
PHYSICAL REVIEW A 95, 063418 (2017)

Searching for an optimal control in the presence of saddles on the quantum-mechanical
observable landscape

Gregory Riviello,1 Re-Bing Wu,2 Qiuyang Sun,1 and Herschel Rabitz1

1Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
2Department of Automation, Tsinghua University, and Center for Quantum Information Science and Technology,

TNlist, Beijing 100084, China
(Received 30 December 2016; published 22 June 2017)

The broad success of theoretical and experimental quantum optimal control is intimately connected to
the topology of the underlying control landscape. For several common quantum control goals, including the
maximization of an observable expectation value, the landscape has been shown to lack local optima if three
assumptions are satisfied: (i) the quantum system is controllable, (ii) the Jacobian of the map from the control
field to the evolution operator is full rank, and (iii) the control field is not constrained. In the case of the observable
objective, this favorable analysis shows that the associated landscape also contains saddles, i.e., critical points
that are not local suboptimal extrema. In this paper, we investigate whether the presence of these saddles affects
the trajectories of gradient-based searches for an optimal control. We show through simulations that both the
detailed topology of the control landscape and the parameters of the system Hamiltonian influence whether the
searches are attracted to a saddle. For some circumstances with a special initial state and target observable,
optimizations may approach a saddle very closely, reducing the efficiency of the gradient algorithm. Encounters
with such attractive saddles are found to be quite rare. Neither the presence of a large number of saddles on the
control landscape nor a large number of system states increases the likelihood that a search will closely approach
a saddle. Even for applications that encounter a saddle, well-designed gradient searches with carefully chosen
algorithmic parameters will readily locate optimal controls.
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I. INTRODUCTION

The last two decades have seen a significant expansion
of the boundaries of quantum optimal control experiments
(OCEs) due to technological advances in experimental re-
sources, especially femtosecond lasers and pulse-shaping
capabilities [1–12]. OCEs have been successfully performed
for a wide range of goals, including the control of molecular
vibrational [13–20] and electronic states [21–29], the genera-
tion and coherent manipulation of x rays [30–34], the control
of decoherence processes [35,36], the selective cleavage and
formation of chemical bonds [37–43], the manipulation of
energy flow in macromolecular complexes [44–47], and the
control of photoisomerization reactions [48–52]. Optimal
control theory (OCT) [7,9,53–56] has provided insights into
the coherent control of a variety of quantum phenomena,
such as electron transfer [57,58], molecular photoisomeriza-
tion [59–62] and photodissociation [63–67], the manipulation
of trapped Bose-Einstein condensates [68–70], strong-field
ionization [71], quantum-information processing [72–94], and
spin squeezing in atomic ensembles [95,96].

The primary goal of OCEs and OCT simulations is to find
a control ε(t) that yields the global maximum or minimum
value of a cost functional J = J [ε(t)]. This cost functional
represents control objectives such as the distance between
the unitary evolution operator and a target unitary transfor-
mation, the probability of a transition between two states,
or the expectation value of an observable [7]. Several recent
studies [97–99] strongly indicate that the success of numerous
OCEs and OCT simulations is related to the favorable topology
of the quantum control landscape defined by the functional
dependence of J on ε(t) [7,9,100]. In particular, it has been
shown that the control landscape lacks local optima (referred

to as traps) if three conditions are satisfied: (i) the quantum
system is controllable; i.e., any unitary evolution operator can
be produced by some admissible control field beyond some
finite time; (ii) the Jacobian matrix mapping the control field
ε(t) to the final-time evolution operator U (T ,0) is of full rank
everywhere on the landscape; (iii) there are no constraints
on the control field [98,101–108]. The absence of local
suboptimal extrema is of central importance to optimization;
numerical studies have described the appearance of local traps
on the control landscape due to the violation of assumption
(i) [109] and shown that the violation of assumption (ii) [110]
can, in special cases, prevent a gradient search from identifying
globally optimal controls. Recent work [111] has shown that
assumptions (i) and (ii) are almost always satisfied. Thus, the
satisfaction of assumption (iii) (which depends in practice
on access to adequate system-specific control resources) is
generally the key criterion that determines whether OCEs or
OCT searches will optimize successfully, especially with a
local gradient-based algorithm. In this work, we assume that
assumptions (i), (ii), and (iii) are satisfied and that the control
landscape lacks local optima; this behavior was confirmed by
the success of all simulations.

Even when the three assumptions are satisfied, however, the
control landscapes for the unitary and observable objectives
both contain suboptimal critical points. These critical points
are saddles rather than local extrema, and cannot in principle
trap a gradient-based search. However, gradient-based meth-
ods typically converge more slowly when they come near any
such critical point. A prior numerical study of the unitary
control objective indicated that saddles have little effect on
gradient-based searches [112]. In this work, therefore, we
focus on observable control, for which the landscape may have
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a much larger number of saddles. Recent OCEs performed on
a two-spin system located saddles on the observable control
landscape at the predicted objective values and of the right
character [113], providing empirical support for the theoretical
analysis.

The trajectory of a gradient search is influenced by both the
landscape topology (which is fully defined by the initial state
and target observable) and the local, nontopological geometry
of the landscape (which depends on those two operators as
well as the form of the Hamiltonian and the nature of the initial
control field). We perform a large number of numerical OCT
searches on a variety of control problems in order to identify
physical parameters or characteristics that determine whether
an optimal search will approach a saddle closely during
an optimization. Using a specially designed metric [114],
we quantify the attractiveness of saddles and measure their
influence on the efficiency of seeking optimal controls. The
present work considers gradient-based simulations, which can
be very sensitive to saddles. In the laboratory, it is more
common to employ stochastic algorithms, but the presence
of a high density of attractive saddles could nonetheless be a
challenge to optimization. The findings in the present work are
therefore relevant for effective performance in OCEs.

The remainder of the paper is organized as follows:
Section II discusses the theoretical basis for the classification
of critical points, as well as the observable objective and the
topology of the corresponding control landscape. Section III
describes the numerical methods employed in this work and
the metric used to evaluate the effects of saddles during a
gradient-based search. In Sec. IV we examine the factors
that cause landscape saddles to influence searches for optimal
controls. Our concluding remarks are given in Sec. V.

II. BACKGROUND AND LANDSCAPE ANALYSIS

A. Background

The control illustrations in this paper involve closed N-level
quantum systems with Hamiltonians of the form

H (t) = H0 − με(t), (1)

within the electric dipole approximation. H0 is the field-free
diagonal operator, the control field ε(t) is a real-valued
function of time defined on the interval [0,T ], and μ is the
dipole operator that couples the system to the field. In the
Schrödinger picture, the state of the system at a time t is
described by the density matrix ρ(t) = U (t)ρ0U

†(t), where
ρ0 ≡ ρ(0) is the initial density matrix and U (t) ≡ U (t,0) is
the propagator or evolution operator. The propagator satisfies
the Schrödinger equation:

ih̄
d

dt
U (t) = H (t)U (t), U (0) = I, (2)

where I is the N-dimensional identity operator. In the present
work, we only consider evolution-operator controllable sys-
tems [9,54], i.e., systems for which any unitary operator W

is the solution of the Schrödinger equation (2) at sufficiently
long time T with some control field ε(t). In the absence of
controllability, it has been shown that the control landscape
may contain traps [109].

The topology of a quantum control landscape is determined
by characterizing its critical points, where

δJ

δε(t)
= 0, ∀t ∈ [0,T ]. (3)

Critical points can be classified as global extrema, local
extrema, or saddles, according to the properties of second-
and higher-order functional derivatives of J with respect to
the control field [7,100]. For example, the Hessian matrix,

H(t,t ′) = δ2J

δε(t)δε(t ′)
,

describes the local curvature near a critical point. At a
saddle, the Hessian has both positive and negative character.
The existence of landscape saddles has practical significance
for OCT optimizations, since their presence may influence
searches with a gradient algorithm [110,115] or even hinder the
convergence efficiency of global stochastic algorithms [116].
The topic assessed in this paper is the role of saddles in
seeking optimal controls, as reflected in the performance
of a gradient-based algorithm which was chosen due to its
sensitivity to landscape saddle features.

The landscape analysis for the objective J can be performed
using either the dynamic formulation, in which the control
landscape J = J [ε(t)] is defined on the L2 space of control
fields, or the kinematic formulation, in which the control
landscape J = J (UT ) is defined on the unitary group U(N ).
In order to clarify the relationship between these two formula-
tions, we partition the relationship between J and the control
field ε(t) by representing J as a function of the final-time
evolution operator UT ≡ U (T ), and UT in turn as a functional
of the control field, i.e., J = J (UT ) and UT = UT [ε(t)]. Using
the chain rule, Eq. (3) can be rewritten as

δJ

δε(t)
=

〈
∇J (UT ),

δUT

δε(t)

〉
= 0, ∀t ∈ [0,T ], (4)

where 〈·,·〉 is the Hilbert-Schmidt inner product, ∇J (UT )
is the gradient of J with respect to UT , and the Jacobian
matrix δUT /δε(t) is the first-order functional derivative of
UT with respect to the control field. Adopting satisfaction of
assumption (ii), to which we referred in Sec. I, leads to the
conclusion that Eq. (3) is equivalent to the kinematic result,

∇J (UT ) = 0. (5)

Therefore, the dynamic and kinematic perspectives yield the
same landscape critical point specifications.

B. Formulation and landscape topology of the control objective

The OCT simulations in this work consider the goal of
maximizing the expectation value of a Hermitian quantum
observable θ at time T :

J = 〈θ (T )〉 = Tr(UT ρ0U
†
T θ ). (6)

In order to fully describe the landscape topology of this objec-
tive from the kinematic perspective J (UT ), the multiplicities
of the eigenvalues of ρ0 and θ must also be specified. Consider
that ρ0 has r distinct eigenvalues p1 > p2 > . . . > pr with
corresponding multiplicities a1,a2, . . . ,ar and that θ has q

distinct eigenvalues o1 > o2 > . . . > oq with corresponding
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TABLE I. The contingency table Ci , which describes an align-
ment between the distinct eigenvalues of ρ0 and θ corresponding to
the critical submanifold Mi . The column and row sums of Ci are
a1, . . . ,ar and b1, . . . ,bq , respectively.

a1 · · · ar

b1 ci
11 · · · ci

1r

...
...

. . .
...

bq ci
q1 · · · ci

qr

multiplicities b1,b2, . . . ,bq , where q,r � N . It has been
demonstrated that ρ0 and θ can always be treated as diagonal
in the eigenbasis of H0 and with their eigenvalues sorted in
descending order, i.e.,

ρ0 = diag{p1, . . . ,p1; . . . ; pr, . . . pr},
θ = diag{o1, . . . ,o1; . . . ; oq, . . . oq}, (7)

with no loss of generality in the landscape analysis [105]. In
the kinematic formulation, it has also been shown that the
sufficient and necessary condition for UT to be a critical point
of the landscape is that the final-time density matrix ρ(T ) =
UT ρ0U

†
T commutes with the target observable θ [98,105,106],

i.e.,

[ρ(T ),θ ] = 0. (8)

With ρ0 and θ in the form of Eq. (7), the condition in Eq. (8) is
satisfied if and only if the unitary matrix UT lies in the double
coset

UT = P�Q†, P ∈ U(b), Q ∈ U(a) (9)

of some N-dimensional permutation matrix �, where U(a) =
U(a1) × . . . × U(ar ) is the product of unitary groups of
dimension a1, . . . ,ar and U(b) = U(b1) × . . . × U(bq) is the
product of unitary groups of dimension b1, . . . ,bq [105]. In
general, however, � is not unique and the evolution operators
UT that satisfy Eq. (9) are not permutation matrices.

By substituting Eq. (9) into Eq. (6), the objective functional
J at a critical point can be rewritten as

Jcrit = Tr(P�Q†ρ0Q�†P †θ ) = Tr(�ρ0�
†θ ). (10)

Thus, critical points on the observable objective landscape
only exist at a finite number of discrete values of J ; these
values only depend on the eigenvalues of ρ0 and θ , not on the
control field or Hamiltonian [98,105]. More specifically, each
critical J value corresponds to the sum of the product of the
permuted eigenvalues of ρ0 with the eigenvalues of θ . Further
characterization of the critical points of J was accomplished
via the contingency table method described in Ref. [105].
The contingency table C is a q × r matrix whose nonnegative
integer-valued elements {cjk}, the so-called overlap numbers,
are the number of positions on the diagonals of θ and �ρ0�

†

where the distinct eigenvalues oj and pk , respectively, both
appear. The column and row sums of C are a1, . . . ,ar and
b1, . . . ,bq , respectively.

A specific contingency table Ci is shown in Table I. The
critical points of the landscape J (UT ) that correspond to Ci

collectively comprise a critical submanifold of the control

landscape, which we denote as Mi . All critical points in Mi

share the same objective value,

Ji =
q,r∑

j,k=1

ci
jkojpk, (11)

although two critical submanifolds may have identical objec-
tive values. We will denote the objective values corresponding
to the global maximum and minimum of the landscape as Jmax

and Jmin, respectively. If both ρ and θ are full rank, then each
permutation � generates a distinct contingency table and thus
there are N ! critical submanifolds on the landscape. In this
case, the critical submanifolds are disjoint N-tori, and analysis
of the Hessian spectrum shows that two of them are the global
maximum and global minimum of J while the remainder are
saddles [98,105]. Graphically, we can visualize the ith critical
submanifold as an infinitely thin “pancake” of some shape in
the function space of controls at its corresponding saddle value
Ji[ε(t)], where the gradient δJi/δε(t) = 0 and the Hessian
H(t,t ′) has an indefinite nonzero spectrum and an infinite
null space. If any eigenvalues of ρ or θ are degenerate, then
the same contingency table can be produced from multiple
permutations �, and the critical submanifold corresponding
to that contingency table results from the merging of several
N-tori. In this degenerate case, the landscape has fewer than
N ! − 2 saddles. The fewest landscape critical submanifolds
arise when ρ0 = |i〉〈i| and θ = |f 〉〈f |, i.e., when ρ0 and θ

are projectors onto the pure states |i〉 and |f 〉, respectively.
This special case of the observable objective is called the
state-transition objective and corresponds to maximizing the
probability of a transition from |i〉 to |f 〉. The landscape for
the state-transition control contains no saddles, so such
problems are not considered in this paper; see Ref. [117] for a
numerical study of state-transition landscapes.

For a particular ρ0 and θ , each permutation � leads to
the construction of a (not necessarily unique) contingency
table C, as described above. By repeating this process, all
of the contingency tables for the landscape J (UT ) can be
determined, and the corresponding objective values indicate
whether each table corresponds to the global maximum, the
global minimum, or a saddle. As an example, consider a
4-level control problem with θ = diag{0.5,0.2,0.2,0.1} and
ρ = diag{0,0,0,1}. θ has three distinct eigenvalues, o1 = 0.5,
o2 = 0.2, and o3 = 0.1, with multiplicities b1 = 1, b2 = 2,
and b3 = 1, respectively. ρ0 has two distinct eigenvalues,
p1 = 1 and p2 = 0, with multiplicities a1 = 1 and a2 = 3,
respectively. Therefore, the contingency table corresponding
to each critical submanifold is a 3 × 2 matrix with row sums
{1,2,1} and column sums {1,3}. Under the permutation

� =

⎛
⎜⎝

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎞
⎟⎠,

�ρ0�
† = diag{1,0,0,0}. The overlap numbers for the contin-

gency table corresponding to this permutation are determined
by comparing the diagonal of the permuted density matrix with
the diagonal of the observable θ . c11 = 1 because the distinct
eigenvalues o1 = 1 and p1 = 0.5 simultaneously appear at
the first position (and no other positions) on the diagonals of
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θ and �ρ0�
†, respectively. Similarly, the remaining overlap

numbers are determined to be c21 = c31 = c12 = 0, c22 = 2,
and c32 = 1. If this process is repeated for all four-dimensional
permutation matrices, then three distinct contingency tables
are identified:

C1 =
⎛
⎝1 0

0 2
0 1

⎞
⎠, C2 =

⎛
⎝0 1

1 1
0 1

⎞
⎠, C3 =

⎛
⎝0 1

0 2
1 0

⎞
⎠.

Using Eq. (11), the objective values for each critical subman-
ifold are calculated to be J1 = 0.5, J2 = 0.2, and J3 = 0.1.
Therefore, the contingency tables C1 and C3 correspond
to the global maximum and minimum of the landscape,
respectively, while C2 corresponds to a saddle submanifold.
The enumeration of these critical submanifolds fully describes
the landscape topology for the observable control problem.

III. METHODOLOGY

A. Optimal control procedure

In this work, a gradient-based method will be employed
to investigate local landscape saddle features because this
procedure is “myopic”; i.e., each step taken during the search
is dictated by the local geometry of the control landscape
at the current control field and thus is particularly sensitive
to the presence of saddles. Each search is parametrized by the
dimensionless index s � 0, which denotes the changes made to
the field in the course of the optimization through the notation
ε(s,t). The search trajectory is generated by solving the initial
value problem

∂ε(s,t)

∂s
= γ

δJ [ε(s,t)]

δε(s,t)
, ε(0,t) ≡ ε0(t), (12)

where the initial field is ε0(t), and the step size γ is a positive
constant. The functional derivative δJ/δε(s,t) that appears in
Eq. (12) is calculated using the chain rule [as in Eq. (4)] along
with the previously derived [98] relation

δUT

δε(t)
= i

h̄
UT U †(t)μU (t).

The result is [98,102,107,115]

δJ

δε(t)
= 2

h̄
ImTr[U †

T θUT ρ0U
†(t)μU (t)]. (13)

We solve Eq. (12) numerically using the MATLAB routine
ODE45, a fourth-order Runge-Kutta integrator with a variable
step size (i.e., it determines γ at each iteration) [118]. ODE45

requires that an absolute error tolerance τ be specified, and we
use the conservative value τ = 10−8 unless otherwise stated.
The search effort, defined as the number of iterations required
for convergence, is an important measure of algorithmic effi-
ciency. For the goal of maximizing the objective functional, the
simulation is considered to have successfully converged when
the search arrives at a control field ε(sf ,t) that corresponds to
an objective value J � [Jmax − 0.001 × (Jmax − Jmin)].

In this paper, ε(t) was discretized over L evenly spaced
intervals,

ε(t) = {εl|t ∈ (tl−1,tl]}Ll=1, (14)

where tl = l
t and 
t = T/L. The overall evolution operator
U (tl) ≡ U (tl,0) is a product of incremental evolution opera-
tors,

U (tl,tl−1) = exp

[
− i

h̄
(H0 − μεl)
t

]
,

U (tl) = U (tl,tl−1) · · · U (t2,t1)U (t1,0), (15)

where the final-time evolution UT = U (tL). The control
variables are the L real, independently addressable field values
{εl}, which can generate arbitrary pulse shapes as long as L

is sufficiently large. The lth value of the initial field has the
parametrized form

εl(0) ≡ ε0(tl) = A(tl)
M∑

m=1

am cos(ωmtl), (16)

where A(tl) = A0exp[−(tl − T/2)2/(2η2)] is the Gaussian
envelope function. The width of the envelope is specified by
η = T/10, and ensures that ε0(t) ≈ 0 at t = 0 and t = T .
The M = 20 frequencies {ωm} are randomly selected from
a uniform distribution on [ωmin,ωmax], where ωmin and ωmax

are the smallest and largest transition frequencies in H0,
respectively. The amplitudes {am} are randomly selected from
a uniform distribution on [0,1]. The normalization constant
A0 is chosen so that the fluence, F = ∫ T

0 ε2(t)dt , of the initial
field ε0(t) has the value F0.

After the field values εl(s) are set in Eq. (16) (i.e., for s > 0),
they are allowed to change according to the discrete version of
Eq. (12):

∂εl(s)

∂s
= γ

δJ

δεl(s)
	 γ
t

∂J

∂ε(tl)
. (17)

B. Critical distance metric

The effect of saddles on a gradient search depends in part
on how closely the search trajectory approaches the saddle
submanifold. We quantify this distance using the unitless
critical distance metric Di(UT ), which is a measure of
the distance between a control UT and a particular critical
submanifold Mi on the kinematic observable landscape [114].
Suppose that ρ0 and θ are represented as diagonal matrices as
in Eq. (7), with their eigenvalues sorted in descending order.
UT can be divided into q × r rectangular blocks Ujk , each of
dimension bj × ak:

UT =

⎛
⎜⎝

U11 · · · U1r

...
. . .

...
Uq1 · · · Uqr

⎞
⎟⎠. (18)

Ujk , which is generally not unitary, contains the elements of
UT that correspond to the alignment of oj and pk . Let the
singular value decomposition of Ujk be

Ujk = XjkSjkY
†
jk, (19)

where the columns of the unitary matrices Xjk and Yjk are the
left and right singular vectors of Ujk , respectively, and Sjk is
a diagonal matrix containing the singular values σjkl of Ujk
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sorted in descending order. According to Theorem 1 of [114],
UT belongs to the critical submanifold Mi of the observable
landscape in Eq. (6) if and only if the first ci

jk singular values
σjkl of each block Ujk are equal to 1 and the remaining singular
values of each block are equal to 0. Thus, the critical distance
metric is defined by comparing each singular value of Ujk to
either 1 or 0, as appropriate [114]:

Di(UT ) =
q,r∑

j,k=1

⎡
⎣∑

l�ci
jk

(1 − σjkl)
2 +

∑
l>ci

jk

σ 2
jkl

⎤
⎦

= 2
q,r∑

j,k=1

∑
l�ci

jk

(1 − σjkl). (20)

Di(UT ) = 0 if and only if UT belongs to the critical subman-
ifold Mi corresponding to the contingency table Ci . For a
particular control problem, the range of Di depends on the
specific degeneracies of ρ0 and θ , and the maximum possible
distance from each critical submanifold is not necessarily the
same. For all control problems, however, the distance between
any two critical submanifolds labeled i and i ′, defined as

Di→i ′ =
q,r∑

j,k=1

∣∣ci
jk − ci ′

jk

∣∣, (21)

cannot exceed 2N .

IV. EFFECT OF SADDLES ON GRADIENT
OPTIMIZATIONS

Previous simulations of observable control problems with
gradient-based algorithms have regularly reached the land-
scape maximum value [110,119]. However, searches may
converge more slowly while coming close to saddles, in-
creasing the search effort. In this section, we investigate the
practical effects of saddles on OCT simulations in a variety
of control problems. Many optimization parameters, details
of the landscape topology, and features of the Hamiltonian
affect whether searches approach saddles closely, so this paper
cannot comprehensively address all the relevant aspects of any
particular control problem. However, we discuss several key
parameters that significantly influence saddle attraction. Each
parameter is studied, as independently of the others as possible,
in order to evaluate its individual role.

All simulations in this section are performed on one of two
quantum systems, either rigid-rotor-like,

H0 =
N−1∑
j=0

j (j + 1)|j 〉〈j |, (22)

or an anharmonic oscillator,

H0 =
N−1∑
j=0

[
κ

(
j + 1

2

)
− κ2

λ

(
j + 1

2

)2
]
|j 〉, (23)

where κ = 2 and λ = 320. In both cases, the dipole matrix is

μ =
N−1∑
j �=k

d |j−k|

d
|j 〉〈k|, (24)

where the parameter d � 0. For the purposes of this paper, the
field-free Hamiltonians H0 in Eqs. (22) and (23) were chosen
to illustrate two extreme cases of increasing and decreasing
energy level spacing, respectively. Correspondingly, the free-
dom in choosing d in the dipole allows for sampling different
degrees of coupling structure in μ.

A. Degeneracy of the initial state and the target observable

When the three assumptions described in Sec. I are satisfied,
the topology of the observable landscape is fully determined
by the number and multiplicities of the distinct eigenvalues of
the initial density matrix ρ0 and the target observable θ . Each
permutation � of the eigenvalues of ρ0 with respect to those of
θ corresponds to a particular critical submanifold, as shown in
Eq. (10). The multiplicities of the two sets of eigenvalues deter-
mine how many distinct permutations coincide with the global
maximum, the global minimum, and each saddle [105]. If more
than one permutation corresponds to a critical submanifold Mi ,
then evolution operators UT that coincide with Mi can take a
wider range of forms. Here, we perform optimizations on five
related control problems in order to determine whether this
additional freedom in the form of the critical UT influences
the proximity of gradient searches to the saddles. Each search
is performed on the rigid-rotor-like system from Eqs. (22)
and (24), with N = 8 and d = 0.2. The final time is T = 20
and the control period [0,20] is divided into L = 512 intervals.
The initial state is ρ0 = |0〉〈0|; ρ0 has two distinct eigenvalues
p1 = 1 and p0 = 0, of multiplicities a1 = 1 and a2 = 7,
respectively. Five target observables {θm} are considered:

θ1 = 4

9
|6〉〈6| + 5

9
|7〉〈7|,

θ2 =
6∑

j=5

4

13
|j 〉〈j | + 5

13
|7〉〈7|,

θ3 =
6∑

j=4

4

17
|j 〉〈j | + 5

17
|7〉〈7|, (25)

θ4 =
6∑

j=3

4

21
|j 〉〈j | + 5

21
|7〉〈7|,

θ5 =
6∑

j=2

4

25
|j 〉〈j | + 5

25
|7〉〈7|.

Each of the target observables θm have three distinct eigenval-
ues om

1 , om
2 , and om

3 , with om
3 = 0 in each case. The eigenvalues

om
1 and om

2 are different for each control problem but chosen
to ensure that every observable has unit trace: for example,
o2

2 = 4/13 and o2
1 = 5/13. In general, the multiplicities of

the eigenvalues of θm are bm
1 = 1, bm

2 = m, and bm
3 = 7 − m,

respectively. The latter case of bm
3 implies that the observable

θm has 7 − m zero eigenvalues, which are associated with the
system states not explicitly shown in Eq. (25).

As an example of using the method described in Sec. II B,
the contingency tables for the control problem corresponding
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TABLE II. Optimization results for several target observables
θm. The multiplicity of the second-largest eigenvalue om

2 of each
observable is m. One hundred runs were performed for each
observable.

Observable Multiplicity of om
2 Dsadd

min MSE

θ 1 1 3.35 × 10−1 141
θ 2 2 2.34 × 10−2 289
θ 3 3 8.12 × 10−3 477
θ 4 4 7.36 × 10−4 2745
θ 5 5 1.92 × 10−4 9562

to the observable θ5 were determined to be

Cmax =
⎛
⎝1 0

0 5
0 2

⎞
⎠,

Csadd =
⎛
⎝0 1

1 4
0 2

⎞
⎠, (26)

Cmin =
⎛
⎝0 1

0 5
1 1

⎞
⎠,

with objective values Jmax = 0.2, Jsadd = 0.16, and Jmin = 0.
Permutations that align the eigenvalue p1 = 1 of ρ0 with the
eigenvalues o5

1 = 0.2, o5
2 = 0.16, and o5

3 = 0 of θ5 correspond
to the global maximum, saddle, and global minimum of the
landscape, respectively. The contingency tables for the other
four problems were constructed in the same way. Each control
landscape contains one saddle, since every target observable
has the same number of distinct nonzero eigenvalues and each
control problem has the same initial state. In general, for each
problem, permutations that align the eigenvalue p1 with the
eigenvalues om

1 , om
2 , and om

3 of θm correspond to the global
maximum, saddle, and global minimum critical submanifolds,
respectively.

For each of the five control problems, we performed
one hundred optimization runs using the control procedure
described in Sec. III A. Each run began at a different initial
field ε0(t) as defined in Eq. (16), with fluence F0 = 10.
Every search converged successfully, and the results of these
optimizations are reported in Table II. In addition, the distance
to each of the critical submanifolds was calculated at every
step of each optimization, using the distance metric described
in Sec. III B. At an iteration of the gradient search denoted by
the index s, the control field ε(s,t) corresponds to an evolution
operator UT (s) and in turn to a particular value Di[UT (s)]
of the critical distance metric for each critical submanifold
Mi . The smallest value of Di over the interval 0 � s � sf

(i.e., the shortest distance to the saddle manifold Mi at any
point during a given search) was denoted as Di

min. We use the
mean value of Dsadd

min for a set of one hundred optimizations
to measure how closely gradient-based searches approach a
saddle, on average, for a given control problem. For each set
of optimizations, the mean search effort (MSE), i.e., the mean
number of iterations, is also reported.
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FIG. 1. (a) The objective value at each iteration for a particular
optimization run involving the target observable θ3 (black line) and
the objective value of the saddle submanifold, Jsadd (red line), for this
control problem. (b) The value of the critical distance metric at each
iteration of the same search, for Dmax (dotted black line), Dsadd (solid
red line), and Dmin (dashed blue line).

These simulations indicate that gradient-based optimiza-
tions for which the multiplicity of the observable eigenvalue
om

2 is larger involve a greater mean search effort and approach
the saddle more closely. This trend is consistent with an
expression for the dimension of critical submanifolds on the
observable landscape obtained in Ref. [105]. Since the critical
submanifold dimension does not take the system dynamics into
account, its value is not predictive of the attractiveness of the
saddle as measured in this paper. However, the submanifold
dimension qualitatively matches the trend in Table II; the
dimension of the saddle increases with the multiplicity of om

2 .
Figure 1, which illustrates the value of the objective J and
the distance to each critical submanifold at each iteration of
a particular optimization run corresponding to θ3, shows that
this increase in search effort results from a large number of
iterations spent near the saddle submanifold.

Each of the control problems included in Table II has a
control landscape with one saddle. The saddle corresponds to
permutations � that align the eigenvalues p1 (of ρ0) and om

2
(of θm). The correlation between the multiplicity of om

2 and
the observed proximity to the saddle suggests that a broader
range of critical unitary transformations UT , made possible by
this greater multiplicity, makes the saddle more attractive to a
gradient search for these problems. In general, the simulations
performed in this paper only encounter attractive saddles
when ρ0 and θ have respective eigenvalues that are highly
degenerate and thereby have a strong influence on the nature
of the saddle permutations �. Importantly, we show later in
Sec. IV C that optimizations of several control problem cases
with a large number of saddles have a significantly greater
mean distance of approach to any saddle than for the case
with one saddle here. Thus, attractive saddles are expected to
be rare in realistic control problems.
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Other searches approached the saddle more closely than
the example in Fig. 1; one optimization corresponding to the
observable θ5 required over 7 × 104 iterations to converge and
reached a minimum distance of Dsadd

min = 8.95 × 10−7 from the
saddle. Despite the numerical challenges presented by such
runs (for which the magnitude of the gradient becomes very
small) none of the searches failed. These results corroborate
prior numerical studies, which concluded that the observable
objective is amenable to gradient-based optimization when
the landscape lacks local extrema. Figure 1(b) exhibits a
notable feature of this optimization; after the search has
passed its point of closest approach to the saddle submanifold
and the objective value J has passed Jsadd, the distance to
the global minimum briefly decreases just as the gradient
ascent resumes. In general, the nonmonotonic behavior of the
metric values Dmax, Dsadd, and Dmin may reflect the varied
and possibly complex shape of the critical submanifolds
themselves over the space of controls. The phenomenon in
Fig. 1(b), however, was observed in each of the optimizations
summarized in Table II and is therefore unlikely to depend on
the particular gradient path taken to the top of the landscape.
Instead, this behavior may be interpreted as a reflection of
the relationship between the critical submanifolds for this set
of control problems. Using Eq. (21), the distance between
any two of the three critical submanifolds is calculated to
be 4. As a result of this symmetric relationship, each critical
submanifold is at the maximum distance from the other two
critical submanifolds, and thus any ascent or descent from
one of them will be accompanied by an immediate decrease
in the distance to all other critical submanifolds.

B. Influence of Hamiltonian parameters

The landscape topology, i.e., the characterization of the
critical points of J , depends only on ρ0 and θ . Section IV A
shows that the nature of the topology has a significant
effect on whether a gradient-based search is attracted to
a saddle submanifold. However, the local geometry (i.e.,
the nontopological features) of the control landscape is
also important and depends on the Hamiltonian. For the
Hamiltonian defined in Eq. (1), the dipole matrix μ, the
field-free Hamiltonian H0, and the particular initial field
ε0(t) each may influence whether an ascent of the landscape
closely approaches saddles. In this section, we independently
consider the effect of each of these factors.

The parametrization of the dipole matrix elements in
Eq. (24) allows μ to take a variety of forms. For d =
1, all transitions |j 〉 → |k〉,j �= k are equally allowed. For
0 � d � 1, all system transitions |j 〉 → |k〉,j �= k are still
allowed, but the value of the dipole moment coupling 〈j |μ|k〉
decreases exponentially with the difference |j − k|. In the limit
d → 0+, only transitions |j 〉 → |j ± 1〉 between adjacent
system states are allowed. To determine the effect of the
dipole coupling parameter d on the attraction of a gradient
search to the saddle, we performed a set of optimizations
utilizing the same ρ0 = |0〉〈0| and θm that were used in
Sec. IV A. In particular, consider the target observable θ5 =∑6

j=2 0.16|j 〉〈j | + 0.2|7〉〈7|, which we will denote as case (I)
in the remainder of this work. The dipole matrix is given in
Eq. (24), and simulations were performed using both the rigid-
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FIG. 2. The mean search effort (solid black lines) and the mean
shortest distance to the saddle submanifold Dsadd

min (dotted red lines),
as a function of the dipole parameter d , for optimizations of case
(I) that use the rigid-rotor-like (circles) and anharmonic oscillator
(triangles) systems. Both systems have N = 8 levels, and one hundred
optimization runs were performed for each value of d .

rotor-like and anharmonic oscillator field-free Hamiltonians
[Eqs. (22) and (23), respectively]. In all simulations, the
system had N = 8 levels, the control interval of T = 20 was
divided into L = 512 steps, and the initial field fluence was
F0 = 10. The contingency tables corresponding to case (I)
are given in Eq. (26). Accordingly, the landscape contains
three critical submanifolds: the global maximum, the global
minimum, and a saddle. The high search effort associated with
case (I) (i.e., the observable θ5) for the rotor-like Hamiltonian
in Table II indicates that the saddle is very attractive to
gradient-based searches when the dipole parameter d = 0.2 is
used. In this section, we selected values of the dipole parameter
over the range 0.2 � d � 1 and we performed one hundred
optimizations for each value of d using both forms of H0. The
distance to each critical submanifold was measured using the
metric Di , and the mean of the smallest distance to the saddle,
Dsadd

min , was determined for each set of one hundred runs.
Figure 2 shows that for both choices of H0, larger values

of d correspond to smaller search effort and to searches
that are less attracted to the saddle. The dipole moment for
transitions between adjacent states is the same for any value
of d, i.e, 〈j ± 1|μ|j 〉 = 1 ∀d. However, the dipole moment
for a transition between nonadjacent states decreases as d

decreases. Therefore, these results indicate that the landscape
saddle for this control problem is more attractive to gradient
searches when nonadjacent states are coupled less strongly to
one another. While the control problem corresponding to the
observable θ5 contains a very attractive saddle for d = 0.2, as
observed in Sec. IV A, searches performed for larger values of
d do not approach the saddle closely. This result demonstrates
that the values of the dipole elements play a significant role in
determining the effect of saddles on gradient optimizations of
case (I).

The expression for the objective J at critical points in
Eq. (10) helps to clarify the role of the dipole matrix elements
in this control problem. For the simulations in this section, the
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global maximum of the landscape corresponds to evolution
operators UT that align p1 = 1 and o5

1 = 0.2, which are the
largest eigenvalues of ρ0 and θ5, respectively. For case (I), the
density matrix eigenvalues satisfy ρj = 0∀j � 2, so aligning
p1 and o5

1 strictly assures an optimal solution at the top of
the landscape that lies on the global maximum submanifold
of optimal solutions. As Eq. (18) shows, the alignment of
any pair of eigenvalues from the initial state and the target
observable, respectively, corresponds to one of the blocks Ujk

into which we divide UT . Since both p1 and o5
1 are of unit

multiplicity, the block U11 is a single element of UT . The
relevant element is 〈7|UT |0〉, since p1 is associated with the
ground state |0〉 of the system and o5

1 is associated with the state
|7〉. Therefore, the optimal objective value is achieved via an
alignment of ρ0 and θ that corresponds to the system transition
|0〉 → |7〉.

For d ≈ 1, the dipole moment 〈7|μ|0〉 = d6 for this
transition may be large enough to achieve the alignment of
ρ0 and θ required for a globally optimal control directly, via
a |0〉 → |7〉 transition. In contrast, for small values of d, the
dipole moment for the |0〉 → |7〉 transition is much smaller
than the dipole moment for transitions between adjacent states.
As a result, the optimal evolution operator UT is more likely
to correspond to a series of adjacent-state transitions (e.g.,
|0〉 → |1〉 → . . . → |7〉) constructively interfering along with
additional companion pathways in order to reach the top of the
landscape. Analogously, the saddle submanifold corresponds
to unitary transformations that align the eigenvalue p1 = 1
with the eigenvalue o5

2 = 0.16. The expression for θ5 in
Eq. (25) shows that o5

2 encompasses the states |2〉,|3〉, . . . ,|6〉,
so the transitions |0〉 → |j 〉,2 � j � 6 are associated with
the saddle. The dipole moment for each of these transitions
is larger than the dipole moment for the transition |0〉 → |7〉
associated with the global maximum. For case (I), this disparity
grows as d decreases, making it more likely that the gradient
search will come even closer to the saddle.

Figure 2 also indicates that the relationship between the
dipole parameter d and the attractiveness of the saddle is
much more dramatic for the rigid-rotor-like system than for the
anharmonic oscillator system. While the two field-free Hamil-
tonians lead to similar values of the mean search effort and of
Dsadd

min when d = 1, smaller values of the dipole parameter lead
to a disparity between the rotor-like and oscillator optimiza-
tions. When d = 0.2, the rigid-rotor-like simulations required
a mean search effort of 9562 iterations and led to a mean short-
est saddle distance of Dsadd

min = 1.92 × 10−4. On the other hand,
the anharmonic oscillator simulations required a mean search
effort of 318 iterations and a mean shortest saddle distance
of Dsadd

min = 8.66 × 10−2. Therefore, the form of the field-free
Hamiltonian also influences the attractiveness of the saddle in
case (I). However, the correlation between the dipole parameter
d and the attractiveness of the saddle is qualitatively similar
for both the rotor-like and oscillator systems. The same trends
were observed with optimizations using other observables θm

(not shown here) for the anharmonic oscillator system; as in
the rigid-rotor simulations summarized in Table II, a greater
multiplicity of the second-largest observable eigenvalue cor-
responded to searches that approached the saddle more
closely.

TABLE III. Optimization results for case (I), for various values
of the initial field fluence F0. The rigid-rotor-like system with N = 8
states was used, and the dipole parameter d = 0.2. One hundred
optimization runs were performed for each F0 value.

F0 Dsadd
min MSE

101 1.92 × 10−4 9562
5 × 101 2.66 × 10−2 572
102 1.13 × 10−1 372
5 × 102 4.57 × 10−1 179
103 4.89 × 10−1 150

Additionally, the strength of the field-system interaction
is proportional to both the transition dipole moment and the
amplitude of the control field. Therefore, a transition for which
the dipole moment is very small can still occur with significant
probability if the amplitude of the field is sufficiently large.
To determine whether the amplitude of the control field ε(t)
influences the form taken by UT during the course of an
optimization and thus affects whether gradient optimizations
are attracted to the saddle, we performed additional sets of
simulations with larger values of the initial field fluence F0

over the range 50 � F0 � 1000. These optimizations used the
rigid-rotor-like system in Eqs. (22) and (24), with d = 0.2. All
other parameters were the same as for the prior simulations in
this section. One hundred optimizations were performed for
each value of F0.

As reported in Table III, the use of a larger initial field
fluence significantly reduced both the search effort and the
mean proximity to the saddle during a search. Comparing this
result to Fig. 2, we find that gradient optimizations of case (I)
are significantly attracted to the saddle submanifold only when
both the dipole parameter d and the initial field fluence F0 are
sufficiently small. These results emphasize the importance of
carefully choosing optimization parameters, such as the initial
fluence, in order for an OCT search of this problem to be
as efficient as possible. Even if the critical topology of the
landscape and the form of the dipole matrix yield saddles that
are likely to attract a gradient search, an optimization of case
(I) is unlikely to approach these saddles if the amplitude of the
field is sufficiently large. The collective results from Table III
reflect that the rapidly evolving search at high initial fluence
quickly passes the saddle, in contrast to the behavior in Fig. 1.

C. The number of saddles

The optimizations in Secs. IV A and IV B were performed
on 8-level control problems for which the landscape has only
one saddle submanifold, due to the degeneracy of the initial
state ρ0 (i.e., all but one of the eigenvalues were equal to zero)
and the nature of the target observable. Thus, we showed that
saddles may attract gradient searches when ρ0 is a projector
onto a pure state and θ has the particular structure described
in Eq. (25). In contrast, the landscape can contain a greater
number of saddles when ρ0 and θ have different structures,
reaching the extreme when both operators are full rank and
nondegenerate. In this section, we investigate the effect of a
large number of saddles by performing optimizations of J on
two additional control problem cases:
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(II) The initial density matrix is ρ0 = |0〉〈0|, as in case (I),
but a different full rank target observable θ is used for each
simulation. Each observable is defined as

θ = No

N∑
j=1

õj |j 〉〈j |, (27)

where the normalization No = 1/
∑

j õj , and each of the
values õj are randomly selected from a uniform distribution
on the interval [0,1]. The critical topology for this problem
was determined using the methods in Sec. II B. There are eight
contingency tables, each of which is an 8 × 2 matrix with
column sums a1 = 1,a2 = 7 and row sums bk = 1 ∀k:

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 1
0 1
0 1
0 1
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , C8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1
0 1
0 1
0 1
0 1
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

C1 corresponds to the global maximum, C8 corresponds to
the global minimum, and the remaining contingency tables
correspond to the six saddle submanifolds of the landscape.
For this case (II), the expression in Eq. (11) for the critical
objective values simplifies to Ji = oi .

(III) The initial density matrix and the target observable
are both full rank and lack degeneracy, and each optimization
uses a different choice of both ρ0 and θ . The observable is
defined as in Eq. (27), and ρ0 is analogously defined as

ρ0 = Np

N∑
k=1

p̃k|k〉〈k|, (29)

where the normalization Np = 1/
∑

k p̃k and each value p̃k

is selected randomly from the interval [0,1]. Each of the
8! = 40 320 contingency tables is one of the N-dimensional
permutation matrices � and its associated critical objective
value is determined using Eq. (10). Two of the critical sub-
manifolds correspond to the global maximum and minimum,
and the remainder are saddles.

Cases (II) and (III) differ from each other only in the form
of ρ0. For both cases, the rigid-rotor-like system from Eqs. (22)
and (24) is used, with N = 8 levels and the dipole parameter
is d = 0.2. The final time is T = 20 and the control period is
divided into L = 512 intervals. A random initial control field
ε0(t) with a fluence F0 = 10 was used for each search, and
one hundred runs were performed for cases (II) and (III). The
distance Di(UT ) to each critical submanifold was measured
during every run. The control landscape for cases (II) and
(III) have many saddles, and Dsadd

min is defined as the shortest
distance to any saddle during an optimization. The results of
these optimizations are reported in Table IV, with the results
for case (I) (from Sec. IV A) included for comparison.

For case (I), the single saddle on the control landscape
was extremely attractive to a gradient search. However, when
the same parameters were used for cases (II) and (III),
the optimizations did not approach any saddle very closely,
especially for case (III). For case (II), the mean shortest

TABLE IV. Optimization results for cases (I) through (III). For
each case, the rigid-rotor-like system with N = 8 levels and dipole
parameter d = 0.2 was used. One hundred optimization runs were
performed for each control case.

Case ρ0 θ No. of saddles Dsadd
min MSE

(I) Pure state θ5 1 1.92 × 10−4 9562
(II) Pure state Full rank 6 9.93 × 10−2 302
(III) Full rank Full rank 40318 5.56 × 10−1 332

distance to any saddle was Dsadd
min = 9.93 × 10−2, and no search

passed closer than Dsadd
min = 4.45 × 10−3 to any saddle. For case

(III), the mean shortest distance to any saddle was Dsadd
min =

0.556, and no search passed closer than Dsadd
min = 0.194 to any

saddle. Thus, the landscape saddles for cases (II) and (III) are
much less likely to attract gradient searches than the saddle
in case (I). Figure 3 demonstrates this point by illustrating
the value of the objective J and the distance to twenty
randomly selected critical submanifolds at each iteration of
one optimization of case (III). The large number of saddles
on the corresponding control landscape made it necessary to
use a random sample for graphical purposes, but this sample is
qualitatively representative of the entire set of 40 320 critical
submanifolds. The single saddle for the optimization in Fig. 1
is far more attractive than any of the saddles represented in
Fig. 3. While the small “kinks” in Fig. 3(a) indicate points at
which the optimization was attracted to a saddle, the distance
to each of the 8! − 2 = 40 318 saddles was monitored for each
optimization and none of them exhibit more than these minor
effects.
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FIG. 3. (a) The objective value at each iteration for an optimiza-
tion of case (III). (b) The value of the critical distance metric at
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For cases (II) and (III), the eigenvalues of ρ0 and θ that must
be aligned in order for a control to lie on the saddle all have unit
multiplicity. Therefore, the simulations in this section support
our previous conclusion that the multiplicity of the eigenvalues
is correlated with attractive landscape saddles for these cases.
Furthermore, this result suggests that when the landscape has a
large number of saddle submanifolds, a gradient search is less
likely to to be significantly attracted to any one of them. This
conclusion is significant for the control of nominally complex
systems where ρ0 and θ may have high rank.

D. The number of system states

For the optimizations in Secs. IV A and IV B, the control
landscape has only one saddle submanifold due to the
degeneracy in the initial state and the observable. For the
optimizations in Sec. IV C, one or both of θ and ρ0 are full
rank and the resulting control landscape has many saddles.
In addition, all of the previous simulations in this paper were
performed on eight-level systems. Since problems of physical
interest often involve systems with many states, in this section
we investigate whether the effect of saddles on a gradient
search depends on the number of levels N .

All simulations in this section were performed on the rigid-
rotor-like system from Eqs. (22) and (24). Gradient searches
were performed for control cases (I) through (III), and each
case was generalized to N-level systems. For case (I), the initial
state and observable are still defined as in Sec. IV B, with ρ0 =
|0〉〈0| and θ5 = ∑6

j=2 0.16|j 〉〈j | + 0.2|7〉〈7|. Therefore, the
only change to the eigenvalue spectra of ρ0 and θ for different
values of N is the multiplicity of the smallest (zero) eigenvalue
of each operator. For all values of N , the landscape contains
three critical submanifolds, which again correspond to the
global maximum, the global minimum, and a single saddle.
For case (II), there are N critical submanifolds, of which
N − 2 are saddles. The contingency tables are the set of N × 2
matrices with column sums a1 = 1,a2 = N − 1 and row
sums bk = 1,1 � k � N . For case (III), there are N ! critical
submanifolds, of which N ! − 2 are saddles. Each contingency
table is one of the N-dimensional permutation matrices �.

First, we performed optimizations of case (I) for a number
of states ranging over 12 � N � 40. The dipole parameter was
d = 0.5, the final time was T = 20, and L = 512 time intervals
were used. One hundred optimizations using initial fields with
fluence F0 = 10 were performed for each value of N , and the
distance Di to the saddle submanifold was monitored during
each optimization. The results are illustrated in Fig. 4, with the
prior results for N = 8 and d = 0.5 from Sec. IV B included
as well. They indicate that both the mean search effort and
the mean value of Dsadd

min for case (I) remain relatively constant
regardless of the number of states. As discussed in Sec. IV A,
the saddle submanifold for this case corresponds to controls
that align the eigenvalues p1 and o2 of ρ0 and θ , respectively.
Since the multiplicity of neither of these eigenvalues increases
with N , it is intuitive that the attractiveness of the saddle is
relatively invariant to the number of system states. In addition,
all system states |j 〉,j > 7 are associated with the smallest
(i.e., zero) eigenvalue of both the initial state and the target
observable. Evidently, the higher-lying states play a very
limited role in the optimal search.
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FIG. 4. The mean search effort (solid black line) and the mean
shortest distance to the saddle submanifold, Dsadd

min (dashed red line),
as a function of the number of states N , for gradient optimizations of
case (I). The dipole parameter d = 0.5, and one hundred optimization
runs were performed for each value of N .

Optimizations were also performed for cases (II) and (III),
for 3 � N � 16 (the simulations in Sec. IV C used N = 8).
In these simulations, the dipole parameter d = 0.2 and the
control time T = 20 was divided into L = 512 intervals for
N < 10 and into L = 2048 intervals for N � 10. The initial
field fluence was F0 = 10, and one hundred optimizations were
performed for each value of N . The distance Di to the saddle
submanifold was measured at each step of the search for every
value of N for case (II) and for 3 � N � 10 for case (III).
These values were used to determine Dsadd

min , which is defined
as in Sec. IV C, i.e., the shortest distance to any saddle during
a given optimization. For cases (II) and (III), we also define
the quantity Dmean(sadd)

min as the mean of the shortest distance
to each saddle for a given optimization. Neither measure was
calculated for N > 10 in case (III) due to the factorial scaling
of the number of critical submanifolds (e.g., for N = 11, the
landscape contains ∼3.99 × 107 saddles).

Figure 5 illustrates that the search effort increases with
the number of system states N for both cases, reflecting the
complexity of these control problems in many-level systems.
For case (I), a critical unitary evolution UT is optimal (i.e.,
corresponds to the global maximum of the landscape) if and
only if it aligns the largest eigenvalue of ρ0 with the largest
eigenvalue of θ . For case (III), however, a critical UT must
simultaneously align each of the N eigenvalues of the initial
state ρ0 with a particular eigenvalue of the target observable
θ in order to be optimal. Despite this scaling with N , the
mean search effort for cases (II) and (III) at N = 16 (3255
and 2049 iterations, respectively) was still significantly less
than for optimizations of case (I) for N = 8 and d = 0.2
(9562 iterations). Once again, we observe that additional
system complexity does not significantly impact the effort of
optimization for these cases, even with a greater number of
saddles present. Among these various cases, there also exist
other subtle trends that must result from the details of the
dynamics involved.
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FIG. 5. The mean search effort (black circles), the mean shortest
distance to any saddle submanifold, Dsadd

min (red squares), and the mean

shortest distance averaged over all saddle submanifolds, D
mean(sadd)
min

(red triangles), as a function of the number of states N , for gradient
optimizations of (a) case (II) and (b) case (III). The dipole parameter
d = 0.2, and one hundred optimization runs were performed for each
value of N .

Additionally, Fig. 5 shows that the mean value Dsadd
min

remains comfortably large for all values of N for cases (II)
and (III), indicating that optimizations do not closely approach
any saddles. For case (II), the mean shortest distance to
any saddle was Dsadd

min = 1.48 for N = 3; while this value
initially decreases as N grows, it remains relatively constant
at Dsadd

min ≈ 0.08 for N � 8. Most saddles are not approached
even this closely, as the mean shortest distance averaged over

all saddles was D
mean(sadd)
min ≈ 0.7 for N � 8. For case (III),

Dsadd
min ≈ 1 for all values of N , while D

mean(sadd)
min = 2.5 for N =

3 and increases to D
mean(sadd)
min = 13.2 for N = 10. Although the

number of saddles on the landscape corresponding to case (III)

increases factorially with N , the trend in D
mean(sadd)
min indicates

that the average attractiveness of each saddle decreases with
N . This behavior is consistent with a mathematical analysis of
the kinematic volume fraction near critical submanifolds that
was performed on a related observable problem [120]. These
competing trends may explain why, although the number of
saddles increases by a factor of 3.5 × 1012 between N = 3
and N = 16, the mean search effort only increases by a
factor of 34 over the same range (60 for N = 3 and 2049
for N = 16). This dramatic disparity shows that case (III) is
surprisingly amenable to gradient optimization, despite its very
large number of landscape saddles.
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FIG. 6. The mean search effort (black circles), the mean shortest
distance to any saddle submanifold, Dsadd

min (red squares), and the mean

shortest distance averaged over all saddle submanifolds, D
mean(sadd)
min

(red triangles), as a function of the number of states N , for gradient
optimizations of (a) case (II) and (b) case (III). The dipole parameter
d = 1, and one hundred optimization runs were performed for each
value of N .

Like the saddle attraction measured in Sec. IV B, the
observed scaling of search effort with N for cases (II) and
(III) also depends on Hamiltonian parameters. We repeated
the optimizations represented in Fig. 5 in the same manner
as described above, but with the dipole parameter d = 1
rather than d = 0.2. The results of this set of simulations are
illustrated in Fig. 6. All measures of the distance to saddles are
at least equal to the values observed for d = 0.2, and the search
effort scaling is significantly less; at N = 16, the mean effort
for cases (II) and (III) is 119 and 427, respectively. The strong
coupling may have accelerated the searches for these cases by
preventing them from lingering near any of the saddles.

In conclusion, the optimizations of case (I) in this section
show that increasing the number of system states does not
affect the search effort or the attractiveness of the saddle
submanifold. While the mean search effort increases with N

for cases (II) and (III), we demonstrate that this scaling is
not due the saddles becoming more attractive, as the point
of closest approach to a saddle does not change significantly
with N . On average, the degree of attraction to any individual
saddle appears invariant to N for case (II) and decreases with
N for case (III).

E. Control constraints

In the ODE45 algorithm, the accuracy demanded of the
solutions to Eq. (12) is determined by the error tolerance τ . In
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TABLE V. Optimization results for case (I) and various values of
τ , the absolute error tolerance in ODE45. The system has N = 8 states
and one hundred optimization runs were performed for each τ value.

τ No. failed Dsadd
fail

10−1 100 1.66
10−2 100 1.35 × 10−2

10−3 97 2.68 × 10−4

10−4 89 9.20 × 10−5

10−5 50 1.41 × 10−5

10−6 14 2.10 × 10−6

10−7 0

a previous numerical study that used a gradient algorithm to
investigate the role of control constraints in OCT optimization,
the effect of changing this tolerance was studied [119] and it
was determined that a choice of τ = 10−8 yields sufficiently
accurate solutions to find optimal controls for the state-
transition objective. It was also shown that large values of τ ,
and the resulting inaccurate solutions to Eq. (12), are a severe
constraint that may result in search failure (i.e., a decrease
in the value of the objective functional after an iteration).
However, the simulations in Ref. [119] involved the state-
transition landscape, which lacks saddles. When a gradient
search is close to a critical point of the landscape, the norm of
the gradient is small, and more accuracy may be required of the
solutions to Eq. (12) in order to ensure successful optimization.
Therefore, a smaller value of τ may need to be used when the
control landscape has saddles, particularly if the saddles attract
gradient searches. The simulations in this section explore
whether less accurate solutions to Eq. (12) can cause searches
to fail in close proximity to a saddle submanifold.

We performed optimizations of case (I) as defined in
Sec. IV B, with N = 8 levels and d = 0.2. Case (I) was chosen
because its control landscape contains the most attractive
saddle identified in this work. The control period was T = 20,
the time discretization was L = 512, and each initial field
had fluence F0 = 10. One hundred runs were performed for
each value of the absolute error tolerance τ over the range
10−7 � τ � 10−1. For each failed optimization, the distance
to the saddle at the final iteration, Dsadd

fail , was recorded. The
results of these optimizations are reported in Table V, and they
confirm that a large value of τ will cause searches that use
ODE45 to fail. All searches failed for τ � 10−2, and at least
one search failed for τ � 10−6. The mean distance from the
saddle at which searches fail increases with τ , suggesting that
the appropriate error tolerance for a particular optimization
of this problem is determined by the attractiveness of the
saddle(s) on the corresponding control landscape. When the
search approaches a saddle more closely, a smaller value of
τ is required in order to avoid search failure. The results of
the simulations in Ref. [119] support this conclusion; for a
control problem that lacks saddles, all optimizations were
successful for τ � 2 × 10−3. The searches on a landscape that
has an attractive saddle require significantly more accurate
solutions to Eq. (12), as τ � 10−7 is required to ensure that all
searches succeed. Thus, the choice of τ = 10−8 for this paper
is adequate for the field to reach its optimal form.

V. CONCLUSION

The critical topology of the quantum control landscape has
been analyzed theoretically [83,97,98,100–102,105,121–124]
in consideration of the mounting successes of diverse optimal
control experiments and simulations. These theoretical
works have shown that the landscape lacks local optima
when three assumptions are met: controllability, a full-rank
Jacobian matrix δUT /δε(t) everywhere on the landscape,
and an unconstrained control field ε(t). A recent numerical
work [119] suggests that only the latter condition is of
prime importance to avoid significant resource constraints.
Satisfaction of these assumptions ensures that all intermediate
critical points (i.e., those that do not correspond to the global
maximum or minimum) are saddles. For the observable
objective considered here, the initial state ρ0 and the target
observable θ determine the topology of the control landscape,
which may have as many as N ! − 2 saddle submanifolds for
an N-level system. This paper has investigated the effect of
these saddles on gradient searches.

At one extreme, we identified a control problem, case
(I), with a landscape that contains a highly attractive saddle
submanifold (i.e., a saddle that almost all gradient searches
will approach closely at some point during the optimization).
For this problem, the majority of algorithmic iterations takes
place very close to the saddle; the distance to the saddle
was calculated using the critical distance metric [114]. We
also identified features of the landscape topology that lead
to this phenomenon. For this case, a saddle submanifold is
more attractive to a gradient search when the eigenvalues that
correspond to the saddle alignment have greater multiplicity,
and the proximity of the search to the saddle is also influenced
by parameters of the system Hamiltonian; optimizations
experience a significantly greater attraction to the saddle
when the field-free Hamiltonian has a rigid-rotor-like energy
structure rather than that of an anharmonic oscillator. Even
with a rigid-rotor-like H0 and the particular degeneracy of
ρ0 and θ described above, the saddle in case (I) is only
observed to attract gradient searches when the dipole moment
for transitions between nonadjacent states and the initial
fluence of the control field are both sufficiently small. This
choice of values may result in a tendency for the gradient
search to initially drive the unitary evolution operator towards
alignments of the eigenvalues of ρ0 and θ that correspond to a
saddle submanifold before optimizing, rather than driving the
evolution toward the global maximum directly.

We also studied cases for which the target observable,
or both the initial state and the observable, are full rank.
The landscapes for these problems have multiple saddles
(a very large number, in the latter case). Importantly, we
demonstrated that the greater number of saddles for these
cases does not imply a correspondingly greater probability
that a search will closely approach any saddle. In the case
of the control problem for which the landscape contains the
largest possible number of saddles, the average attractiveness
of the saddles decreases significantly as N increases. This
result has significance for many normally complex laboratory
circumstances where a high density of occupied states may
be involved and the observable also involves many states. In
this regard as well, the gradient-based algorithm used in this
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work is likely the most conservative method; typical use of
stochastic search algorithms in the laboratory likely will be
less sensitive to saddles, as they may be able to “step over”
them. Thousands of numerical OCT searches were performed
in this paper, and they were only significantly attracted to a
saddle for a very particular choice of the initial state, target
observable, and several Hamiltonian parameters. The great
majority of the optimizations that were performed do not
approach any saddle closely. Even for a control problem
that corresponds to a landscape with an attractive saddle, it
was shown that a careful choice of algorithmic parameters
ensures successful optimization. This conclusion is based on
the extensive numerical studies performed for several control
problem cases in this work. While there is still the need
for a rigorous mathematical understanding of its origin that

builds on the foundations in Ref. [120], the results for these
cases indicated that control landscapes free of local optima
are highly favorable for optimization, even when saddles are
present.
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