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Time-dependent population imaging for high-order-harmonic generation in solids
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We propose an intuitive method, called the time-dependent population imaging (TDPI) method, to map
the dynamical processes of high-order-harmonic generation (HHG) in solids by solving the time-dependent
Schrödinger equation. It is shown that the real-time dynamical characteristics of HHG in solids, such as the
instantaneous photon energies of emitted harmonics, can be read directly from the energy-resolved population
oscillations of electrons in the TDPI picture. Meanwhile, the short and long trajectories of solid HHG are
illustrated clearly from the TDPI picture. By using TDPI, we investigate the effects of the carrier-envelope
phase in few-cycle pulses and demonstrate intuitively the HHG dynamics driven by two-color fields. Our results
show that TDPI provides a powerful tool to study the ultrafast dynamics in strong fields for various laser-solid
configurations and to gain insight into HHG processes in solids.
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I. INTRODUCTION

Many interesting strong-field phenomena have been re-
vealed by atoms and molecules interacting with intense laser
fields [1–5]. One of the most fascinating phenomena is
high-order-harmonic generation (HHG) [6,7]. The HHG from
the gas phase has been studied widely over the past several
decades [8–10]. Recently, the experimental observation of
HHG from bulk solids has attracted extensive attention in the
field of attosecond science [11–13]. Apart from having the
same advantages as the gas HHG, the solid HHG has the great
potential superiority to achieve higher conversion efficiency
due to the high density of solid targets [14]. This property
makes it a competitive alternative for obtaining the tabletop
extreme ultraviolet (XUV) light source [15,16]. In addition,
solid HHG provides a useful tool to probe the energy-band
structures of crystals [17] and even to image the orbitals of
solids [18]. For example, Vampa et al. [19] reconstructed the
energy bands of ZnO crystal based on the HHG method. The
solid HHG has opened up a new frontier to study the attosecond
electron dynamics in condensed matter [20].

For the solid HHG, the particular characteristics dis-
tinguishing it from gas HHG essentially stem from the
periodicity and high density of the crystal. At present, the
driving wavelengths for solids are centered in the midinfrared
(MIR) [11,21] and terahertz [22,23] regions. With such long
wavelengths, the laser intensity can be moderate and thus
lower than the damage threshold. The harmonic spectra from
solids exhibit evident multiple plateaus [24,25] and extend well
beyond the atomic limit. The cutoff energy of the solid HHG
shows a linear dependence on field strength [11,12], unlike
the quadratic dependence relation in gas HHG. The ellipticity
dependence of solid HHG is complicated. The experimental
result shows that the ellipticity dependence of HHG from ZnO
crystal is much weaker than that of gas HHG [11], whereas
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the HHG from rare-gas solids shows an ellipticity dependence
as strong as that from gaseous atoms [18].

The mechanism of HHG in solids has been a topic of
intense debate [26–28]. Most works consider that the HHG in
solids originates from two distinct contributions: an intraband
current in the individual bands and an interband current
involving the transitions between the valence and conduction
bands. Theoretical analyses show that the interband current
dominates the HHG for MIR driver pulses [29–31]. Vampa
et al. [32,33] proposed an electron-hole recollision model
to describe the mechanism, where electrons in conduction
bands recombine with associated holes in the valence band.
Meanwhile, Wu et al. [24,25] suggested that the primary
plateau originates from the transitions from the first conduction
band to the valence band and the latter plateaus are due
to transitions from higher-lying conduction bands. However,
when driving wavelengths are extended toward the terahertz
regime, the intraband current caused by laser-driven Bloch
oscillations becomes dominant for the HHG processes [30,34–
36]. Currently, although some theoretical models can explain
the solid HHG very well, an intuitive method to describe the
picture of HHG in solids is still an urgent need.

In this work, we propose an intuitive picture, named
time-dependent population imaging (TDPI) picture, to reveal
the HHG process in solids. In the TDPI picture, the real-time
dynamics of HHG are mapped via the population oscillations
of electrons at different energy bands. The features of HHG
can be directly decoded from TDPI pictures. For example,
the photon energies of real-time harmonic emissions can
be read from the instantaneous energy differences between
the oscillating electrons in different bands. In particular, the
cutoff energies are obtained according to the maximum energy
differences shown in TDPI pictures. The short and long
trajectories of solid HHG can be distinguished clearly in the
TDPI picture. The effects of the carrier-envelope phase (CEP)
in few-cycle pulses and HHG processes in two-color fields
are also demonstrated by using the TDPI pictures. The TDPI
approach can be used to visualize the solid HHG dynamics
and advance our understanding of strong-field and attosecond
physics in solids.
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This paper is organized as follows. In Sec. II, we describe
the theoretical model and numerical method in our simulations.
In Sec. III, we introduce the TDPI picture and predict the
starting and cutoff energies of solid HHG with the TDPI
pictures. In Sec. IV, the concepts of short and long trajectories
for solid HHG are established based on TDPI pictures. In
Sec. V, the TDPI picture is used to explain the CEP effect
in solid HHG. In Sec. VI, TDPI picture is used to reveal the
HHG processes driven by two-color fields, and the effect of
the relative phase between the two components on the HHG
dynamics is discussed. We summarize our work in Sec. VII.

II. THEORETICAL MODEL

In our simulation, we describe the laser-crystal interaction
with a one-dimensional single-active electron system. The
laser field is polarized along the crystal axis. Since the wave-
lengths we are interested in are much larger than the lattice
constant, dipole approximation is valid and has been employed
in our calculation. In the length gauge, the time-dependent
Hamiltonian reads (atomic units are used throughout this paper
unless otherwise stated)

Ĥ (t) = Ĥ0 + xF (t), (1)

where Ĥ0 is the field-free Hamiltonian and F (x) is the
electric field of the driving laser. Ĥ0 is written as Ĥ0 =
p̂2/2 + V (x), where p̂ is the momentum operator and V (x) is
the periodic lattice potential. Herein, we use the Mathieu-type
potential V (x) = −V0[1 + cos(2πx/a0)], with V0 = 0.37 a.u.

and lattice constant a0 = 8 a.u. The Mathieu-type potential
[37] is a typical model potential and has been used extensively
in the optical lattice research area [38,39] and recent solid
HHG studies [24,25,31,40,41]. We perform all calculations in
the coordination space with the region [−240, 240] a.u. (60
lattice periods).

The energy-band structure of a crystal is obtained by solving
the eigenvalue equation of the field-free Hamiltonian Ĥ0,

Ĥ0φn(x) = Enφn(x), (2)

where n is the eigenstate number and φn(x) is the correspond-
ing eigenstate wave function. We numerically solve Eq. (2)
by diagonalizing Ĥ0 on a coordinate grid. Specifically, the Ĥ0

operator is represented by an N × N square matrix H, where
N is the number of grid points. The nonzero elements of the
matrix H are given by

Hi,i = 1

(�x)2
+ Vi,

Hi,i+1 = − 1

2(�x)2
, (3)

Hi+1,i = Hi,i+1,

where �x is the grid spacing and Vi is the ith element of the
one-dimensional grid of V . The eigenenergy En and eigenstate
φn(x) are obtained by solving the eigenvalues and eigenvector
of matrix H.

Figure 1(a) shows the band structures calculated with the
diagonalization scheme, where the band groups can be clearly
distinguished. As illustrated in Fig. 1(a), the five bands are
denoted as VB0, VB, CB1, CB2, and CB3, respectively. The
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FIG. 1. The band structures calculated by (a) the diagonalization
scheme in coordinate space and (b) Bloch-state expansion in
reciprocal space. Five bands are shown.

state numbers corresponding to the five bands are 1–59, 60–
120, 61–180, 181–240, and 241–300, respectively. In order
to verify the accuracy of the resulting bands, we calculate
the band structure by using the Bloch-state basis [25]. The
obtained band structure is shown in Fig. 1(b). One can see that
the features of the bands (such as the number of bands and the
energy range of each band) obtained by the two methods are in
good agreement, which confirms the accuracy of our resulting
ground states and field-free bands.

When solids are irradiated by a laser pulse, electrons in
the valence bands have opportunities to tunnel into conduction
bands. The tunneling probability exponentially decays with the
increase in band gap. Considering the laser parameters used
in current works, only a small proportion of electrons near
k = 0 in the valence band (VB) can tunnel into conduction
bands [as indicated by the solid green arrow in Fig. 1(b)].
We have confirmed that the HHG is contributed mainly by
the initial distribution of population near k = 0 by calculating
the harmonic spectra with the initial states with different k in
VB. Therefore, we choose the eigenstate with k = 0 in VB
as the initially populated state. The same treatment has been
adopted in previous works [24,31,40,41]. Since the lowest
band, VB0, is very flat and deeply bound, it plays a negligible
role in the HHG dynamics. The time-dependent wave function
ψ(t) is obtained by solving the time-dependent Schrödinger
equation (TDSE) using the split-operator technique [42]. The
time step is 0.03 a.u. An absorbing boundary is adopted to
overcome the unphysical reflections at the edges of the grid.
In our calculation, the width of the absorbing boundary is
adopted as 40 a.u. The wavelengths of the driving laser pulses
are restricted in the MIR region. We adopt a sine-squared
envelope [43] for all laser pulses in this works.

The harmonic spectrum is obtained by calculating the
Fourier transform of the laser-induced current:

H (ω) = 2

3πc3

∣∣∣∣
∫

j (t)eiωtdt

∣∣∣∣
2

, (4)

where c is the speed of light. The laser-induced current j (t) is
given by [31]

j (t) = −〈ψ(t)|p̂|ψ(t)〉. (5)

In order to improve the signal-to-noise ratio, we multiply j (t)
by a Hanning window [25] before the Fourier transformation
since the laser intensities adopted in the present work are
relatively low.
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To obtain the TDPI picture for the solid HHG, the
instantaneous population of electrons on each eigenstate
should be calculated during the TDSE propagation. The
instantaneous population | Cn(t) |2 on eigenstate φn is obtained
by calculating the modulus square of the time-dependent
projection of ψ(t) on φn as

| Cn(t) |2 = | 〈φn | ψ(t)〉 |2 . (6)

Since φn corresponds to the various eigenenergies En,
| Cn(t) |2 can be understood as the time-dependent probability
of electrons occupying the energy level En. Then the TDPI
picture is obtained by plotting | Cn(t) |2 as a function of
time t and eigenenergy En. The time- and energy-resolved
population evolution describes the electron dynamics in solid
HHG. Apparently, the TDPI method is not limited to the
one-dimensional structure and can be extended to the more
complex solid targets, such as graphene [44,45].

III. STARTING AND CUTOFF ENERGIES OF PLATEAUS

Figure 2(a) shows the calculated TDPI picture for an HHG
process driven by a laser pulse with wavelength λ = 3.20 μm
and intensity I = 8.09 × 1011 W/cm2. The total duration of
the adopted laser pulse is eight optical cycles. The optical
cycle of the laser field is denoted as T0. Several features
can be found from the TDPI picture shown in Fig. 2(a).
One can see clear energy-resolved population oscillations of
electrons in the respective bands. These population oscillations
correspond to the laser-driving Bloch oscillations of electrons
in reciprocal space, where the electrons are driven forth and
back periodically by the external laser field [as indicated by
the dashed black arrows in Fig. 1(b)]. The strong oscillations
shown in the TDPI picture indicate that the solid HHG is a
highly delocalized process, unlike the gas HHG process, where
electrons are mainly localized in the ground state. The profiles
of population oscillations shown in VB and CB1 are clear and
bright. However, the profiles in CB2 and CB3 become blurry.
This is because it is more difficult to populate the laser-driven
electrons into higher conduction bands, and therefore, the
corresponding electron populations are about three orders of
magnitude lower than that in CB1. Some striplike structures
appear at the bottom of CB2, which are caused by the spread of
the wave packet. Considering that the population oscillations
are blurred by the striplike structures, we indicate the oscilla-
tion peaks using solid white curves in the blurred region.

The obtained harmonic spectrum is shown in Fig. 2(b).
One can clearly see a characteristic two-plateau structure, as
described in Refs. [25,31], where each plateau has a start and
a cutoff. The harmonic spectrum extends over many orders of
magnitude in yield. This is because the intensity of the second
plateau is more than five orders of magnitude lower than that
of the first plateau, as pointed out by Wu et al. [25]. The second
plateau has been observed in a recent experiment [18]. As in
previous studies [25,33,46], the harmonic spectrum exhibits
clear odd harmonics in the low-energy region and noisy
continuumlike structures in both the first and second plateaus.
The absence of clear harmonics in plateaus can be ascribed to
several reasons, such as the infinitely long dephasing time [33],
elastic or inelastic scattering processes [28], etc. As discussed
in Refs. [24,25], the HHG process can be understood with the
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FIG. 2. The (a) TDPI picture and (b) harmonic spectra obtained
with laser wavelength λ = 3.20 μm and laser intensity I = 8.09 ×
1011 W/cm2. The total pulse duration is eight cycles. In the TDPI
picture, the horizontal white dashed lines indicate the maximum
and minimum instantaneous energies of the oscillating electrons.
The oscillation peaks in CB2 are indicated by the white solid
curves for much clearer observations. �E1 and �E3 represent the
minimum energy differences read from the TDPI picture. �E2 and
�E4 represent the maximum energy differences read from the TDPI
picture.

TDPI picture as follows. For the first plateau, the oscillating
electron shown in the TDPI picture undergoes a transition
from CB1 to VB, accompanied by the emission of a harmonic
photon. The real-time photon energy of the emitted harmonic
is equal to the instantaneous energy difference of oscillating
electrons in corresponding bands. Similarly, the second plateau
is contributed by a transition of oscillating electrons from CB2
and CB3 to VB. In the discussion, CB2 and CB3 are considered
as a whole because CB2 and CB3 are very close and strongly
coupled to each other.

Based on the above viewpoint, the starting and cutoff
energies of both the first and second plateaus can be
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predicted exactly from TDPI pictures. In the following discus-
sion, the instantaneous energies corresponding to the popula-
tion oscillation in VB, CB1, CB2, and CB3 shown with TDPI
pictures are denoted as EVB(t), ECB1(t), ECB2(t), and ECB3(t),
respectively. When electrons undergo the transitions from CB1
to VB, the minimum energy difference �E1 and maximum
energy difference �E2 are obtained, respectively, by

�E1 = min[ECB1(t) − EVB(t)], (7)

�E2 = max[ECB1(t) − EVB(t)]. (8)

As shown in Fig. 2(a), �E1 and �E2 can be easily read from
the TDPI picture. �E1 is equal to the band gap between VB
and CB1. �E2 is the energy difference between the highest (or
deepest) peaks of population oscillations in VB and CB1, as
indicated by the dashed white lines. Considering that the first
plateau originates from the transitions from CB1 to VB, �E1

and �E2 should correspond to the starting and cutoff energies
of the first plateau, respectively. As shown in Fig. 2(b), �E1

and �E2 are indicated by the solid black and dotted red lines in
the harmonic spectrum, respectively. One can see that the posi-
tions of �E1 and �E2 agree very well with the start and cutoff
of the first plateau, respectively. Similarly, for the transitions
from CB2 and CB3 to VB, the minimum energy difference
�E3 and maximum energy difference �E4 are given by

�E3 = min[ECB2(t) − EVB(t)], (9)

�E4 = max[ECB3(t) − EVB(t)]. (10)

�E3 and �E4 can also be easily found in Fig. 2(a). The
second plateau is caused by the transitions from CB3 and CB2
to VB. Therefore, as shown in Fig. 2(b) by the dot-dashed cyan
and dashed green lines, respectively, �E3 and �E4 match the
starting and cutoff energies of the second plateau accurately.
The correspondence between the starting (cutoff) energy of
the plateau and the minimum (maximum) energy difference
in the TDPI picture has been verified by our other simulations
with different laser parameters. In addition, the low harmonic
intensity of the second plateau can be interpreted by the minor
numbers of populations in CB2 and CB3. Specifically, there
are fewer electrons contributing to the transitions from CB2
and CB3 to VB than those from CB1 to VB.

In previous discussions, the population oscillations of
electrons have been confined within the respective bands.
Then, a question arises. Is the cutoff energy of a plateau
confined by the energy range of the involved bands (including
band gaps)? For example, we denote the total span between
the bottom of VB and top of CB1 as EVC1, which is indicated
in Fig. 3(a) by a purple arrow. Will the cutoff energy of the
first plateau not extend EVC1? In order to answer that question,
we calculate the TDPI picture and harmonic spectrum with
a laser pulse of wavelength λ = 4.00 μm and intensity
I = 1.20 × 1012 W/cm2. Such a longer wavelength and
higher intensity can populate the electrons to higher levels.
In the following discussion, we will focus on only the first
plateau since the second plateau is much weaker.

The obtained TDPI picture and harmonic spectrum are
shown in Figs. 3(a) and 3(b), respectively. From Fig. 3(a),
one can see that, when the oscillating electrons in CB1 reach
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FIG. 3. The (a) TDPI picture and (b) harmonic spectrum obtained
with laser wavelength λ = 4.00 μm and laser intensity I = 1.20 ×
1012 W/cm2. The gray dashed line indicates the total span of VB and
CB1 EVC1.

the top of the band (the boundary of the first Brillouin zone
in reciprocal space), the electrons can tunnel through the
band gap into CB2. The tunneling electrons in CB2 will
continue oscillating in the laser field. In order to focus on
the population oscillations of electrons tunneling from CB1,
we adopt the same color scale for CB1 and CB2. The band gap
between CB1 and CB2 is very narrow (ECB1−CB2 = 0.84 eV).
Therefore, oscillating electrons in CB1 can tunnel into CB2
easily. In contrast, when oscillating electrons in VB reach
the bottom of the band, the electrons can hardly tunnel into
VB0 since the band gap between VB0 and VB is quite
broad (EVB0−VB = 9.25 eV). From the TDPI picture shown in
Fig. 3(a), it is concluded that, because the oscillating electrons
can tunnel into higher bands with a high probability, the
possible cutoff energy is not limited by the energy range of the
involved bands. In Fig. 3(a), the maximum energy difference
�E2 for the first plateau is indicated by the dotted red arrow,
which spans from the highest oscillation peak in CB2 to that in
VB. As shown in Fig. 3(b), �E2 is in good agreement with the
cutoff energy of the first plateau in the harmonic spectrum. As
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FIG. 4. (a) The electric field and vector potential of the laser pulse
with laser wavelength λ = 3.20 μm and laser intensity I = 7.00 ×
1011 W/cm2. The total duration is six optical cycles. (b) The TDPI
picture obtained with the field shown in (a). (c) The time-frequency
spectrum with a logarithmic color scale. The dotted yellow curve is
the instantaneous energy difference of oscillating electrons in CB1
and VB obtained from the TDPI picture. In (b) and (c), S and L denote
the short and long trajectories.

expected, �E2 is larger than EVC1, where EVC1 is indicated
by the dashed gray line.

IV. EMISSION TIME AND TRAJECTORY ANALYSIS

In this section, the emission times of high harmonics in
solids will be discussed with TDPI pictures. Figure 4(b) shows
the calculated TDPI picture for the HHG process driven by a
3.20-μm laser pulse with an intensity of 7.00 × 1011 W/cm2.
The pulse duration is six optical cycles. The electric field and
vector potential of the laser pulse are plotted in Fig. 4(a). In
order to obtain the emission times of harmonics, we calculate

the time-frequency (TF) spectrum using the Gabor transform
[47] of the time-dependent current. The resulting TF spectrum
is shown in Fig. 4(c). One can see that the harmonic emissions
occur four times per optical cycle. For each half cycle, the
emissions correspond to a pair of short and long branches
(labeled S and L, respectively). From Figs. 4(a)–4(c), it is
found that the evolution of the time-dependent population
in the TDPI picture agrees well with the profile of the
TF spectrum. The peaks of population oscillations in the
TDPI picture and HHG radiations in the TF spectrum both
correspond to the zero points of laser fields and peaks of
vector potentials, as indicated by the dashed pink lines. On
the contrary, the minima of population oscillations and HHG
radiations both correspond to the peaks of laser fields and
zero points of vector potentials, as indicated by dotted purple
lines. Furthermore, we calculate the instantaneous energy
differences of oscillating electrons in CB1 and VB, i.e.,
EC1−V(t). EC1−V(t) is obtained from the TDPI picture shown
in Fig. 4(b) as

EC1−V(t) = ECB1(t) − EVB(t). (11)

We plot EC1−V(t) as the yellow dotted curve in Fig. 4(c). One
can see that EC1−V(t) is consistent with the harmonic signals
shown in the TF spectrum very well. In the studies of gas HHG,
the TF spectrum is one of the most important and frequently
used tools to analyze the HHG dynamics. Likewise, the TDPI
picture can also be a useful tool for a solid HHG like the TF
spectrum.

In gas HHG, a semiclassical three-step model builds up
an intuitive picture to describe the HHG process [8]. In
this picture, the short and long trajectories are distinguished
according to the duration of the tunneling electrons traveling
in the continuum [9]. As shown in Fig. 4(c), the “short” and
“long” trajectories still exist in solid HHG and can be seen from
the TF spectrum. Based on the TDPI method, the concepts of
short and long trajectories for solid HHG can be established
according to the short and long branches of the population
oscillations within the same half cycle. For example, for the
harmonic with photon energy �E = 9.96 eV, the emission
occurs twice per half cycle, as shown in Fig. 4(b). As donated
by the solid green (left) arrow, the transition from the short
branch occurs at time tS = 2.63 T0. Then the electrons oscillate
to higher energies and return back to the same energy level at
time tL = 2.87 T0, and subsequently, a harmonic photon with
the same energy �E = 9.96 eV is emitted via the transition
from the long branch, as denoted by the solid cyan (right)
arrow. The emission time tS is earlier than tL. Therefore, the
emission pathways indicated by the green and cyan arrows can
be called short and long trajectories, respectively. The short
and long trajectories read from TDPI pictures are consistent
with those shown in the TF spectrum. As shown in Fig. 4(c),
for the harmonic with photon energy �E = 9.96 eV, tS and
tL are in good agreement with those read from the short and
long branches of the TF spectrum, respectively. Moreover,
as in the gas HHG, the short trajectory of the solid HHG is
positively chirped, whereas the long trajectory is negatively
chirped. In reciprocal space, the short and long trajectories
appear essentially because the electrons are driven forth and
back during the Bloch oscillation and will pass the same point
(with specific k) twice in one half cycle.

063419-5



LIU, ZHU, LAN, ZHANG, WANG, ZHANG, AND LU PHYSICAL REVIEW A 95, 063419 (2017)

- .0 5

0

0 5.

u
a

t
A

).
.

( )
(

- .0 5

0

0 5.

0 0 5. 1 1 5. 2

- .0 5

0

0 5.

0 0 5. 1 1 5. 2

- .0 5

0

0 5.

0 30

60 90

(a) (b)

)d()c(

max( )A t ( )A t

( )A t ( )A t

max

max max

Time (units of      ) Time (units of      )

FIG. 5. Vector potentials of laser pulses with different CEPs.
(a) φ = 0◦. (b) φ = 30◦. (c) φ = 60◦. (d) φ = 90◦. The laser
wavelength is λ = 3.60 μm, and the laser intensity is I = 1.40 ×
1012 W/cm2. The total duration is two optical cycles. |A(t)|max

represents the maximum value of the module of vector potentials
A(t).

V. CARRIER-ENVELOPE PHASE EFFECT

For a few-cycle laser pulse, the CEP will dramatically
affect the temporal shape of the electric field. Some physical
processes induced by the few-cycle laser field will rely on
the variation of CEP. For example, the cutoff energy of the
gas HHG sensitively depends on the CEP of the driving
field [48,49]. The CEP effect has been discussed widely for
photoionization [50–52] and gas HHG [53,54].

In this section, we will analyze the CEP effect for solid HHG
by using the TDPI picture. The adopted laser wavelength is
λ = 3.60 μm and laser intensity is I = 1.40 × 1012 W/cm2.
The total duration of the laser pulse is two optical cycles.
Figures 5(a)–5(d) show the vector potentials of the laser
pulses with CEP φ = 0◦,30◦,60◦, and 90◦ respectively. The
maximum of the module of vector potentials |A(t)|max is
indicated with the vertical arrows. In the following discussion,
we will focus on the first cutoff. The cutoff energy is denoted
as ηcutoff .

High-order-harmonic spectra for φ = 0◦,30◦,60◦, and 90◦
are shown in Fig. 6(a). One can clearly see that the cutoff
energy ηcutoff is very sensitive to the CEP. Specifically,
as indicated by the dashed purple curve, ηcutoff increases
monotonously when φ varies from 0◦ to 90◦. In order to further
discuss the relation between ηcutoff and φ, we calculate the
cutoff energy ηcutoff as a function of φ from 0◦ to 360◦ in
steps of 15◦. The obtained result is shown in the Fig. 6(b)
as the solid blue curve. Here ηcutoff is read from �E2 shown
in the corresponding TDPI picture because ηcutoff is equal to
the maximum energy difference �E2, as discussed in Sec. III.
One can see that ηcutoff exhibits the tendency of monotonous
increasing in the region of 0◦–90◦, which corresponds to the
results shown in Fig. 6(a). Our further studies show that ηcutoff

has a close relation to |A(t)|max. |A(t)|max as a function of φ is
shown as the dashed green curve in Fig. 6(b). It is found that the
|A(t)|max and ηcutoff curves are nearly in complete agreement
with each other. This indicates that ηcutoff is determined by
the corresponding |A(t)|max. Considering that the ηcutoff and
|A(t)|max curves are plotted with different linear vertical axes,
it can be speculated that ηcutoff depends linearly on |A(t)|max,
i.e.,

ηcutoff ∝ |A(t)|max. (12)
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FIG. 6. (a) High-order-harmonic spectra with φ = 0◦,30◦,60◦,
and 90◦. The dashed purple curve indicates the cutoff regions.
(b) The solid blue curve shows the CEP dependence of the cutoff
energy ηcutoff . The dashed green curve shows |A(t)|max. (c) ηcutoff as a
function of |A(t)|max. Here φ is chosen from 0◦ to 90◦.

Figure 6(c) shows ηcutoff as a function of |A(t)|max, where φ

is chosen from the range of 0◦–90◦. The result confirms that
ηcutoff increases linearly with |A(t)|max. For a long pulse, since
the CEP only slightly influences the waveform of the vector
potential, the equation |A(t)|max = A0 holds for any value of
φ, where A0 is the amplitude of the vector potential. Thus, the
cutoff energy for long pulses satisfies ηcutoff ∝ A0, as discussed
in Refs. [24,25,31,41].

In the following, we choose the cases with φ = 0◦ and
φ = 90◦ as examples to analyze the CEP effect using TDPI
pictures. The TDPI pictures for φ = 0◦ and φ = 90◦ are
shown in Figs. 7(a) and 7(c), respectively. The corresponding
EC1−V(t) and |A(t)| for φ = 0◦ and φ = 90◦ are shown in
Figs. 7(b) and 7(d), respectively. From Figs. 7(a)–7(d), one can
see that the population oscillations for φ = 0◦ and φ = 90◦
are significantly different, but both of them are determined by
the respective |A(t)|. Specifically, as shown in Fig. 7(a), the
population oscillation in CB1 exhibits two peaks with equal
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FIG. 7. (a) The TDPI picture obtained with φ = 0◦. (b) The real-time radiation energy EC1−V(t) and |A(t)| for φ = 0◦. (c) The TDPI picture
obtained with φ = 90◦. (d) The real-time radiation energies EC1−V(t) and |A(t)| for φ = 90◦. In (b) and (d), the dotted yellow curves represent
EC1−V(t), and the solid green curves represent |A(t)|.

height. This trend is similar to that of the corresponding |A(t)|
curve shown in Fig. 7(b). Likewise, as shown in Fig. 7(c), the
population oscillation in CB1 exhibits a prominent peak in the
middle and two secondary peaks on both sides, which is similar
to the trend of the |A(t)| curve shown in Fig. 7(d). The corre-
spondence between electronic oscillation and |A(t)| essentially
originates from the fact that the wave vector of Bloch electrons
depends linearly on the vector potential of the external laser
field [41].

Moreover, |A(t)| not only dominates the population oscil-
lations of electrons in their respective bands but also governs
the energy differences between conduction and valence bands,
i.e., the real-time photon energies of emitted harmonics. As
shown in Figs. 7(b) and 7(d), one can see that EC1−V(t) has the
same trend as |A(t)| for both φ = 0◦ and φ = 90◦. Especially
for the high-energy region, EC1−V(t) and |A(t)| nearly coincide
completely with each other. Considering that different linear
vertical axes are used for the two curves, for the high-energy
region, it can be found that

EC1−V(t) ∝ |A(t)|. (13)

Equation (13) is not only valid for the short pulse used
here; it has been verified by our numerous other simulations.
According to Eq. (13), Eq. (12) can be obtained considering
that ηcutoff = max[EC1−V(t)]. Since |A(t)|max for φ = 90◦ is
larger than that for φ = 0◦, as shown in Figs. 7(b) and 7(d),
the cutoff energy for φ = 90◦ is larger than that for φ = 0◦.

Based on the above discussions, the origin of the CEP effect
on the cutoff energy for solid HHG can be understood as
follows. When the CEP varies, the corresponding variation
of A(t) leads to the changes in the Bloch oscillation in each
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FIG. 8. The synthesized electric fields and vector potentials of
the two-color laser pulse with (a) and (b) ϕ = 0◦ and (c) and
(d) ϕ = 90◦. The laser wavelengths of the fundamental and second-
harmonic fields are λ1 = 3.20 μm and λ2 = 1.60 μm, respectively.
The laser intensities of the fundamental and second-harmonic fields
are both I = 4.00 × 1011 W/cm2. The total duration of the laser pulse
is eight optical cycles.
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FIG. 9. (a) and (d) The TDPI picture obtained with ϕ = 0◦ and 90◦, respectively. (b) and (e) Comparisons between EC1−V(t) and |A(t)| for
ϕ = 0◦ and 90◦, respectively. The dotted yellow curves represent EC1−V(t), and the solid green curves represent |A(t)|. (c) and (f) Harmonic
spectra obtained with ϕ = 0◦ and 90◦, respectively.

band. As a result, the maximum energy difference of oscillating
electrons between the conduction band and valence band varies
correspondingly, which gives rise to the change in the cutoff
energy. Specifically, the cutoff energy ηcutoff is proportional to
|A(t)|max.

VI. TWO-COLOR LASER FIELDS

For the gas HHG, a lot of works have been devoted to the
study of HHG in two-color laser fields [55–57] because the
two-color field offers a powerful tool to regulate the HHG. For
instance, the two-color field can be used to amplify the HHG
yield and extend the harmonic cutoff [58–60]. By varying
the relative phase between the two components, the two-color
field allows one to manipulate the HHG processes [61,62]
and control the birth of attosecond XUV pulses [63]. The
dynamical processes of HHG in the two-color field are more
complicated than those in the monochromatic field. To our

knowledge, HHG driven by two-color fields in solids is rarely
investigated at present.

Herein, we demonstrate the HHG dynamics in solids
driven by two-color fields involving a fundamental and a
second-harmonic field using TDPI pictures. In our calculation,
the wavelengths of the fundamental and second-harmonic
fields are λ1 = 3.20 μm and λ2 = 1.60 μm, respectively.
The laser intensities of the two components are both I =
4.00 × 1011 W/cm2. The total duration of the laser pulse is
eight optical cycles of the fundamental field. The relative phase
between the two components is denoted as ϕ. We will focus
on the cases where ϕ = 0◦ and ϕ = 90◦ to analyze the HHG
processes. The synthesized electric fields and vector potentials
with ϕ = 0◦ and ϕ = 90◦ are shown in Figs. 8(a)–8(d).

Figures 9(a) and 9(b) show the TDPI picture and the
comparison between EC1−V(t) and |A(t)| for ϕ = 0◦, respec-
tively. The corresponding figures for ϕ = 90◦ are shown
in Figs. 9(d) and 9(e), respectively. One can see that the

063419-8



TIME-DEPENDENT POPULATION IMAGING FOR HIGH- . . . PHYSICAL REVIEW A 95, 063419 (2017)

population oscillations of electrons in the respective bands are
still clear. According to the discussion in Sec. V, the photon
energy of an emitted harmonic for the high-energy region
depends linearly on |A(t)|. Hence, as shown in Figs. 9(b)
and 9(e), EC1−V(t) curves are in good agreement with the
corresponding |A(t)| curves for both ϕ = 0◦ and ϕ = 90◦,
respectively. Compared with the population oscillations from
the monochromatic field shown in Fig. 2(a), the population
oscillations shown in Figs. 9(a) and 9(d) are peculiar. The
special profiles of population oscillations are determined by
the corresponding |A(t)|, as shown in Figs. 9(b) and 9(e).

The high-order-harmonic spectra for ϕ = 0◦ and ϕ = 90◦
are shown in Figs. 9(c) and 9(f), respectively. It is shown that
the starts and cutoffs of the harmonic plateaus are still very well
in accord with �E1 and �E2 for both ϕ = 0◦ and ϕ = 90◦.
The cutoff energy for ϕ = 90◦ is larger than that for ϕ = 0◦
because �E2 for ϕ = 90◦ is greater than that for ϕ = 0◦, as
shown in Figs. 9(a) and 9(d). This sensitivity of the cutoff
energy to relative phase ϕ is essentially due to the fact that
|A(t)|max changes correspondingly when ϕ varies.

In addition, the harmonic plateau for ϕ = 0◦ shown in
Fig. 9(c) is quite flat. This is because the profile of the
population oscillation in the TDPI picture is composed of
regular peaks similar to those for a monochromatic field. By
contrast, the harmonic plateau for ϕ = 90◦ shown in Fig. 9(f)
is relatively uneven. This uneven plateau is caused by the
special structure of the profile of the population oscillation
in the TDPI picture and can be interpreted with the EC1−V(t)
curve. As shown in Fig. 9(e), the EC1−V(t) curve is composed
of two kinds of peaks: the high, sharp peaks and the low
peaks with concave tops. Then, the EC1−V(t) curve can be
divided into two parts by the maximum energy of the low
peaks �E2,low, as indicated by the dot-dashed purple line in
Fig. 9(e). The high-order harmonics with photon energy larger
than �E2,low are emitted, at most, twice per cycle, whereas the
high-order harmonics with photon energy smaller than �E2,low

can be emitted four times per cycle. Therefore, HHG in the
region below �E2,low is more efficient. In Fig. 9(f), �E2,low is

indicated by the vertical dot-dashed purple line. One can see
that the intensity of the harmonics ranging from �E2,low to
�E2 is lower than that ranging from �E1 to �E2,low.

The above results indicate that the two-color field can be
used to control the electron dynamics in solids. The features of
generated high-order harmonics can be modulated effectively
by adjusting the relative phase of two components. The
manipulation of the solid HHG with the two-color field can be
guided by the TDPI picture.

VII. CONCLUSION

In summary, this work introduced an intuitive representa-
tion called TDPI picture to reveal the electron dynamics of
solid HHG in a quantitative way. The population oscillations
of electrons in the respective bands were clearly demonstrated
in TDPI pictures. We showed that the real-time photon
energies of emitted harmonics can be obtained directly from
the instantaneous energy differences of oscillating electrons.
Specifically, the cutoff energies of the harmonic plateaus are
determined by the maximum energy differences. In the TDPI
picture, the concepts of short and long trajectories in solid
HHG can be clarified clearly. By using TDPI pictures, we
studied the CEP effects in short pulses and demonstrate the
HHG dynamics driven by two-color fields. It was shown that
the vector potential of the laser pulse dominates the dynamical
processes of solid HHG. The TDPI method proposed in the
present work provides a promising way to analyze the solid
dynamics in a strong field, and it would be helpful to shed light
on some underlying mechanisms in future studies.
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