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Valence-electron correlation in the double K -shell photoionization of atomic beryllium
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We extended the multiconfiguration Hartree-Fock (MCHF) + effective charge (EFC) method for double
photoionization of atoms and investigated the effect of valence-electron correlation in the double K-shell
photoionization of atomic beryllium. We used the MCHF method, which accounts for electron correlations,
to calculate the initial-state wave function. The wave functions for the two continuum electrons in the final
state are calculated in the angle-dependent EFC approximation. The actual interaction potential between the two
final-state continuum electrons is approximated by the EFC, which is determined variationally. We studied the
effect of valence shell electron correlation on the K-shell double photoionization of beryllium for both equal and
unequal sharing of excess photon energies at four fixed scattered electron directions in order to study the effects
near the double K-shell ionization threshold. We found considerable effect of valence shell correlation in the triple-
differential cross section for double photoionization of the beryllium atom at each of the excess photon energies.
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I. INTRODUCTION

There is a great interest recently in both the K-shell and
valence shell double photoionization of atoms. A large number
of investigations have been carried out, both experimentally
and theoretically, to study the electron correlation between
the two electrons ionized by a single photon in helium and
heliumlike atoms. Very recently a few studies have been
made for double photoionization of electrons in atoms with
more than two-electron targets. These studies required the
consideration of electron correlation between the electrons
which are ionized and also between the other electrons in
the target. Sometimes these electrons are inner and outer
with respect to the electrons which are to be ionized. In
those cases electron correlations between the ionized electrons
and the other electrons are quite different. Recently double
photoionization of atomic beryllium has been investigated
with several nonperturbative ab initio methods. In most
cases double photoionization of valence electrons has been
made keeping the inner electrons frozen. It is found that
electron correlation among the active electrons and the core
electrons is very important and must be treated carefully and
accurately. Kheifets and Bray [1] performed triple-differential
cross sections (TDCSs) of double photoionization (DPI) of
valence shell electrons of the beryllium atom using conver-
gent close-coupling approximation. Colgan and Pindzola [2]
calculated the integral, energy, and angle differential cross
sections for double photoionization of valence shell electrons
using time-dependent close-coupling method. Citrini et al. [3]
calculated double photoionization of valence shell electrons of
the beryllium atom using hyperspherical R-matrix method with
semiclassical outgoing continuum wave function. Yip et al. [4]
also calculated the TDCS of double photoionization of valence
shell electrons of atomic beryllium using the hybrid approach.
Their results compare well with other accurate calcula-
tions. Very recently investigators started considering double
K-shell photoionization of multielectron closed-shell targets
like beryllium. The K-shell double photoionization of alkaline-
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earth atoms has been performed by Kheifets et al. [5] using
the convergent close-coupling approximation from threshold
to the nonrelativistic limit of infinite photon energy. They cal-
culated the total cross section of the double K-shell photoion-
ization. They calculated the double to single photoionization
ratios for Mg and Ca and compared with experimental values.
In particular, they investigated the effect of electron correlation
in the ground and doubly ionized final states. Yip et al.
[6] investigated theoretically the TDCS following the double
photoionization of K-shell electrons in atomic beryllium using
a hybrid approach. This approach combines both orbital and
grid based representations of the Hamiltonian.

So far, most of the calculations did not consider the effect
of electron correlation due to the valence shell electrons
on the K-shell DPI cross section. In this paper we are
interested in considering the valence-electron correlation on
the K-shell double photoionization of atomic beryllium using
the multiconfiguration Hartree-Fock (MCHF) approximation
for the initial state and effective charge (EFC) approximation
for the final continuum state. The TDCS of the He atom
was investigated by us previously [7] at a photon energy
30 eV for sharing of excess energy equally by the two final-
state continuum electrons using our extended MCHF+EFC
approximations. The results were very encouraging. In the
present investigation it is found that in both equal and unequal
sharing of excess photon energy the TDCS calculated using
the MCHF+EFC approximations shows considerable effect of
electron correlation of the valence shell electrons on the double
K-shell photoionization of atomic beryllium. Calculations are
performed for various geometries, emission angles, and energy
sharing to test the merit of MCHF+EFC approximations.

II. THEORY

Triple-differential cross sections

In atomic units the triple-differential cross section for
double photoionization of atoms is defined by

d3σ

dE2d�1d�2
= 4π2αk1k2ω|〈�f

−|T |�i
+〉|2 (1)
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where ω is the photon energy and α is the fine-structure
constant. The momenta k1 and k2 are related to kinetic energy
Ei = ki

2

2 of the ith continuum electron in the final state. The
dipole operator T for double photoionization of the atom is
given by

T = ε̂ · ( �r1 + �r2) (2)

in the length form and

T = 1

iω
ε̂ · ( �∇1 + �∇2) (3)

in the velocity form.
The wave functions �i

+ and �f
− represent the initial and

final states, respectively. The initial state is described by the
orbital and spin angular momenta L0 and S0, respectively.
The final-state wave function is characterized by the orbital
and spin angular momenta Lc and Sc of the (N − 2) electrons
of the core ion and by the momenta �k1 and �k2 and orbital
angular momenta l1 and l2 of the two continuum electrons.
Using the partial wave representation of the two final-state
continuum electron wave functions, we expand the initial-state
�i

+ and the final-state �f
− wave functions in terms of the

antisymmetrized, LS coupled wave function for the N-electron
system. The TDCS for double photoionization of the atom
then reduces to

σ (3) = 4π2αω

[L0]
| A(k̂1k̂2) |2 (4)

where

A(k̂1k̂2) =
∑
l1l2

∑
m1m2

(−i)l1+l2ei(σl1 +δl1 +σl2 +δl2 )

×
(

l1 1 l2
m1 0 −m2

)
×Yl1m1 (θ1,φ1)(−1)m2Y ∗

l2m2
(θ2,φ2)〈ψf ‖ T ‖ ψi〉

where 〈ψf ‖ T ‖ ψi〉 is the reduced dipole matrix element and
[x] = (2x + 1).

III. COMPUTATIONAL PROCEDURE

A. Initial state

The initial state, the ground state of atomic beryllium,
is calculated in the MCHF approximation, which accounts
for electron correlation. The MCHF method can identify
configurations which are important for electron correlation
through mixing coefficients of the configurations used in
the MCHF expansion of the wave function. In the present
case, we expanded the initial-state bound beryllium wave
function in terms of excited-state configurations of the same
symmetry in the LS coupling approximation. The excited
orbitals and mixing coefficients are calculated completely
ab initio by solving the Schrödinger equation in the form
of radial coupled integro-differential equations completely
numerically and self-consistently [8] through the configuration
interaction procedure. The calculation converged very well.
Using the 2s and 2p orbitals from the initial-state wave
function we calculated the energy of the correlated valence
shell (C12s2 + C22p2) configuration expansion. The values of
the mixing coefficients are found to be C1 = 0.937483 and

C2 = 0.3480287. This shows that the 2p2 configuration of
the doubly charged ion mixes very strongly with the parent
2s2 configuration. The calculated K-shell ionization potential
is found to be 320.11 eV. This agrees well with the result
obtained by Yip et al. [6] (320.6 eV) and also by Mitnik and
Miraglia [9] (319.2 eV).

B. Final state

In the final state, there are two continuum electrons.
These two continuum electrons correlate very strongly. To
determine the effect of electron correlation the effective charge
approximation is used. In the effective charge approximation,
the exact Coulomb interaction between the two continuum
electrons in the final state is approximated by a variationally
determined angle dependent screening potential arising due to
the mutual screening of the nucleus by the ejected electrons.
This screening effect can be taken into account in terms of
effective charge of the nucleus which satisfy proper asymptotic
boundary conditions. The two effective screening charges 
1

and 
2 which determine the screening potential for the two
continuum electrons are obtained by the condition [10–13]

ZT − 
1

k1
+ ZT − 
2

k2
= ZT

k1
+ ZT

k2
− 1

�k1 − �k2

(5)

where ZT is the net asymptotic charge of the ionized target. The
effective screening charges which satisfy the above relation are
obtained as [10–13]


i = (�ki.�kij )ki

kij
3 (i = 1,2) (6)

where �kij = �ki − �kj and j �= i, with kij = |�kij |.
The set of radial functions Pi(r),i = 1, . . . ,m describing

the target, which is obtained from the MCHF bound-state
calculations for the core ion, is kept fixed. The set of radial
functions describing the continuum orbitals is determined
variationally. These radial functions are the solutions of the
integro-differential equations of the form [14][

d2

dr2
+ 2Z

r
− li(li + 1)

r2

]
Pi(r)

= 2

r
[Yi(r)Pi(r) + Xi(r) + Ii(r)] +

∑
i ′

εii ′Pi ′ (r), (7)

which has the same form as the Hartree-Fock equation for
a singly occupied orbital of a bound-state system, the only
difference being the specified binding energy εii = k2

2 , the
effective charge Z = ZT − 
i , and the boundary condition at
infinity.

In this equation 2
r
Yi(r) is a part of the direct potential,

2
r
Xi(r) is the exchange function, and 2

r
Ii(r) represents terms

arising from interactions between the configurations. The
off-diagonal energy parameter εii ′ is related to Lagrange
multipliers that ensure orthogonality between the continuum
and the bound electrons of the target having the same
symmetry. These operators have their usual meanings as for
bound-state problems.
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In the single channel case, the radial function Pi(r) satisfies
the boundary conditions

Pi(r) →
r→0

rl+1, Pi(r) →
r→+∞

√
2

πki

sin

(
kir − liπ

2
+ δl

)

if the target is an atom and

Pi(r) →
r→+∞

√
2

πki

sin

(
kir − liπ

2
+ q

ki

ln 2kir + σl + δl

)

if the target is an ion. Here σl = arg[�(li + 1 − iq

ki
)] is the

Coulomb phase shift, and q = Z − N is the net charge of
the ion.

The wave function for each of the final-state continuum
electrons in the effective charge approximation is calculated
using multiconfiguration Hartree-Fock method [14] for bound
and continuum electrons at each relative angle between the two
continuum electrons ejected at equal and unequal energies for
the angular momentum l = 0–6 for the partial wave LS = 1P .
Since effective charges are angle dependent, the wave function
of the continuum electrons in the final state is also dependent
on relative angle between the two continuum electrons.

The integro-differential equation (7) is solved numerically
by the iterative method similar to the bound-state problem.
The self-consistent field procedure is applied to compute the
continuum wave functions. The continuum radial function is
normalized by fitting the computational values at two adjacent
points to the regular and irregular Bessel or Coulomb functions
depending on the target as soon as the region is reached where
the direct and exchange potentials are vanishingly small. This
may be at a considerably smaller value of r than the asymptotic
form represented by the boundary conditions specified above.

The continuum electron wave functions are calculated
with and without valence shell correlation to compare the
effect of valence shell electron correlation in the TDCS of
double K-shell photoionization. Also in each of these cases
the continuum electron wave function is made orthogonal to
the bound orbitals of the Be+ ion having the same angular
momentum. The description of this method was reported
earlier [14].

IV. RESULTS AND DISCUSSION

A. TDCS results at equal energy sharing of excess
photon energies

In this paper, we calculated TDCSs for double photoion-
ization of K-shell 1s2 electrons of the beryllium atom with
and without valence shell correlation to determine the effect
of valence shell electron correlation. As already mentioned
the initial-state wave function is calculated using the MCHF
approximation where electron correlation is fully accounted
for completely ab initio. The effective charge approximation
is used to describe the final-state continuum electron wave
function as a function of relative angle between the two
final-state continuum electrons with and without valence shell
electron correlation. It should be mentioned that we calculated
the continuum electron wave functions in the potential of
valence shell correlation (C12s2 + C22p2) and without the
valence shell correlation 2s2.
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FIG. 1. The triple-differential cross sections are shown for double
photoionization of K-shell electrons of beryllium for excess energy
79.4 eV shared equally by the two continuum electrons at fixed θ1 =
90◦ as a function of θ2 in degrees. The solid curve shows our results
while the dashed curve is that of Yip et al. [6]. The scaled length
of the unit maximum measures the magnitude of the cross section.
The scaling factor of the present results is rm = 1.888 and that of
Yip et al. is rm = 0.26 in units of b eV−1.

In order to establish the accuracy of the present method
we calculated and compared, in Fig. 1, the TDCS at excess
energy 79.4 eV shared equally by the two continuum electrons
at fixed θ1 = 90◦ with those calculated by Yip et al. [6].
Comparison shows that the present results are in good
qualitative agreement.

Figure 2 presents a comparison of the present TDCS
velocity results with (solid curve) and without (dotted curve)
valence shell electron correlation at 40 eV excess photon
energy shared equally by the two continuum electrons. The
results are shown for four fixed directions of θ1. The two
curves are qualitatively similar but quantitatively the results
without the valence shell electron correlation (dotted curve) are
larger than those with valence shell correlation (solid curve)
for each fixed direction of θ1. As mentioned earlier, the valence
shell electrons in 2s2 configuration of Be2+ configuration mix
strongly with 2p2 configuration of Be2+ configuration of the
same symmetry.

It should be mentioned that there is a gauge dependence
between the length and velocity forms of the present results.
The reason for this is described in detail in our previous paper
[7]. The results presented in this paper are in the velocity form
and are more reliable than the length results. In Fig. 3 we
compared the length and the velocity forms of TDCS results
for 40 eV excess photon energy shared equally by the two
continuum electrons at fixed θ1 = 90◦ as a function of θ2.

In Fig. 4 we compare the triple-differential cross section
for double photoionization of K-shell electrons at 10 eV
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FIG. 2. Comparison of triple-differential cross sections for dou-
ble photoionization of K-shell electrons of beryllium with (solid
curve) and without (dotted curve) valence shell electrons correlation.
The excess photon energy considered is 40 eV shared equally by the
two continuum electrons. The results are shown for four different
fixed directions of θ1.

low excess photon energy close to threshold shared equally
by the two ionized K-shell electrons for four fixed different
directions of θ1. The results are shown with and without
valence shell electron correlation. The cross sections with
and without valence shell correlation are quite similar but
different from those with four times larger excess photon
energy. Again the magnitude of the cross section with valence
shell correlation is relatively smaller than that without the
valence shell correlation. Comparison of cross sections at
low excess energy close to threshold appears relatively more
pronounced and quantitatively different in magnitude than the
cross sections at larger energy.
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FIG. 3. Comparison of length and velocity forms of the triple-
differential cross sections for double photoionization of K-shell
electrons of beryllium with velocity form (solid curve) and length
form (dotted curve) for excess photon energy 40 eV shared equally
by the two continuum electrons at fixed θ1 = 90◦.
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FIG. 4. Same as Fig. 2, but for excess energy 10 eV shared equally
by the two continuum electrons.

B. TDCS results at unequal sharing of excess photon energies

In Fig. 5, we present the cross sections for double
photoionization of 1s2 core electrons with and without valence
shell correlation for excess energy E = 40 eV. This excess
energy is shared unequally E1 = 4 eV and E2 = 36 eV by
the two continuum electrons. Again, the magnitude of the
cross sections without the valence shell correlation is relatively
larger than that with the valence shell correlation. Also it is
observed that the qualitative behavior of the cross sections
is more or less similar at this excess energy with equal
and unequal sharing of excess energy by the two continuum
electrons.

The cross sections for double photoionization of K-shell
electrons with and without valence shell correlation are
displayed in Fig. 6 for excess energy E = 10 eV shared
unequally, E1 = 1 eV and E2 = 9 eV, between the two con-
tinuum electrons. The cross sections are larger in magnitude
without the valence shell electron correlation relative to the
case with valence shell correlation. Also at this low unequal
energy sharing the cross sections are more distinct in their
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FIG. 5. Same as Fig. 2, but for excess photon energy 40 eV shared
unequally E1 = 4 eV and E2 = 36 eV.

063423-4



VALENCE-ELECTRON CORRELATION IN THE DOUBLE . . . PHYSICAL REVIEW A 95, 063423 (2017)

0 100 200 300 400
0

2

4

6

8

TD
C

S 
(b

/s
r2  a

.u
.)

100 200 300 400
0

10

20

30

40

50

0 100 200 300 400
θ2 (degrees)

0

6

12

18

24

30

TD
C

S 
(b

/s
r2 a.

u.
)

100 200 300 400 500
θ2  (degrees)

0

10

20

30

40

50

θ1=00

θ1=300

θ1=600

θ1=900

FIG. 6. Same as Fig. 2, but for excess photon energy 10 eV shared
unequally E1 = 1 eV and E2 = 9 eV.

qualitative behavior compared to those at the higher energies
and also at equal energy sharing. It is expected that at energies
close to threshold, in particular at these unequal energies close
to threshold, the cross sections show relatively more distinct
features.

V. CONCLUSION

We investigated the triple-differential cross sections for
double photoionization of K-shell core electrons in the pres-
ence of uncorrelated and correlated valence shell electrons of

the beryllium atom. The initial state of beryllium is calculated
in the MCHF approximation. The wave functions of the
continuum electrons in the final state are calculated in the
effective charge approximation. The final-state wave functions
are calculated with valence shell correlation and also without
valence shall correlation. It is found that the valence shell
correlation effect of the final-state wave functions is very
important and considerable. We calculated the cross section for
double photoionization of core 1s2 electrons with and without
the valence shell electron correlation. We considered two
distinct excess photon energies shared equally and unequally
by the two final-state continuum electrons and investigated the
cross sections at four fixed directions of θ1. Our investigation
shows that the magnitude of the cross sections is larger
without valence shell correlation whereas with the valence
shell correlation the magnitude is smaller. The cross sections
at low excess photon energy close to threshold are more
distinct and informative than those at large excess energies.
To our knowledge, there is no experimental result available
for K-shell double photoionization of beryllium. We believe
that the present theoretical investigation will stimulate interest
for experimental measurement. Also there is no previous result
on the calculation of TDCSs for DPI of K-shell electrons with
the valence shell correlation. The present extended method
is general and can be applied to consider core electron
correlations in DPI of atoms.
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