgoing photoelectron angular momenta l1,2 = l ± 1 become
larger, which results in a sizable energy shift. For illustration,
we show in Fig. 1(a) by the magenta dot-dashed line the partial
contribution of the transferred angular momentum l = 10
when the outgoing photoelectron has the angular momenta
l1,2 = 9,11.

Note that the partial contributions decrease rapidly with
increasing angular-momentum transfer. As can be seen in
Fig. 1(a) the partial contribution of the transferred angular
momentum l = 10 is smaller by two orders of magnitude
than the contribution of l = 1. The total contribution of the
angular-momentum transfer process σ (2) is smaller by an
order of magnitude than σ (0). Nevertheless, its contribution
is sufficient to introduce a noticeable change in the parameter
β as shown in Fig. 1(b) by a black solid line. Within the
PCI resonance region, its alteration with respect to the zeroth
approximation value β = 2 amounts to �β 	 0.15. Above the
resonance region where the cross section σ (0) decreases sharply
�β increases rapidly because of the increasing influence of the
higher transferred angular momenta. The latter is explained by
two features described above: the sharp cross-section cutoff
above the PCI peak and positive energy shift of the PCI peak
for higher transferred angular momenta.

For comparison, we also show in Fig. 1(b) the effect of
angular-momentum transfer between eph and Ar2+. The blue
dashed line shows the energy dependence of �β multiplied by
103, β is calculated according to Eq. (18). For the calculation,
we chose the direct Auger decay channel of the inner vacancy:
1s−1 → 3p−2 + eA. It is not the main decay channel but in this
case the intermediate Ar+ ion state before the Auger decay is
spherically symmetric and it is just the case, which has been
considered in Sec. III. The total angular momentum of the
Ar2+ outer shell (3p4) can have three different values La =
0,1,2. The photoelectron final-state wave functions χ

La,L
ε,1 (r)

are calculated in the HF approximation also. However, in this
case, we have taken into account the dependence of these
functions on the angular momentum La of the ion and on the
total angular momentum L of the system eph + Ar2+.

Figure 1(b) shows that angular-momentum transfer be-
tween eph and eA is much more effective than between eph

and Ar2+. The change in β parameter, �β, due to the first
mechanism is by four orders of magnitude stronger than the
second one. There are several reasons why angular-momentum
transfer between eph and Ar2+ is weak. One reason has been
already discussed above. It is connected to the specific feature

of a photoionization process accompanied by PCI, namely the
long delay between the s-shell photoionization and the symme-
try breaking of the target ion after Auger decay. Consequently,
this mechanism of angular-momentum transfer starts to work
when the photoelectron is already located far away from
the ion r ∼ v1/	 � 1. For the considered PCI process this
estimation gives r ∼ 100. Therefore, this angular-momentum
transfer is suppressed for the PCI resonance process and �β

should tend to zero while photoelectron energy approaches the
PCI resonance. Fig. 1(b) confirms this conclusion. Indeed, �β

calculated for this mechanism demonstrates the antiresonance
behavior. Such a behavior was explained in the previous
section where it has been demonstrated that the different phase
factors cancel each other in the dominant resonance term of
Eq. (18) and, hence, the resonance term does not contribute to
�β.

Moreover, even apart from this effect, �β caused by
eph-Ar2+ interaction is rather small. Indeed, our numerical
calculations show that the typical variation of phase shifts
δ(La,L, l) under the variation of L is small, �δ ∼ 10−1.
According to the Eq. (18) �β ∝ (�δ)2 and therefore the shift
of asymmetry parameter β should not exceed one percent even
if we neglect the antiresonance effect discussed above. This
conclusion is confirmed also by our numerical simulations.
This estimation can be considered as the upper limit for
�β caused by eph-Ar2+ interaction in an arbitrary case
of inner-shell photoionization, including the photoionization
of the nonspherical atoms. In the latter case, precession
of the eph angular momentum starts immediately after the
photoionization, but nevertheless its contribution to �β is
by an order of magnitude smaller than due to the eph-eA

interaction.
We have also calculated the contribution to �β due to elastic

photoelectron scattering on the anisotropic ionic potential,
resulting in a variation of the photoelectron angular momen-
tum, l �= 1. We used the first Born approximation to calculate
the corresponding cross sections and their contribution to the
angular-momentum transfer between eph and Ar2+. The result
was even smaller than for the precession mechanism. So we
conclude that the eph-Ar2+ interaction does not practically
influence the angular-momentum transfer.

In the present paper, we did not consider the influence
of the relativistic effects on the angular distribution of the
photoelectron. The spin-orbit interaction as well as nondipole
terms of the electron-photon interaction may affect the angular
distribution of the emitted photoelectrons. In the case of
the photoionization of Ar, we estimate their effect on β to
be less than one percent, i.e., much smaller than the effect of
the eph-eA interaction. The latter seems to largely dominate the
angular-momentum transfer in the photoionization processes
considered.

It should be noted that the roles played by the interaction
between the photoelectron and the ion field and between the
photoelectron and the Auger electron are quite different in
the energy region close to the inner-shell ionization threshold.
The eph-Arn+ interaction mainly affects the energy distribution
of the emitted photoelectrons; the effect of the eph-eA inter-
action is negligible if the photoelectron is much slower than
the Auger electron. In contrast to that, the eph-eA interaction
is responsible for the angular-momentum transfer and is
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rather effective in the distortion of the photoelectron angular
distribution even if the Auger electron is much faster than the
photoelectron.

Concerning the possibility of an experimental observation
of the angular-momentum transfer it is worth to note that
the predicted shift of the anisotropy parameter β does
not exceed ten percent of its nonshifted value at the zero
angular-momentum transfer. This is why the presence of
slow occasional electrons in the PCI resonance region may
noticeably decrease the accuracy of the �β measurements.
Therefore, the experimental method should assure that the only
photoelectrons emitted in the selected resonance PCI process
(1) are detected.

V. CONCLUSION

The angular distribution of the photoemission from deep
atomic ns2 inner shells was investigated. A theoretical
approach to PCI in photoionization processes taking into
account angular-momentum transfer between the emitted
photoelectron, Auger electron, and target ion was developed.
It is demonstrated that the main contribution to angular-
momentum transfer changing noticeably the photoemission
angular distribution comes from the interaction between the
photoelectrons and the Auger electrons. The developed theory
has been applied to the photoionization of the 1s2 shell of Ar.
We report a 0.15 decrease of the anisotropy parameter β in
the region of the PCI resonance caused by angular-momentum
transfer between the photoelectrons and the Auger electron. It
is also demonstrated that the effect of all others mechanisms
of angular-momentum transfer is smaller by several orders of
magnitude.

APPENDIX: EVALUATION OF CROSS SECTION IN
THE FIRST BORN APPROXIMATION

To evaluate the amplitude (12), we use the partial wave
expansion for the outgoing photoelectron wave function


p1 (r) = 2πi
∑
lm

ei( πl
2 −δl)

√
p1 r

Y ∗
lm(p1)χε,l(r)Ylm(n), (A1)

the multipole expansion for the Coulomb potential

e2

|r1 − r2| = 4πe2
∑
lm

rl
<

rl+1
>

Ylm(n1)Y ∗
lm(n2)

2l + 1
, (A2)

and select the radial part in the intermediate photoelectron
wave function:


ε0+i	/2(r) = χ
(+)
ε0+i	/2,1(r)

r
Y1 0(n). (A3)

The direct integration over t in Eq. (12) using Eq. (A2)
leads to∫ ∞

0

e2

|r − vt | dt = 4πe2

v

∑
l>0,m

Ylm(n)Y ∗
lm(v)

(l + 1)l
. (A4)

Here we omit the monopole term since it does not lead to
angular-momentum transfer.

Eventually, we obtain the following multipole expansion
for amplitude A(1)

A(1) = −2πi M1 M2

(
4πe2

v2

) ∑
l1,m1,l>0,m

e−i( πl
2 −δl)

√
p1

Yl1m1 (p1)

× 〈Yl1m1 (n′)|Ylm(n′)|Y1 0(n′)〉Y ∗
lm(v2)

l(l + 1)

×
∫ ∞

0
χε,l(r)χ (+)

ε0+i 	
2 ,1

(r)dr, (A5)

where we replace the relative velocity vector v by the Auger
electron velocity v2 because v1 � v2 	 v. The spherical
functions matrix element is reduced to [37]

〈Yl1m1 (n′)|Ylm(n′)|Y1 0(n′)〉 =
√

3(2l + 1)

4π (2l1 + 1)
C

l1m1
lm10C

l10
l010.

(A6)

The angular-momentum transfer amplitude A(1) given by
Eq. (A5) leads to additional contribution to the cross section.
The latter is determined by the square of the modulus of
the amplitudes sum |A(0) + A(1)|2. Note that the zeroth-order
amplitudeA(0) (7) does not depend on the emission direction of
the Auger electron while the first-order amplitudeA(1) does via
spherical harmonics Y ∗

lm(v2) [see Eq. (A5)]. The interference
terms between A(0) and A(1) amplitudes in the cross section
vanish due to the averaging over all directions of the Auger
electron velocity v2. Moreover, all contributions corresponding
to different values of transferred angular momentum l also do
not interfere. Consequently, the process of angular-momentum
transfer gives an additional separate contribution to the cross
section, which is represented as a sum over the transferred
angular momentum l �= 0:

d2σ (2)

dεd�
= M

(
e2

v2

)2

×
∑

l1,l2,l>0,m

3(2l + 1)ei(δl1 −δl2 )il2−l1

√
(2l1 + 1)(2l2 + 1)

Yl1m(p1)Y ∗
l2m

(p1)

× Rε l1,ε0 1R
∗
ε l2,ε0 1

l2(l + 1)2
C

l1m
lm10C

l10
l010C

l2m
lm10C

l20
l010, (A7)

where we use the notation (9) for overlap integrals and factor
M is the same as in Eq. (8).

The product of spherical harmonics can be represented
through the Legendre polynomials Pk(cos θ ) as [37]

Yl1m(n)Y ∗
l2m

(n) = (−1)m
√

(2l1 + 1)(2l2 + 1)

4π

×
∑

k

Ck0
l1m l2−mCk0

l10 l20Pk(cos θ ), (A8)

after that the sum over m in Eq. (A7) equals to [37]∑
m

(−1)mCk0
l1m l2−mC

l1m
lm10C

l2m
lm10

= (−1)l+l1+l2
√

(2l1 + 1)(2l2 + 1) Ck0
10 10

{
l l2 1
k 1 l1

}
.

(A9)
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With the help of Eqs. (A8) and (A9) we finally obtain

d2σ (2)

dεd�
= 3M

4π

(
e2

v2

)2 ∑
k

Pk(cos θ )Ck0
10 10

∑
l1,l2,l>0

ei(δl1 −δl2 )il2−l1 (−1)l+l1+l2Rε l1,ε0 1R
∗
ε l2, ε0 1

(2l + 1)

l2(l + 1)2

×
√

(2l1 + 1)(2l2 + 1)

{
l l2 1
k 1 l1

}
Ck0

l10 l20C
l10
l010C

l20
l010. (A10)
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