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Floquet-Bloch shifts in two-band semiconductors interacting with light
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We consider harmonic generation from a semiconductor described in the two-band approximation. In particular,
the signatures of the Floquet-Bloch states in the low-order harmonic spectra are studied. We find field-strength-
dependent shifts of the position of resonant peaks. The shifts are analogous to the ponderomotive shifts in
strong-field physics of atoms and molecules. We illustrate this theory by analyzing low-order harmonics generated
from hexagonal boron nitride.
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I. INTRODUCTION

When the Hamiltonian for a given quantum-mechanical
system is periodic in time, according to the Floquet theorem,
quasienergies that form are spaced by the driving photon
energy [1]. For systems periodic in space, the eigenstates are
the Bloch states; see, e.g., Ref. [2]. When a strong laser field
containing many cycles interacts with solids, the combination
of the time and the space periodicity leads to formation of
Floquet-Bloch (FB) states [3]. In that case the energy bands
in solids are dressed by the laser field so that replicas of
the bands appear, spaced by the photon energy. Recently,
using pump-probe schemes for time- and angle-resolved
photoemission spectroscopy these FB states were observed [4]
and manipulated [5] on the surface of a topological insulator.
Even more theoretical works have investigated the FB states.
Several of them focus on graphene and the materials based
on graphene—in that context the FB states were investigated
for carbon nanotubes [6], for graphene in circularly polarized
pulses [7], under intense THz pulses in graphene in the Dirac
approximation [8] and the transition from the FB states to the
Volkov states has also been considered [9].

Here we consider the signatures of the FB states in semicon-
ductors in the two-band tight-binding approximation. We show
that the FB states have a very clear signature in the harmonic
responses. Specifically, we identify nonperturbative, field-
strength-dependent features (peaks) in the spectra and correlate
them to the appearance of the FB states. The dependency
of the position of these peaks on the intensity of the pulse,
but also of the peaks present in the perturbative responses, is
analytically determined for a general semiconductor restricting
to the features at the gap. The shifts of the peaks are analogous
to the ponderomotive shifts for atoms and molecules known in
strong-field physics. We verify the analysis by comparison
with the full numerical calculations modeling low-order
harmonic responses from hexagonal boron nitride (h-BN),
a gapped-graphene-type [10–15] of material [15], similar to
MoS2 [16] for which high-order harmonic generation (HHG)
spectra have recently been obtained experimentally [17].

The paper is organized as follows: In the next section
we present the basic theory for harmonic generation from
semiconductors in the two-band tight-binding approximation.
In Sec. III we analyze harmonic generation from a two-band
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system by using the Floquet formalism, and we establish
analogies with the Floquet states in a two-level atom. On
the basis of these analogies and by using the effective mass
approximation at the gap, we uncover the field-dependent FB
shifts of the resonant peaks in the harmonic responses. In
Sec. IV we proceed to verify these shifts and the appearance of
novel peaks due to FB states by comparing the full calculation
with the theory for the first and second harmonic of h-BN. The
conclusions are given in the last section.

II. THEORY OF INTERACTION OF TWO-BAND
SYSTEM WITH LIGHT

For a two-band system the wave function can be written as

�(r,t) =
∑

m=c,v

∫
BZ

am(k,t)ψm,k(r)d3k, (1)

where BZ denotes that the integration is performed over the
Brillouin zone, c and v denote the conduction and valence
bands, respectively, and

ψm,k(r) = umk(r) exp(ik · r) (2)

are the Bloch wave functions—eigenfunctions of the field-free
Hamiltonian Ĥ0, i.e., Ĥ0ψm,k = Em(k)ψm,k(r).

Without loss of generality, for the moment we assume that
the two-band system possesses a gap � (Fig. 1), and that in the
vicinity of the gap the energy dispersion can be described by
using the effective mass approximation, i.e., by approximating
the energies of the valence and the conduction band as

Ec(k) = Ec0 + h̄2k2

2m∗
e

, Ev(k) = Ev0 − h̄2k2

2m∗
h

; (3)

see Fig. 1. In the above equation, Ec0 and Ev0 are the energies
of the conduction and the valence bands at the gap point � =
Ec0 − Ev0, and m∗

e and m∗
h are the effective masses of the

electron and hole, respectively.
When interacting with light, in the length gauge, the

Hamiltonian reads Ĥ (t) = Ĥ0 + eF(t) · r, where F(t) is the
electric field of the laser and e is the norm of the electron
charge. The am from Eq. (1) satisfy the following equations of
motion [18]:

ȧm =
(

− i

h̄
Em(k)+ e

h̄
F(t) · ∇k

)
am−i

e

h̄
F(t) ·

∑
n

ξmn(k)an,

(4)
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FIG. 1. Sketch of the band structure. The energies of the con-
duction band (Ec), the valence band (Ev), and the band gap � are
illustrated. The dashed lines depict the valence and the conduction
bands in strong fields, revealing the Floquet-Bloch shifts.

where

ξmn(k) = i

∫
u∗

mk(r)∇kunk(r)d3r, (5)

n,m ∈ (c,v), and where the dependence of am and an on k and
t is omitted to ease notation. The explicit expressions for the
ξ of Eq. (5) depend on the system in question. For a gapped
graphene, explicit expressions can be found in, e.g., Ref. [19].

The amplitude equations (4) do not readily allow inclusion
of decoherence and temperature effects. For this purpose, the
equations of motion can be reformulated by using the density
matrix

ρ =
(

ρcc ρcv

ρvc ρvv

)
=

(|ac|2 aca
∗
v

ava
∗
c |av|2

)
. (6)

We rewrite the system of equations (4) following Ref. [18]
and by adding a term containing the decoherence time τ to
introduce a decay, we obtain the following coupled equations
of motion (see Ref. [19] for details):

dρcv(k,t)

dt
= −i

Ecv(k)

h̄
ρcv(k,t) − i

e

h̄
F(t) · ξ cv(k)n(k,t)

+ e

h̄
F(t) · ∇kρcv(k,t)

− i
e

h̄
F(t) · [ξ cc(k)−ξ vv(k)]ρcv(k,t)−ρcv(k,t)

τ
,

(7)

dn(k,t)

dt
= 2i

e

h̄
F(t) · [ξ cv(k)ρ∗

cv(k,t) − ξ ∗
cv(k)ρcv(k,t)]

+ e

h̄
F(t) · ∇kn(k,t)−n(k,t)−[fv(k,T )−fc(k,T )]

τ
,

(8)

where n = ρvv − ρcc, Ecv(k) = Ec(k) − Ev(k), and

fm(k,T ) =
[

1 + exp

(
Em(k)

kBT

)]−1

(9)

is the Fermi-Dirac distribution for the conduction and valence
band, respectively. In the above equation, m = c,v denotes
the conduction and the valence band, respectively, kB is
Boltzmann’s constant, and T is the temperature. Note that,
to obtain Eqs. (7) and (8), we did not invoke the effective
mass approximation. The equations of motion for a particular
system, (7) and (8), are solved with the initial conditions
ρcv(k,−∞) = 0 and n(k,−∞) = fv(k,T ) − fc(k,T ).

The current is given by J(t) = −2 e
me

Tr{p̂ρ} [18], where
the factor of two stands for the spin multiplicity. Explicitly,
the current is calculated as [18,19]

J(t) = − e

π2me

[∫
dk[pvc(k)ρcv(k,t) + pcv(k)ρvc(k,t)]

+
∫

dk
1

2
[pvv(k) − pcc(k)]n(k,t)

]
. (10)

The form of the momentum matrix elements pnm(k), m,n ∈
(c,v), will be discussed in Sec. IV. The first integral in Eq. (10)
is the interband current, while the second integral is the
intraband current. The harmonic spectrum is obtained as the
Fourier transform of the current: j(�) = F{J(t)}. In Sec. IV we
consider numerical harmonic spectra based on the formalism
of this section.

III. FLOQUET ANALYSIS OF INTERACTION
OF TWO-BAND SYSTEM WITH LASER LIGHT

A. Transformation of equations of motion

To make a connection between the laser-semiconductor
interaction and the laser-atom interaction, it is beneficial to
transform the amplitude equations of motion (4) into the
Houston basis [20,21]. Following [20–22], we introduce the
transformation

am(k,t) = cm(K,t)e− i
h̄

∫ t {Em(k,t ′)+eF(t ′)·ξmm[K+ e
h̄

A(t ′)]}dt ′ , (11)

where m ∈ (c,v). In the above equation, we introduced the
shifted wave vector

K = k − e

h̄
A(t), (12)

where A(t) = − ∫ t
dt ′F(t ′) is the vector potential and eA(t) is

the momentum gain of a free electron in the field. Using the
above transform, Eqs. (4) become

ih̄
dcc(K,t)

dt
= eF(t) · ξ cv

(
K + e

h̄
A(t)

)
cv(K,t)

× ei[S(K,t)+W (K,t)],

ih̄
dcv(K,t)

dt
= eF(t) · ξ ∗

cv

(
K + e

h̄
A(t)

)
cc(K,t)

× e−i[S(K,t)+W (K,t)], (13)

where the phases are given by

S(K,t) = 1

h̄

∫ t

Ecv

(
K + e

h̄
A(t ′)

)
dt ′, (14)

W (K,t) = e

h̄

∫ t

F(t ′) ·
[
ξ cc

(
K + e

h̄
A(t ′)

)

− ξ vv

(
K + e

h̄
A(t ′)

)]
dt ′. (15)
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The equations (13) are mathematically identical to the
equations of motion (4) from where the density matrix
equations (7) and (8), which are used to obtain the harmonic
spectra, are constructed. We note that the term ∇k, present
in Eq. (4), is absorbed through the introduction of the shifted
wave vector K of Eq. (12) as an argument in Eq. (13). Without
such a term, field-dependent phases [Eqs. (14) and (15)] would
not appear.

B. Analogy with two-level system

For a few-level atom interacting with light, HHG spectra
have been analyzed by using the Floquet formalism [23–26].
Here, we exploit the similarity between the system described
by Eq. (13) at fixed K and the equation for a two-level system
(two-level approximation of an atomic system), formally used
to analyze eigenenergies of a Floquet Hamiltonian [1]. More

precisely, for a two-level system interacting with an infinitely
periodic laser field, the equations of motions for the amplitudes
Cc and Cv of the “upper” and “lower” state with eigenenergies
Ec and Ev , respectively, are

ih̄
dCc(t)

dt
= D cos(ωt)e

i
h̄

(Ec−Ev )tCv(t),

ih̄
dCv(t)

dt
= D∗ cos(ωt)e− i

h̄
(Ec−Ev )tCc(t), (16)

where D is the product of the dipole matrix element between
the states and the field amplitude F0, while cos(ωt) stems
from the field time dependence. In this way the Hamiltonian
of this system is periodic in time, and the above system of
differential equations can be solved by application of the
Floquet theorem. It emerges [1] that the eigenenergies of such a
system are obtained by diagonalization of the following matrix
with infinite dimensions:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · ·
· Ec − h̄ω 0 0 D/2 0 0 ·
· 0 Ev − h̄ω D∗/2 0 0 0 ·
· 0 D/2 Ec 0 0 D/2 ·
· D∗/2 0 0 Ev D∗/2 0 ·
· 0 0 0 D/2 Ec + h̄ω 0 ·
· 0 0 D∗/2 0 0 Ev + h̄ω ·
· · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

For small off-diagonal matrix elements D, the eigenenergies of
the above matrix, or in other terms, the Floquet state energies,
are approximately

Em ± j h̄ω, (18)

with m = c,v denoting the bands and j = 0,1,2, . . . the num-
ber of photons. The above does not apply at the points where
the eigenenergies of Eq. (17) exhibit avoided crossings as a
function of the peak field strength, then explicit diagonalization
is needed. We label the obtained Floquet states by the pair
(m,j ).

The interaction of the strong laser field with solids creates
FB states—the valence and the conduction bands are dressed
by the photon field [3]. As stated in the Introduction, these
states were detected experimentally by using an elaborate
pump-probe scheme [4,5]. Here we show, by using the
analogy with the two-level system, that the FB states have a
very clear signature in the harmonic spectra produced by a
single laser pulse.

The system of equations (13) can be analyzed by using
the methods used in the case of the two-level system (16).
The difference is that, to obtain any laser-induced response
for a solid—a measurable current or harmonic response—it
has to be integrated over K. In the analysis, we assume that
exactly at K corresponding to the gap between the valence and
conduction band, the dipole matrix elements are maximized
and a resonance appears in the harmonic spectra at these pho-
ton energies. Therefore, the dynamics at this point dominates
the harmonic response. Similarly to Refs. [27,28], we limit
the analysis to this point, however, in Sec. IV we compare

it with the full numerical solution. Finally, although we will
use the Floquet approach to analyze the peaks in the harmonic
spectra, we will not use it to solve the dynamics as we obtain
the solution numerically on the grid using Eqs. (7) and (8).

C. Floquet-Bloch shifts

The energy phases are crucial in establishing the analogy
between the two-level system [Eq. (16)] and the semiconductor
[Eq. (13)]. There is, of course, a difference between the energy
phases in Eqs. (13) and (16); that is, between

1

h̄
(Ec − Ev)t, (19)

which is linear in t and independent of the peak field strength
F0, and the field-dependent phase

S(K,t) + W (K,t). (20)

We exploit the formal similarity between Eqs. (16) and (13) in
the sense that the phase (20) in Eq. (13) plays the role of the
phase (19) in Eq. (16). Then, to compare directly with the case
of the two-level system, by using Floquet analysis we proceed
to replace the integrand in the phase of Eq. (20) with its time
average 〈.〉t = (1/Tp)

∫ Tp

0 dt(.), Tp = 2π/ω, i.e.,

1

h̄

〈
Ec

(
K + e

h̄
A(t)

)〉
t
− 1

h̄

〈
Ev

(
K + e

h̄
A(t)

)〉
t

+ e

h̄

〈
F(t) ·

[
ξ cc

(
K + e

h̄
A(t)

)
− ξ vv

(
K + e

h̄
A(t)

)]〉
t
,

(21)
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where we have used the definitions in Eqs. (14) and (15).
From the analysis below it will be evident that this time-
averaged phase enters the Floquet matrix in the diagonal matrix
elements, just as the energies Ev and Ec enter Eq. (17) for the
two-level system.

Next, we expand the phase of Eq. (21) in orders of
field strength and retain the first nonzero field-dependent
term. The last term in Eq. (21) vanishes in any order of
field strength since

∫ Tp

0 dt sin(ωt) cosn(ωt) = 0 and, equally,∫ Tp

0 dt cos(ωt) sinn(ωt) = 0. The time average of the terms
contained in the first line in Eq. (21) is nonzero. Expanding in
first nonzero order of the peak field strength F0, we obtain〈

Ec/v

(
K + e

h̄
A(t)

)〉
t
≈ Ec/v(K) + �Ec/v, (22)

where

�Ec/v = 1

2

d2Ec/v

dK2
F

e2

h̄2 〈A2(t)〉t , (23)

and where KF = K · eF is the component of K along the field
direction eF.

As stated above, we limit the analysis to the K correspond-
ing to the gap, so Ec(K) = Ec0 and Ev(K) = Ev0. At the
gap we assume the effective mass approximation [Eq. (3)],
therefore the direction in the derivative (23) does not matter so
d2Ec/dK2

F = h̄2/m∗
e and d2Ev/dK2

F = −h̄2/m∗
h. Hence the

first nonvanishing field dependent terms give the following
shifts of the energy bands by the strong laser field:

�Ec = e2

4m∗
e

F 2
0

ω2
and �Ev = − e2

4m∗
h

F 2
0

ω2
. (24)

These shifts are illustrated as differences between the full and
the dashed curves in Fig. 1. Note that, although from the sketch
of the energy bands in Fig. 1 it might look as if for each k the
shift is the same, this is not true. In the following we are
interested in the shift corresponding to the gap. We note that
the shifts are most likely present at other K points where the
dipole matrix element does not peak; however, they do not
produce any visible resonance in the harmonic spectrum and
therefore such shifting cannot be observed.

We denote the total shift of the valence and the conduction
band at the gap as the Floquet-Bloch (FB) shift. The explicit
expression for the FB shift hence reads

EFB(F0,ω) = e2

4μ

F 2
0

ω2
, (25)

where μ−1 = m∗−1
e + m∗−1

h is the reduced effective mass.
Because of the shifts in the valence and the conduction band
[Eq. (24)], the Floquet matrix for the system (13) at K

corresponding to the gap contains diagonal matrix elements
that are shifted with respect to the diagonal matrix elements
for atoms (17), i.e., Ec is replaced by

E(1)
c = Ec + �Ec, (26)

and Ev is replaced by

E(1)
v = Ev + �Ev. (27)

As in the case of the two-level system [Eq. (16)] we label the
FB states by the pair (m,j ). The approximate eigenenergies of

the FB states [Eqs. (26) and (27)] are shifted with respect to
the Floquet energies (18) of the two-level system.

Next, for systems for which the Floquet states are defined
by the matrix of Eq. (17), the coupling between different
states is through an odd number of photons. Hence states
(c,j ) and (v,j ± 2q), where q is a positive integer, do not
couple and belong to orthogonal spaces, effectively forbidding
two-photon transitions between c and v states. For excited
atoms and systems for which inversion symmetry with respect
to the plane perpendicular to the field is broken there
are couplings that lead to the appearance of even-photon
resonances. Specializing to the FB states, and considering
Eq. (13), two-photon transitions are enabled from the explicit
time dependence of the energy phase of Eq. (20) and of the
dipole matrix element ξ cv [Eq. (13)]. Assuming an infinite
periodic field, in first nonvanishing order of field strength the
phase reads

W (K,t) ≈ e

h̄

F0

ω
{[ξ cc(K) − ξ vv(K)] · eF} sin(ωt). (28)

This term, which is of first order in field strength, indi-
rectly enables two-photon coupling between the valence- and
conduction-band Floquet energies. To see that, we rewrite
Eq. (13), eliminating W in the phase by the transformation

bm(K,t) = cm(K,t)e− i
h̄

∫ t {eF(t ′)·ξmm[K+ e
h̄

A(t ′)]}dt ′ , (29)

such that Eq. (13) becomes

ih̄
dbc(K,t)

dt
= eF(t) · ξ cv

(
K + e

h̄
A(t)

)
bv(K,t)eiS(K,t)

+ eF(t) · ξ cc

(
K + e

h̄
A(t)

)
bc(K,t),

ih̄
dbv(K,t)

dt
= eF(t) · ξ ∗

cv

(
K + e

h̄
A(t)

)
bc(K,t)e−iS(K,t)

+ eF(t) · ξ vv

(
K + e

h̄
A(t)

)
bv(K,t). (30)

The diagonal terms in the system of equations (30) enable one-
photon coupling to the Floquet states within the conduction and
the valence band, separately. In the first nonvanishing order of
the field strength,

eF(t) · ξ cc

(
K + e

h̄
A(t)

)
≈ eF0[ξ cc(K) · eF] cos(ωt)

= Dcc cos(ωt), (31)

eF(t) · ξ vv

(
K + e

h̄
A(t)

)
≈ eF0[ξ vv(K) · eF] cos(ωt)

= Dvv cos(ωt). (32)

The term Dcc cos(ωt) couples the states (c,j ± 1) and (c,j ),
while Dvv cos(ωt) couples the states (v,j ) and (v,j ± 1). With
this coupling, an indirect two-photon coupling between the
states (c,j ) and (v,j ± 2q) is enabled. We note that both Dcc

and Dvv are of first order in field strength.
Since the dipole transition matrix elements ξ cv[K +

(e/h̄)A(t)] of Eq. (13) are field dependent, in principle, all
photon orders of coupling are present. Up to the second order
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in field strength,

eF(t) · ξ cv

(
K + e

h̄
A(t)

)
≈ eF0[ξ cv(K) · eF] cos(ωt)

− e2F 2
0

2h̄ω
{eF · ∇k[ξ cv(K) · eF]} sin(2ωt)

= D cos(ωt) + �D sin(2ωt). (33)

The term D cos(ωt) couples the states (c,j ± 1) and (v,j ).
This term, which is of first order in field strength, is present
for atoms as well; see the Floquet matrix of Eq. (17). The
term �D sin(2ωt), which is of second order in field strength,

couples the states (c,j ± 2) and (v,j ), and therefore directly
enables two-photon transitions between the valence and
conduction bands.

To construct the Floquet matrix for FB states we include
(i) the energy shifts �Ec/v [Eqs. (26) and (27)] of second
order in field strength in the diagonal matrix elements, (ii)
the one-photon coupling within the conduction band Dcc

[Eq. (31)] and within the valence band Dvv [Eq. (32)], and (iii)
the first nonzero correction to the transition dipole element
in the off-diagonal terms of the matrix �D [Eq. (33)] that
induces a coupling between the valence and conduction band.
With these ingredients, the following matrix defines the FB
states in semiconductors,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · ·
· Ec + �Ec − h̄ω 0 Dcc/2 D/2 0 i�D/2 ·
· 0 Ev + �Ev − h̄ω D∗/2 Dvv/2 i�D∗/2 0 ·
· Dcc/2 D/2 Ec + �Ec 0 Dcc/2 D/2 ·
· D∗/2 Dvv/2 0 Ev + �Ev D∗/2 Dvv/2 ·
· 0 −i�D/2 Dcc/2 D/2 Ec + �Ec + h̄ω 0 ·
· −i�D∗/2 0 D∗/2 Dvv/2 0 Ev + �Ev + h̄ω ·
· · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

Due to the off-diagonal, field-dependent terms D in the
Floquet matrix (17), the Bloch-Siegert shifts [29] appear
as well. In the perturbative limit and close to a particular
resonance between the Floquet states, an analytic expression
can be derived as follows (see Ref. [1]): We assume that h̄ω

is almost resonant with the transition between, say, (c,j ) and
(v,j + 1). Then in the perturbative limit the interaction from
the states (v,j − 1) and (c,j + 2) can be incorporated and the
perturbative matrix [1] reads(

Ec + j h̄ω + |D|2
8h̄ω

D/2

D∗/2 Ev + (j + 1)h̄ω − |D|2
8h̄ω

− h̄ω

)
, (35)

from where the correction terms involving |D|2 appear. These
are obtained by approximating Ec − Ev with h̄ω. Then due
to the action of this correction term, the Bloch-Siegert shift
|D|2/(4h̄ω) appears, and the resonance frequency ωR is to be
found from

h̄ωR = Ec − Ev + |D|2
4h̄ωR

. (36)

The same consideration applies for the semiconductor case by
replacing Ec and Ev with E(1)

c and E(1)
v of Eqs. (26) and (27),

respectively. The resonance frequency for the transition at
the gap � = Ec0 − Ev0, using shifts to second order in field
strength, reads

h̄ωR = � + EFB(F0,ωR) + e2F 2
0 |ξ cv · eF0 |2
4h̄ωR

, (37)

where ξ cv is evaluated at the gap.
For the case of two-photon transitions between the FB states

at the gap, the resonance frequencies, using energy shifts to
second order in field strength, are equal to

2h̄ωR = � + EFB(F0,ωR). (38)

Note that in the next nonzero order of the field strength, the
fourth order of field strength, a term analogous to the Bloch-
Siegert shift in Eq. (37) should appear, however here it involves
�D rather than D.

D. Meaning of Floquet–Bloch shifts

The FB shifts of Eq. (25), appearing also in Eqs. (37)
and (38), are of the same order in field strength as the
Bloch-Siegert shifts. Contrary to the Bloch-Siegert shifts, for
which analytic expressions are available in the perturbative
limit, the FB shifts can be read directly from the diagonal
matrix elements in the Floquet matrix (34) and therefore
are easily analytically evaluated. Moreover, by including
additional terms in the Taylor expansion of the time-averaged
energy (22) it is possible to obtain corrections to higher orders
in the field strength for the FB shifts.

The expression for the FB shift [Eq. (25)] is formally
identical to the expression for the ponderomotive shift Up

in strong-field physics, Up = (eF0)2/(4meω
2), where me is

the electron mass. Here, the FB shift emerged from the
Volkov-like phase S(K,t) [Eq. (14)] that in turn was obtained
from the transformation of the equations of motions in the
Houston basis. In the early paper by Keldysh [30], where the
foundations of strong-field physics for atomic systems were
made, strong-field laser-solid interaction was also considered.
From the analysis in that paper it emerges that these shifts in
solids come from the time average of the Volkov-like phase
S(K,t). Specifically, when the total rate of transfer from the
valence to the conduction band is considered, the effective
gap in the multiphoton regime is introduced in Eq. (42) of
that paper. The reason why this effective gap appears there is
because a response to an infinite periodic pulse is considered
and therefore the transition amplitude was expanded in a
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Fourier series, which implicitly amounts to performing Floquet
analysis within the Keldysh approximation.

Hence, this FB shift can be thought of as a ponderomotive
shift for valence and conduction bands in semiconductors.
This interpretation and the analogy with the strong-field
physics also helps to establish the limits of the validity
of the perturbative response in semiconductors. Namely,
the point of breakdown of the perturbation theory and the
onset of the strong-field regime is the point when the ratio
Up/(h̄ω), denoted as nonperturbative intensity parameter [31],
becomes non-negligible. Analogously, for semiconductors, the
breakdown of perturbation theory starts when the ratio

EFB(F0,ωR)

h̄ω
= e2

4h̄μ

F 2
0

ω3
(39)

becomes non-negligible. Under the assumption that the major
part of the nth-order perturbative response is located in the
vicinity of the photon energies h̄ω = �/n, we can deduce
that the condition for the validity of perturbation theory for the
nth-order response is

e2F 2
0 h̄2n3

4�3μ
	 1. (40)

From the above inequality we can conclude that the pertur-
bation theory breaks down at lower field strengths for the
higher-order harmonics. This has already been observed by
performing explicit numerical calculations [19].

In the following, to illustrate the emergence of the signa-
tures of the FB states in the harmonic spectra and the FB shifts,
we consider harmonic generation from h-BN as a nontrivial,
realistic example.

IV. EXAMPLE: HARMONIC GENERATION FROM H-BN

A band gap in graphene can be induced in several ways
[10–14]. For the purpose of our analysis, we focus on h-BN,
where two carbon atoms in the unit cell are replaced by a
h-BN dimer [Fig. 2(a)], with a = 2.49 Å. To describe the
interaction of the hexagonal h-BN with light we can use
the model of gapped graphene [15]. For gapped graphene,
similarly to graphene [32], in the basis consisting of two Bloch
wave functions (for details, see Ref. [19]), the tight-binding

FIG. 2. (a) The structure of h-BN in position space. The different
shades (colors) at the points of the hexagon denote B and N atoms,
respectively. The characteristic distance a = 2.49 Å, as well as the
orientation of the laser pulse F(t) and the current j(t) are shown.
(b) Brillouin zone in reciprocal space. The 
, M , and K points are
denoted as vertices of a triangle sketched in red.

-8
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-4
-2
0
2
4
6
8

E 
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V
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(v,1)

(v,2)

(v,3)

FIG. 3. Energy bands in h-BN. Full lines: field-free energy bands
in h-BN. Dashed lines: approximate energies of the FB states. As
an example we plot Ec(k) − j h̄ω and Ev(k) + j h̄ω, j = 1,2,3 for
h̄ω = �/2. The bands are plotted along the thick (red) triangle in
Fig. 2(b) in the reciprocal (k) space connecting 
, M , and K points.

Hamiltonian is obtained as [33]

Ĥ0 =
[ �

2 −γf (k)

−γf ∗(k) −�
2

]
, (41)

where � is the energy gap, γ = −〈pz(r − RA)|Ĥ |pz(r −
RB)〉 ≈ 2.33 eV [34] is the hopping integral, and

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
(42)

comes from the geometry of the location of the nearest
neighbors. The energies of the valence band,

Ev(k) = −
√(

�

2

)2

+ γ 2|f (k)|2, (43)

and conduction band,

Ec(k) =
√(

�

2

)2

+ γ 2|f (k)|2, (44)

are obtained by diagonalization of the Hamiltonian of Eq. (41).
These energies are plotted as full lines in Fig. 3 along the
triangle in k space [thick (red) triangle in Fig. 2(b)] whose
vertices are the 
, M , and K points.

To calculate the current of Eq. (10), we use the diagonal
momentum matrix elements as pnn = me

h̄

∂En

∂k , while the off-
diagonal momentum matrix elements are obtained as pnm =
imeωnmξnm [18]. The explicit expressions for the momentum
matrix elements can be found in, e.g., Appendix B in Ref. [19].

The numerical approach for solving of the equations of
motion (7) and (8) consists of using a rectangular k grid
(around 250 points in each dimension) and approximating the
gradients with balanced difference [35]. The time propagation
is performed using an adaptive Runge-Kutta algorithm. We use
T = 10 K [Eq. (9)] and τ = 50 fs [Eqs. (7) and (8)] throughout.
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We use a laser pulse, defined by the electric-field vector

F(t) = F0 exp

[
−

(
t − MTp/2

MTp/6

)2
]

sin

(
2π

Tp

t

)

for t ∈ [0,MTp], (45)

where F0 = |F0| is the peak electric-field strength, Tp = 2π/ω

is the period of the field, with ω the driving frequency,
and M is the number of cycles. We express the peak field
strength in atomic units (a.u.)—1 a.u. of field strength is
5.142 × 1011 V/m.

The laser pulse used in the calculations of the harmonic
yield in h-BN has a large but finite duration (M = 48 cycles)
as opposed to the infinite periodic laser pulse used in the
analysis in Sec. III. We have checked, however, that the
position of the peaks is independent of the pulse duration
(see the Appendix), so in the analysis below we assume that we
are dealing with an infinite periodic field. Hence we will com-
pare the numerical results solving the equations of motion (7)
and (8) and using the field (45) with the analytical findings of
Sec. III.

We consider the geometry where the field is oriented along
the x axis [see Fig. 2]. Due to the breakdown of the inversion
symmetry of h-BN with respect to the plane perpendicular
to the electric field [Fig. 2(a)], even harmonics appear in the
HHG spectrum. Here we concentrate on the intensity behavior
of the first two harmonics in the HHG spectrum.

The first and the second harmonics of h-BN, obtained
at different field strengths, are shown in Fig. 4. At small
field strengths the shape of these responses is essentially
perturbative, see Fig. 3 in Ref. [34] for the shape of the
second harmonic in the perturbative limit. The perturbative first
harmonic contains peaks for photon energies corresponding to
the gap � = 7.8 eV and to the Van Hove singularity [36]
[the point where ∇kEc/v(k) = 0, denoted as the M point in
Fig. 2(b)] at a photon energy of 2[(�/2)2 + γ 2]1/2≈9.09 eV
(|f (k)| = 1 at the Van Hove singularity). Peaks at these
photon energies are visible also in the second-harmonic curves
corresponding to the few lowest peak field strengths depicted in
Fig. 4(b). In addition to these peaks, the second-order harmonic
contains peaks at half of these frequencies [Fig. 4(b)], as it
should [34].

Upon increasing the field strength, several features become
apparent. First, peaks at photon energies, lower than the
energies of the peaks in the perturbative responses, appear
both in the first and in the second harmonic. Specifically,
for the first harmonic, for F0 � 0.028 a.u., broad peaks at
∼3.9 eV appear [Fig. 4(a)], while in the second harmonic, for
F0 � 0.012 a.u., peaks at ∼2.7 eV appear [Fig. 4(b)]. Second,
some of the existing peaks, most notable example being the
peak in the second harmonic corresponding to half of the gap
[Fig. 4(b)], move as the peak field increases. This is also valid
for the newly emerging peaks, which also move as the peak
field increases [Fig. 4]. Finally, as the peak field increases, the
peaks corresponding to the gap and the Van Hove singularity
in the first harmonic decrease in height which can be seen from
the curves corresponding to the first few peak fields [Fig. 4(a)].
The peak in the first harmonic at approximately 9.09 eV is due
to the Van Hove singularity and occurs at the saddle point of
the energy landscape. This peak is not due to the peak in the
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FIG. 4. (a) First and (b) second harmonic of h-BN for large field
strengths, extracted from harmonic spectra induced by a 48-cycle
pulse. The harmonic yield in panel (a) is proportional to |j(� =
ω)|/F0, and the harmonic yield in panel (b) is proportional to |j(� =
2ω)|/F0. The peak field strengths F0 at which different curves are
obtained in panels (a) and (b) are given in the insets in atomic units.
In panel (a), the dashed rectangle illustrates the extend of the peak
shifting predicted by Eq. (37) (see text).

dipole matrix elements, but due to the peak in the density of
states. As such it cannot be treated using the present approach.
The same is true for the peak in the second harmonic, related to
the Van Hove singularity (peak at 4.5 eV). In view of this, we
apply the Floquet analysis only to the peaks corresponding and
related to the gap, where the dipole matrix element peaks, and
analyze the trends in the numerical data by using the theory
developed in Sec. III.

First, the bands are dressed by the field, so replicas of the
conduction and valence bands appear, i.e., FB states, spaced
by a photon energy, see the dashed lines in Fig. 3, sketched for
the case h̄ω = �/2. As the peak field strength increases, the
FB shifts become evident in the first and the second harmonic
in Fig. 4. For h-BN, the energy shifts of Eqs. (23) and (24)
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calculated at the K point are

�Ec/v|Kpoint = ±3a2γ 2

8�

e2

h̄2

F 2
0

ω2
= ±�E. (46)

In the above equation, “+” corresponds to �Ec, whereas “−”
corresponds to �Ev . The total FB shift of the valence and
conduction band is EFB(F0,ω) = 2�E. The ratio between
the Bloch-Siegert shift and FB shift is explicitly h̄ω/4�.
Therefore, for the frequencies of interest, h̄ω � �, the FB
shift is clearly dominant.

To illustrate the manifestation of the FB shift in the
harmonic spectra, we first consider the peak in the first
harmonic at a photon energy corresponding to the gap at 7.8 eV.
As evident from Fig. 4(a), the height of the peak decreases as
the peak field strength increases. At larger field strengths the
decrease of the peak is not as rapid, it seems that the peaks are
not shifting, and even double peaks appear and disappear at
some field strengths. A resonance frequency ωR can be found
that satisfies Eq. (37). The extent of the shifting predicted by
Eq. (37) is illustrated in Fig. 4(a) by the dashed (red) rectangle,
whose left side is at 7.8 eV (corresponding to the gap) and the
right side of the rectangle is at 8.065 eV, which is exactly
the gap plus the shift according to Eq. (37) at the largest
field strength of 0.04 a.u. used. However, due to the direct
(strong) coupling of strength D/2 between (c,−1) and (v,0)
or, equally, between the states (c,0) and (v,1), the avoided
crossing between these pairs of states widens at large field
strengths. This is illustrated in Fig. 5 where the difference is
shown between Floquet energies at the K point obtained by
diagonalizing the Floquet matrix (34), with �D = 0 and by
using states (m,j ) with m = c,v and j = −1,0,1. In Fig. 5(a)
resonant transition corresponds to a vanishing difference in
energy of the states involved. From the figure it is clear that
such a resonant frequency cannot be found for large field
strengths. Therefore the height of the peak in the first harmonic
at the gap decreases as the peak field increases [Fig. 4(a)].

’Nov_diff_1st_2D_1.dat’

 0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

F0 [a.u.]

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

ω
[e

V
]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

FIG. 5. The difference between the energies of the states (c,−1)
and (v,0) or, equally the states (c,0) and (v,1) at the gap (K point),
obtained by diagonalizing the Floquet matrix (34), with �D = 0
and using states (m,j ) with m = c,v and j = −1,0,1 in the two
dimensional space spanned by the field strength and the photon
energy. The difference is measured in eV and color-coded on a linear
scale.

The Rabi frequency (D/h̄) is taken into account in the
explicit diagonalization to arrive at the result presented in
Fig. 5. Also, the Rabi frequency is taken into account
perturbatively in Eq. (37), expressed by the appearance of
Bloch-Siegert shifts in that equation. At the highest field
strength used, F0 = 0.04 a.u., the inverse of the Rabi frequency
is 3.12 fs, which is smaller than the decoherence time τ = 50
fs. However, the inverse of the Rabi frequency is smaller than
the total pulse duration at 7.8 eV, so full Rabi oscillations
can occur within the pulse duration, which might be the
reason behind the appearance of double peaks at certain field
strengths.

To investigate the reason behind the peculiar behavior of the
one-photon peaks, we have carried out numerical calculations
restricted to a small area in k space around the K point, rather
than including the whole Brillouin zone. In the limit of only
taking the K point itself (two-level-system limit), we find that,
for small field strengths (F0 < 0.004 a.u.), the one-photon
peak shifts according to the Bloch-Siegert shifts of Eq. (37),
as it should. As more points in the vicinity of the K point are
included, our calculations show that these k points coherently
contribute to the one-photon peak. Therefore, the assumption
that the shifting of the one-photon resonance can be described
by using the properties of the two-band system at the gap only,
one of the assumptions behind the derivation of Eq. (37), is not
justified for the case of h-BN at the one-photon resonance. At
photon energies not corresponding to the gap of h-BN, such
an assumption is justified, as we will see from the numerical
evidence below. We note that, in all cases, no matter how large
a set of points around the K point is taken into account in the
calculation, the resonance is rapidly lost as the field strength
increases.

Next, we consider the field dependence of the peaks in the
second harmonic corresponding to the gap, i.e., we consider
the two-photon transition between the valence and conduction
band, peaking around 3.9 eV for small field strengths; see
Fig. 4(b). To recover the dependency of this peak on F0 we
calculate ωR from Eq. (38). The position of peaks obtained
this way agrees nicely with the peak positions extracted from
the numerical calculation; see Fig. 6(a). With the increase of
F0 the peak moves to larger photon energy. This trend and also
the values for the peaks is nicely described by using the FB
shifts, especially at not-too-large photon energies.

Finally, we turn to the peaks in the low-order response
that appear only for larger field strengths and that are not
present in the perturbative result [34]. The presence of these
peaks is evidence that a harmonic response can be resonant
at energies smaller than the energy given by the gap and is
entirely due to the formation of FB states in strong fields.
We consider the most prominent peaks of this type, i.e., the
peaks corresponding to the one-photon transition, peaking
at ∼�/2 = 3.9 eV in Fig. 4(a), and two-photon transition,
peaking at ∼�/3 = 2.6 eV in Fig. 4(b). In the first case, the
one-photon transition should be resonant with the transition
between the FB states of type (c,j − 1) ↔ (v,j ). Hence, to
obtain the dependence of the peak position on F0, we determine
ωR from Eq. (38) at the gap. Figure 6(b) illustrates that the
agreement between the peaks calculated that way with the
numerically obtained positions of the peak is fair, even though
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FIG. 6. Comparison of the peaks extracted from the numerical
calculation for h-BN and the peaks corrected by including the
Floquet-Bloch shifts, as a function of the peak field strength F0 from
Eqs. (38) and (47), respectively. (a) Peaks in the second harmonic
corresponding to the transition at the gap. (b) Peaks corresponding
to one-photon transition, peaking at ∼�/2 in the first harmonic, and
peaks corresponding to two-photon transition, peaking at ∼�/3 in
the second harmonic.

the theory slightly overestimates the shifts. The two-photon
transition (c,j − 1) ↔ (v,j ) peaking at ∼�/3 is obtained as
a crossing between (energy shifted) FB states (c,j − 3) and
(v,j ), i.e., from the equation

3h̄ωR = � + EFB(F0,ωR). (47)

In Fig. 6(b) the frequency obtained from this approximation
is compared with the position of the peaks extracted from the
numerical calculation. The agreement is good.

V. CONCLUSIONS

The resonant peaks in the harmonic spectra as a function
of the photon energy, present in the perturbative responses,
shift due to the interaction with a strong laser pulse. Moreover,
additional resonant peaks appear at energies corresponding to

a fraction of the photon energy of the original peaks, which
also shift as the laser pulse intensity changes. We find that
appearance of new peaks is a signature of the formation of FB
states. Another signature of the FB states specific to two-band
systems is the field-dependent shifting of these peaks. We have
investigated the dependence of the position of these peaks
on the field strength and found a procedure to analyze it by
making an analogy to the case of a two-level atom. The shifts
of the peaks as a function of the field are mainly due to the
FB shifts, introduced in this work, which are larger than the
Bloch-Siegert shifts but of the same order in the peak field
strength as the Bloch-Siegert shifts. We derived an analytic
formula for the FB shift [Eq. (25)]. This analytic form was
verified by comparison with explicit numerical calculations of
the harmonic spectra for h-BN.

The FB shift, involving the reduced effective mass, is
formally identical to the ponderomotive shift appearing in the
strong-field physics of atoms and molecules. In a two-band
system the shift is such that both valence and conduction
band shift in a direction that leads to an increase of the gap
as the laser intensity increases. On the basis of the analogy
with the ponderomotive shift, a measure for the validity of the
perturbative response was derived, expressed by the smallness
of the ratio between the FB shift and the gap.

The FB shifts reported here should appear for any two-
band semiconductor, and we also expect them to appear when
semiconductors are treated by using multiple bands, and when
excitons are included. The extent to which the shifts are visible
in the spectrum will depend on the peaking of the dipole matrix
element at the gap and its associated ability to produce visible,
well-pronounced resonances in the harmonic response. The
recent advances in strong-field physics in solids [37–40] create
the possibility of an experimental investigation of the ideas
discussed here.
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APPENDIX

Here we show that the positions of the peaks that we
analyze in the main text do not depend on the pulse duration
by performing explicit numerical calculation and comparing
the first and second harmonic for pulses of the type given in
Eq. (45) for 24, 48, and 96 cycles. To compare the harmonic
spectra directly between pulses with different finite duration,
the spectra are scaled by dividing by the pulse duration MTp;
see also Eq. (15) and the discussion in the paragraph after
Eq. (16) in Ref. [19]. In Fig. 7 we compare the first [Figs. 7(a)
and 7(b)] and the second harmonic [Figs. 7(c) and 7(d)] at
small F0 = 0.008 a.u. [Figs. 7(a) and 7(c)], and at large field
F0 = 0.032 a.u. [Figs. 7(b) and 7(d)]. From the figure, it
is clear that the positions of the peaks that we are able to
analyze analytically (those that that are not due to the Van
Hove singularity) are indeed unaffected by the pulse duration.
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FIG. 7. The dependence of the first harmonic [panels (a) and (b)] and the second harmonic [panels (c) and (d)] on the number of field cycles,
M; see Eq. (45). Panels (a) and (c) contain the harmonics at smaller field strength F0 = 0.008 a.u., whereas the harmonics for F0 = 0.032 a.u.
are given in panels (b) and (d).
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(1997).
[4] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,

Science 342, 453 (2013).
[5] F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee,

P. A. Lee, and N. Gedik, Nat. Phys. 12, 306 (2016).
[6] H. Hsu and L. E. Reichl, Phys. Rev. B 74, 115406 (2006).
[7] T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
[8] Y. Zhou and M. W. Wu, Phys. Rev. B 83, 245436 (2011).
[9] S. T. Park, Phys. Rev. A 90, 013420 (2014).

[10] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de
Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara,
Nat. Mater. 6, 770 (2007).

[11] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres,
J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim,
and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).

[12] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319,
1229 (2008).

[13] T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A.-P.
Jauho, and K. Pedersen, Phys. Rev. Lett. 100, 136804 (2008).

[14] T. G. Pedersen, C. Flindt, J. Pedersen, A.-P. Jauho, N. A.
Mortensen, and K. Pedersen, Phys. Rev. B 77, 245431 (2008).

[15] V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, Phys. Rev.
B 77, 035425 (2008).

[16] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.
Lett. 105, 136805 (2010).

[17] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis,
Nat Phys 13, 262 (2016).

[18] C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).
[19] D. Dimitrovski, L. B. Madsen, and T. G. Pedersen, Phys. Rev.

B 95, 035405 (2017).
[20] J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986).
[21] J. B. Krieger and G. J. Iafrate, Phys. Rev. B 35, 9644 (1987).
[22] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B.

Corkum, and T. Brabec, Phys. Rev. Lett. 113, 073901 (2014).

063420-10

https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRevA.56.748
https://doi.org/10.1103/PhysRevA.56.748
https://doi.org/10.1103/PhysRevA.56.748
https://doi.org/10.1103/PhysRevA.56.748
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1038/nphys3609
https://doi.org/10.1038/nphys3609
https://doi.org/10.1038/nphys3609
https://doi.org/10.1038/nphys3609
https://doi.org/10.1103/PhysRevB.74.115406
https://doi.org/10.1103/PhysRevB.74.115406
https://doi.org/10.1103/PhysRevB.74.115406
https://doi.org/10.1103/PhysRevB.74.115406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.83.245436
https://doi.org/10.1103/PhysRevB.83.245436
https://doi.org/10.1103/PhysRevB.83.245436
https://doi.org/10.1103/PhysRevB.83.245436
https://doi.org/10.1103/PhysRevA.90.013420
https://doi.org/10.1103/PhysRevA.90.013420
https://doi.org/10.1103/PhysRevA.90.013420
https://doi.org/10.1103/PhysRevA.90.013420
https://doi.org/10.1038/nmat2003
https://doi.org/10.1038/nmat2003
https://doi.org/10.1038/nmat2003
https://doi.org/10.1038/nmat2003
https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1126/science.1150878
https://doi.org/10.1126/science.1150878
https://doi.org/10.1126/science.1150878
https://doi.org/10.1126/science.1150878
https://doi.org/10.1103/PhysRevLett.100.136804
https://doi.org/10.1103/PhysRevLett.100.136804
https://doi.org/10.1103/PhysRevLett.100.136804
https://doi.org/10.1103/PhysRevLett.100.136804
https://doi.org/10.1103/PhysRevB.77.245431
https://doi.org/10.1103/PhysRevB.77.245431
https://doi.org/10.1103/PhysRevB.77.245431
https://doi.org/10.1103/PhysRevB.77.245431
https://doi.org/10.1103/PhysRevB.77.035425
https://doi.org/10.1103/PhysRevB.77.035425
https://doi.org/10.1103/PhysRevB.77.035425
https://doi.org/10.1103/PhysRevB.77.035425
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1038/nphys3946
https://doi.org/10.1038/nphys3946
https://doi.org/10.1038/nphys3946
https://doi.org/10.1038/nphys3946
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.95.035405
https://doi.org/10.1103/PhysRevB.95.035405
https://doi.org/10.1103/PhysRevB.95.035405
https://doi.org/10.1103/PhysRevB.95.035405
https://doi.org/10.1103/PhysRevB.33.5494
https://doi.org/10.1103/PhysRevB.33.5494
https://doi.org/10.1103/PhysRevB.33.5494
https://doi.org/10.1103/PhysRevB.33.5494
https://doi.org/10.1103/PhysRevB.35.9644
https://doi.org/10.1103/PhysRevB.35.9644
https://doi.org/10.1103/PhysRevB.35.9644
https://doi.org/10.1103/PhysRevB.35.9644
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.113.073901


FLOQUET-BLOCH SHIFTS IN TWO-BAND . . . PHYSICAL REVIEW A 95, 063420 (2017)

[23] L. Plaja and L. Roso-Franco, J. Opt. Soc. Am. B 9, 2210 (1992).
[24] L. Plaja and L. Roso, J. Mod. Opt. 40, 793 (1993).
[25] A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. A 49, 1275

(1994).
[26] A. Picón, L. Roso, J. Mompart, O. Varela, V. Ahufinger, R.

Corbalán, and L. Plaja, Phys. Rev. A 81, 033420 (2010).
[27] M. Wu, D. A. Browne, K. J. Schafer, and M. B. Gaarde, Phys.

Rev. A 94, 063403 (2016).
[28] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J.

Schafer, M. B. Gaarde, and D. A. Reis, Nature (London) 534,
520 (2016).

[29] F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
[30] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys.

JETP 20, 1307 (1965)].
[31] H. Reiss, Prog. Quantum Electron. 16, 1 (1992).
[32] P. R. Wallace, Phys. Rev. 71, 622 (1947).

[33] T. G. Pedersen, A.-P. Jauho, and K. Pedersen, Phys. Rev. B 79,
113406 (2009).

[34] T. G. Pedersen, Phys. Rev. B 92, 235432 (2015).
[35] I. Al-Naib, J. E. Sipe, and M. M. Dignam, Phys. Rev. B 90,

245423 (2014).
[36] L. Van Hove, Phys. Rev. 89, 1189 (1953).
[37] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, and D. A.

DiMauro, Louis F. Reis, Nat. Phys. 7, 138 (2011).
[38] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan,

and E. Goulielmakis, Nature (London) 521, 498 (2015).
[39] G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare,

C. R. McDonald, T. Brabec, and P. B. Corkum, Nature (London)
522, 462 (2015).

[40] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner,
M. Koch, S. W. Kira, and R. Huber, Nature (London) 523, 572
(2015).

063420-11

https://doi.org/10.1364/JOSAB.9.002210
https://doi.org/10.1364/JOSAB.9.002210
https://doi.org/10.1364/JOSAB.9.002210
https://doi.org/10.1364/JOSAB.9.002210
https://doi.org/10.1080/09500349314550831
https://doi.org/10.1080/09500349314550831
https://doi.org/10.1080/09500349314550831
https://doi.org/10.1080/09500349314550831
https://doi.org/10.1103/PhysRevA.49.1275
https://doi.org/10.1103/PhysRevA.49.1275
https://doi.org/10.1103/PhysRevA.49.1275
https://doi.org/10.1103/PhysRevA.49.1275
https://doi.org/10.1103/PhysRevA.81.033420
https://doi.org/10.1103/PhysRevA.81.033420
https://doi.org/10.1103/PhysRevA.81.033420
https://doi.org/10.1103/PhysRevA.81.033420
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1038/nature17660
https://doi.org/10.1038/nature17660
https://doi.org/10.1038/nature17660
https://doi.org/10.1038/nature17660
https://doi.org/10.1103/PhysRev.57.522
https://doi.org/10.1103/PhysRev.57.522
https://doi.org/10.1103/PhysRev.57.522
https://doi.org/10.1103/PhysRev.57.522
https://doi.org/10.1016/0079-6727(92)90008-J
https://doi.org/10.1016/0079-6727(92)90008-J
https://doi.org/10.1016/0079-6727(92)90008-J
https://doi.org/10.1016/0079-6727(92)90008-J
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRevB.79.113406
https://doi.org/10.1103/PhysRevB.79.113406
https://doi.org/10.1103/PhysRevB.79.113406
https://doi.org/10.1103/PhysRevB.79.113406
https://doi.org/10.1103/PhysRevB.92.235432
https://doi.org/10.1103/PhysRevB.92.235432
https://doi.org/10.1103/PhysRevB.92.235432
https://doi.org/10.1103/PhysRevB.92.235432
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1103/PhysRev.89.1189
https://doi.org/10.1103/PhysRev.89.1189
https://doi.org/10.1103/PhysRev.89.1189
https://doi.org/10.1103/PhysRev.89.1189
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14652
https://doi.org/10.1038/nature14652
https://doi.org/10.1038/nature14652
https://doi.org/10.1038/nature14652



