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Two-photon ionization of xenon was investigated theoretically for exciting-photon energies from 6.7 to 11.5 eV,
which results in the ionization of Xe between 5p1/2 (13.43 eV) and 5s (23.40 eV) thresholds. We describe the
extension of a previously developed computational technique for the inclusion of relativistic effects to calculate
energies of intermediate resonance state and cross sections for two-photon ionization. Reasonable consistency
of cross sections calculated in length and velocity form was obtained only after considering many-electron
correlations. Agreement between calculated and measured resonance energies is found when core polarization
was additionally included in the calculations. The presently computed two-photon photoionization cross sections
of Xe are compared with Ar cross sections in our previous work. Photoelectron angular distribution parameters
calculated here indicate that intermediated resonances strongly influence photoelectron angular distribution
of Xe.
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I. INTRODUCTION

Recent developments of free-electron laser sources [1–4]
upsurged interest in the detailed understanding of multiphoton
processes. In contrast to the already well-investigated two- or
multiphoton processes of conventional laboratory laser sources
at a few defined photon energies, photon energies of free-
electron lasers can, in principle, be tuned over a large energy
range. This enables the determination of photoionization cross
sections and electron angular distributions over a wide photon
energy range. In this way data sets will be created serving as
benchmarks to test theoretical models.

On the other hand, the present state of the theory of
multiphoton processes lags a little behind the experimental
demands. As an example of this situation we mention multi-
photon multiple ionization of Xe [5] which was interpreted on
the basis of the scaling techniques [6,7], so far. Therefore, it is
desirable to have the technique which allows one to take into
account many-electron effects in the description of the initial
and final states as well as in computing transition amplitudes.
The relativistic effects in calculation of multiphoton processes
in heavy atoms, especially if the spherical shells are involved,
need also to be included.

In the present work we continue to develop a description
for two-photon photoionization, based on our previous work
[8], where a method has been developed to calculate a
generalized two-photon ionization cross section (G2PICS
[9]) with taking into account many-electron correlations
in nonrelativistic approximation. In the present paper we
extend the approach by including relativistic effects using
accumulated earlier experience in calculation of the single-
photon ionization of atoms within the frames of the configu-
ration interaction Pauli-Fock approach with core polarization
(CIPFCP) [10].

The challenge of investigating theoretically the G2PICS
of Xe lasts now for more than 30 years. McGuire [11]
has calculated the G2PICS of noble-gas atoms applying
the Green’s function technique and straight-line approxima-
tion of the nonrelativistic Herman-Skillman potential [12].
Gangopadhyay et al. [13] applied multichannel quantum-
defect theory (MQDT) to study theoretically two- and three-
photon ionization of atomic Xe in the energy range between
the 5p3/2 and 5p1/2 thresholds as well as slightly above
the 5p1/2 threshold. The values of the MQDT parameters
were taken from the experiment. Angular distribution of
photoelectrons has also been computed at certain photon
energies.

L’Huillier and Wendin [14] improved the accuracy of the
5s and 5p two-photon ionization calculation of Xe using
a nonrelativistic Hartree-Fock single-electron basis in LS

coupling. These authors studied the influence of different
many-electron correlations on the computed G2PICS in detail.
However, an important intermediate-state shake-up correlation
was not considered. Later, Pan et al. [15] showed that, namely,
this correlation provided close agreement between the cross
sections of the 3p two-photon ionization of Ar, calculated in
the length (L) and velocity (V ) forms of the dipole transition
operator.

Fink and Johnson [16] took into account relativistic effects
in computing the G2PICS of the outer shells of the rare-gas
atoms Ne, Ar, Kr, and Xe using a time-dependent Dirac-Fock
(TDDF) method which was noted to be closely related to the
relativistic random-phase approximation (RRPA). The cross
sections were obtained in the length form at energies near
the first intermediate-state resonance. Both photoionization
by linearly and circularly polarized exciting photons were
investigated. The calculation of the G2PICS by this method,
however, diverged at the vicinity of resonances.
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So far, none of the different previous calculations was
able to simultaneously account for relativistic effects, many-
electron correlations (including shake-up interaction), and the
effect of core polarization by the outgoing photoelectron. The
core polarization (CP), in particular, was found to be important
in the case of the 3p G2PICS of Ar [8]. Its inclusion resulted
in a 17% increase of the Ar 3p G2PICS at the threshold and
provided very good agreement of the computed and measured
energies of the intermediate resonances. Therefore, here, we
present a method where CP and many-electron effects are
considered in a relativistic approach.

As an object of study, we chose the two-photon ionization of
the 5p shell of Xe because both relativistic and many-electron
effects are expected to have substantial impact on this process.
Relatively small exciting-photon energies allow us to avoid
problems concerning the above threshold ionization [17].

The paper is organized as follows. In Sec. II we describe
the relativistic extension of the computation method including
the correlation function (CF) technique and details of the used
basis atomic orbitals (AOs) (Sec. II C). Section III presents
the results of the calculation of Xe 5p G2PICS. We discuss
the differences between the computed 3p Ar G2PICS and
5p Xe G2PICS in Sec. III A. The influence of relativistic
and polarization effects on the calculated energies of the
intermediate resonances is investigated in Sec. III B. Presently
computed G2PICSs are compared with other theoretical
data in Sec. III D. The calculated angular distribution of
photoelectrons is presented in Sec. IV. We conclude with a
brief summary in Sec. V.

II. THEORY

In order to compute the two-photon ionization of Xe we
used the jj coupling scheme:

Xe 5p6(J0 = 0) + 2γ → Xe+5p5
jc
ε�j (J ) (J = 0,2),

(1)

where jc is the total momentum of the 5p5 ionic core; � and j

are orbital and total angular momentum of the photoelectron,
respectively; and J0 and J are total angular momenta of
the initial and final state, respectively. The jj coupling was
chosen in the present work instead of the LS coupling used in
[8] because of the larger splitting E

(i)
5p1/2

− E
(i)
5p3/2

= 1.31 eV

in Xe as compared to E
(i)
3p1/2

− E
(i)
3p3/2

= 0.18 eV in Ar (see
data [18]). Thus, the following eight channels were included
in the calculation: 5p5

3/2εp3/2(J = 0,2), 5p5
3/2εp1/2(J =

2), 5p5
3/2εf5/2(J = 2), 5p5

3/2εf7/2(J = 2), 5p5
1/2εp1/2(J = 0),

5p5
1/2εp3/2(J = 2), and 5p5

1/2εf5/2(J = 2).
In order to describe the two-photon ionization quantitatively

we used, as in our previous work [8], the generalized photoion-
ization cross section (G2PICS) which has the dimension cm4 s
and is the property of an atom (i.e., it is independent of the
strength of the exciting radiation [9]).The total G2PICS σq(ω)
is expressed as a sum of partial cross sections σq(jc,�,j,J,ω):

σq(ω) =
∑

jc,�,j,J

σq(jc,�,j,J,ω), (2)

where q = 0 and ±1 notes the linearly polarized and the
circularly polarized incident radiation, respectively. Partial
G2PICS we define as

σq(jc,�,j,J,ω) = 8π3αa5
0

c
ω±2|Tq,ω(jc,�,j,J )|2, (3)

where α = 1/137.036 is the fine-structure constant; a0 =
5.291 77 × 10−9 cm is the Bohr radius; c = 2.997 92 × 1010

cm/s is the light velocity in vacuum; ω is the exciting-photon
energy (in atomic units) of one of the two photons, assuming
the same energy for the other photon; and “+” and “−”
correspond to the length and velocity gauges of the electrical
dipole operator, respectively.

In the lowest order of perturbation theory (LOPT), the two-
photon ionization transition amplitude is given by ([19–21])

Tq(i → f ) =
∑
m

〈f |Dq |m〉〈m|Dq |i〉
Ei + ω − Em

. (4)

Here i, m, and f denote initial, intermediate, and final states;
Dq is the electric dipole operator; Ei and Em are energies of
the initial and intermediate states, respectively; and the sum
over m abbreviates summation over the discrete and integration
over continuum states.

In the LOPT, the following transitions are allowed:

5p6 ��� 5p5
jc
ε′�′j ′ ��� 5p5

jc
ε�j, (Ia)

5s25p6 ��� 5s15p6ε�j ��� 5s25p5
jc

ε�j. (Ib)

Here the transitions to the 5p5εp states proceed via the
interfering 5p5ε′s and 5p5ε′d intermediate states, whereas
the transitions to the 5p5εf states proceed via the 5p5ε′d
intermediate states only.

The electron correlations can be expressed as complemen-
tary amplitudes including matrix elements of the Coulomb
interaction. Those amplitudes are of the next order of PT and
describe all possible one- and two-electron excitations allowed
by the selection rules in the initial, final, and intermediate
states. Here we classified those correlation amplitudes in
accord with [15] and [8].

Intermediate-state interchannel correlation:

5p6 ��� 5p5
j ′
c
ε′′�′′ → 5p5

jc
ε′�′ ��� 5p5

jc
ε�j. (II)

Ground-state correlations:

5p6 → 5p4ε′�′ε′′�′′ ��� 5p5
jc
ε′�′ ��� 5p5

jc
ε�j, (IIIa)

5p6 → 5p4ε′�′ε′′�′′ ��� 5p4ε�jε′′�′′ ��� 5p5
jc
ε�j, (IIIb)

5p6 → 5p4ε�jε′′�′′ ��� 5p4ε�jε′�′ ��� 5p5
jc
ε�j. (IIIc)

Intermediate-state shake-up correlation:

5p6 ��� 5p5
j ′
c
ε′�′ → 5p4ε�jε′�′ ��� 5p5

jc
ε�j. (IV)

Intermediate-state electron scattering correlation:

5p6 ��� 5p5
j ′
c
ε′�′ → 5p4ε�jε′′�′′ ��� 5p5

jc
ε�j. (V)

Final-state electron scattering correlations:

5p6 ��� 5p5
j ′
c
ε′�′ ��� 5p4ε′�′ε′′�′′ → 5p5

jc
ε�j, (VIa)

5p6 ��� 5p5
j ′
c
ε′′�′′ ��� 5p4ε′�′ε′′�′′ → 5p5

jc
ε�j. (VIb)
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In all schemes (I)–(VI) dashed and solid arrows denote elec-
tric dipole interaction and Coulomb interaction, respectively.
We note that since two electrons are involved in the Coulomb
interaction, the total angular momentum of the ionic core j ′

c

in the intermediate state in processes (II) and (IV)–(VI) could
differ from that in the final state, jc.

The general expression of the transition amplitude (4) for,
e.g., the (Ia) process, is as follows:

Tq

(
5p6 → 5p5

jc
ε�j

)
=

∑
ε′>F

∑
�′

〈
5p5

jc
ε�j

∣∣Dq

∣∣5p5
jc
ε′�′〉〈5p5

jc
ε′�′∣∣Dq

∣∣5p6
〉

ω − E
(i)
5pjc

− ε′ ,

(5)

where E
(i)
5pjc

is the ionization potential of the 5pjc
electron.

As in our previous work [8], we applied experimental [18]
values of the ionization potentials (E(i)

5p3/2
= 0.8915 Ry and

E
(i)
5p1/2

= 0.9875 Ry) in the calculation of the energy denom-
inators of the transition amplitudes. The double-ionization
potential of the 5p shell, E(i)

5p2(3P2) = 2.4330 Ry, was also taken
from [18].

Applying the method of [22], the expressions (5) and similar
expressions for the correlation amplitudes can be factorized
as a product of angular and radial parts. The latter one was
calculated applying the CF technique which is described
below. For the convenience of the discussion we present the
two-photon transition amplitude Tq,ω(jc,�,j,J ) as a sum of
the LOPT processes (Ia) and (Ib) and the correlation processes
(II)–(VI):

Tq,ω(jc,�,j,J ) = T (Ia)
q,ω (jc,�,j,J ) + T (Ib)

q,ω (jc,�,j,J )

+
∑
(corr)

T (corr)
q,ω (jc,�,j,J ). (6)

A. The LOPT process (Ia)

In one-electron approximation the two-photon LOPT tran-
sition amplitude (Ia) is expressed as a product of two parts
describing the geometry (angular, fq ) and the dynamics (radial,
tω) of the photoionization:

T (Ia)
q,ω (jc,�,j,J ) =

∑
�′

fq(jc,�,j,J,�′)t (Ia)
ω (jc,�,j,J,�′). (7)

The geometrical factors are

fq(jc,�,j,J,�′) = (−1)3/2+j+J ([jc][j ][J ])1/2

×
(

J 1 1
−2q q q

){
� j 1/2
jc 1 J

}

×
{
� J 1
1 �′ 1

}
× (�‖C(1)‖�′)(�′‖C(1)‖1), (8)

where (�‖C(1)‖�′) is a submatrix element of the spherical
function in the standard phase system [22]; [x] ≡ 2x + 1. The
quantities in parentheses and in curly brackets are 3j and 6j

symbols, respectively. The numerical values of fq are listed in
Table I.

TABLE I. Geometrical factors fq (jc,�,j,J,�′) [Eq. (8)] for
the case of linearly polarized incoming radiation (q = 0).
For circular polarization (|q| = 1) the factors are f1(2,�,�′) =√

3/2f0(2,�,�′); f1(0,�,�′) = 0.

jc � j J �′ f0

1
2 p 1

2 0 s −
√

2
9

1
2 p 1

2 0 d − 2
√

2
9

3
2 p 3

2 0 s − 2
9

3
2 p 3

2 0 d − 4
9

1
2 p 3

2 2 s − 2
9

1
2 p 3

2 2 d − 2
45

3
2 p 1

2 , 3
2 2 s 2

9
3
2 p 1

2 , 3
2 2 d 2

45
1
2 f 5

2 2 d 2
√

2
5
√

3
3
2 f 5

2 2 d 4
5
√

21
3
2 f 7

2 2 d 4
√

2
5
√

7

The radial parts of the amplitude (7) are

t (Ia)
ω (jc,�,j,J,�′) =

∑
ε′>F

〈ε�j |d|ε′�′〉〈ε′�′|d|5p〉
ω − E

(i)
5pjc

− ε′ , (9)

and they are independent of the polarization of the exciting
photons. Here d is the radial part of the dipole transition
operator determined in the length or velocity form.

In computing t (Ia)
ω (jc,�,j,J,�′) (9), a dependence of the

radial part of the ε�j AOs on the total momentum j was
taken into account. The respective spin-orbital potential was
implemented in the Pauli-Fock (PF) equation (see Sec. II C)
as in [10,23,24]. The radial parts of the intermediate-state AOs
ε′�′ were calculated in the potential of the 5p5ε′�′ (1P1) state.

The radial integral 〈ε�j |d|ε′�′〉 in (9) corresponds to the
transition between two continua diverges. The divergency
problem was solved using the CF method. This method was
discussed in detail in our previous paper [8]. Here only general
lines are presented.

The CF is defined as

φ�′(r) =
∑
ε′>F

Pε′�′(r)〈ε′�′|d|5p〉
ω − E

(i)
5pjc

− ε′ . (10)

This function is calculated by solving the inhomogeneous
integro-differential equation

(
h�′ − ω + E

(i)
5pjc

)
φ�′(r)

= −dP5p(r) +
∑
n′<F

Pn′�′(r)〈n′�′|d|5p〉, (11)

where h�′ is the relativistic PF operator for the ε′�′ AO in the
configuration 5p5ε′�′(1P1). Some important details of the PF
approximation [24] are discussed in Sec. II C.
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The electric dipole operator d entering Eq. (11) affects
the 5p AO as dLP5p(r) = rP5p(r) and dV P5p(r) = − dP5p(r)

dr
∓

�max
r

P5p(r) in the length and velocity form, respectively [�max =
max(1,�′); the upper and lower signs in ∓ correspond to
signs in expression �′ = �c ∓ 1 where �c = 1 is the orbital
momentum of the 5p core electron].

With the CF φ�′(r) (10) the radial part of the transition
amplitude takes on the following form:

t (Ia)
ω (jc,�,j,J,�′) = 〈ε�j |d|φ�′ 〉. (12)

B. The correlation processes of the third order of PT

The factorized transition amplitude for the ground-state
correlation process (III) is given by

T (corr)
q,ω (jc,�,j,J ) =

∑
�′

fq(jc,�,j,J,�′)

×
∑
�′′

t (corr)
ω (jc,�,j,J,�′,�′′). (13)

Transition amplitudes for all other correlation processes are
as follows:

T (corr)
q,ω (jc,�,j,J ) =

∑
�′

fq(jc,�,j,J,�′)
∑
j ′
c

2j ′
c + 1

6

×
∑
�′′

t (corr)
ω (jc,j

′
c,�,j,J,�′,�′′), (14)

where the sum over j ′
c in (14) corresponds to a nonconservation

of the total angular momentum of the 5p5 core.
The geometrical factors fq listed in Table I are identical

for all correlation processes (II)–(VI). Calculation of t (corr)
ω for

each correlation process (II)–(VI), performed using the CF
technique, was described in detail in [8]. Minor changes to
this procedure included in the present work are (i) using the
relativistic PF instead of the Hartree-Fock (HF) approach in
[8]; and (ii) the radial parts t (corr)

ω (jc,�,j,J,�′,�′′) in (13) and
t (corr)
ω (jc,j

′
c,�,j,J,�′,�′′) in (14) become dependent not only on

the intermediate orbital angular momenta �′ and �′′ but also on
the total angular momenta jc and j ′

c. The latter dependence is
a consequence of using different ionization potentials E

(i)
5pj

of
the 5pj core in the CFs calculation.

C. Calculation of single-electron wave functions

Within the PF approximation, relativistic effects are taken
into account in Breit approximation resulting in the following
equation for the n�j orbital:

hn�j (r)Pn�j (r) =
(

− d2

dr2
+ �(� + 1)

r2
+ Vn� − Xn�

+ HM
n� + HSO

n�j + HD
n�

)
Pn�j (r)

= εn�jPn�j (r), (15)

where Vn� is the local part of the Coulomb potential, Xn� is its
nonlocal (exchange) part, and HM

n� , HSO
n�j , and HD

n� are mass-

velocity, spin-orbit, and Darwin terms, respectively. They are

HM
n� Pn�j (r) = −α2

4
[εn�j − Vn�(r)]2Pn�j (r), (16)

HD
n�Pn�j (r) = −α2

4

(
1 + α2

4
[εn�j − Vn�(r)]

)−1

× r
dVn�(r)

dr

d[Pn�j (r)/r]

dr
, (17)

HSO
n�j Pn�j (r) = j (j + 1) − �(� + 1) − s(s + 1)

2

× α2

2

[
1 + α2

2
[εn�j − Vn�(r)]

]−1

× 1

r

dVn�(r)

dr
Pn�j (r). (18)

AOs of the Xe atomic core were computed for the ground-
state configuration and remained frozen in all calculations.
AOs of 5p1/2 and 5p3/2 subshells were computed with taking
into account spin-orbit potential (18). The photoelectron AOs
were computed in jj coupling in the 5p5 configuration.
The εp1/2 and εp3/2 AOs were orthogonalized to 5p1/2 and
5p3/2 AOs, respectively. The CFs (10) corresponding to the
intermediate states were computed for the 5p5ε′�′(1P1) state.

The PF operator hl′ in the equations for both CFs [e.g., (11)]
and final-state functions (15) contains a nonlocal exchange
Coulomb part and the derivative d[Pn�j (r)/r]

dr
(17). The iteration

procedure for the numerical calculation of the CF does not
converge at the energies close to intermediate-state resonances
[19]. To overcome this problem we applied as in [8] a
technique of [25] and introduced a separate function for
each exchange term which eliminates the nonlocal part in the
differential equation. Thereby, a single nonlocal equation has
been transformed to a system of local equations which can be
solved noniteratively at any energy.

A similar computational trick has been applied for the
derivative in the relativistic Darwin correction (17). Introduc-
tion of the function Znlj (r) = d[Pnlj (r)]

dr
transforms the second-

order differential equation (15) to a set of two differential
equations of the first order without a derivative of the desired
wave functions in the right-hand parts. Respective equations
are

d[Pnlj (r)]

dr
= Znlj (r), (19)

− dZnlj (r)

dr
=

(
− l(l + 1)

r2
+ Vnl − Xnl + HM

nl + HSO
nl

)
×Pnlj (r) − H̃D

nl Znlj (r) + εnljPnlj (r), (20)

where

H̃D
nl Znlj (r) = −α2

4

(
1 + α2

4
[εnlj − Vnl(r)]

)−1

× r
dVnl(r)

dr

(
1

r
Znlj (r) + 1

r2
Pnlj (r)

)
. (21)

The noniterative numerical solution of these equations is
based on the predictor-corrector Milne scheme [26].

063414-4



RELATIVISTIC, CORRELATION, AND POLARIZATION . . . PHYSICAL REVIEW A 95, 063414 (2017)

III. TWO-PHOTON IONIZATION CROSS SECTIONS
OF THE 5 p SHELL OF XENON

In this section we discuss the present results of calculation,
and compare them with the 3p G2PICS of Ar and with the
results existing in literature. Emphasis is laid on the influence
of both relativistic effects and the many-electron correlations
on the computed 5p G2PICS of Xe.

A. Comparison of 5 p G2PICS of Xe and 3 p G2PICS of Ar
calculated in LOPT approximation

In order to investigate the difference between two-photon
ionization of Ar and Xe we calculated the partial 5p G2PICS
of Xe in the LS-coupling scheme taking into account the
LOPT (Ia) transition only. The HF orbitals were computed
for the Ar case, whereas the relativistic PF orbitals were used
for Xe but without taking into account spin-orbital potential.
The presently computed partial G2PICS for the np5εp(1S) and
np5εp(1D) (n = 3 for Ar and n = 5 for Xe) final states are
depicted in the upper panel of Fig. 1 for the energies in the
region of the first np5(n + 1)s(1P ) intermediate resonance.
Exciting photon energies calculated for this resonance in the
LS-coupling scheme amount to 11.9 and 9.2 eV for Ar and
Xe, respectively.

FIG. 1. The np partial G2PICS (upper panels) and respective
〈εp|dV |(n + 1) s〉 radial integrals (lower panels) for the transitions to
the εp channels, calculated in the velocity form of dipole transition
operator, LOPT, and in LS coupling for Ar (n = 3, solid lines) and
Xe (n = 5, dashed lines) for the case of linearly polarized incoming
radiation. We stress that here and below the abscissa axis shows the
single-photon energy, thus, the energy implemented to an atom is
twice larger. (a) Transitions to the εp(1S) channel. (b) Transitions
to the εp(1D) channel. The “widths” of the resonance lines were
determined at σ = 6 × 10−51 cm4 s.

In order to have the G2PICS as a property of a target only
we did not consider the width of the intermediate state m

in Eq. (4) which depends on the intensity of the incoming
radiation (see, e.g., [27], Eqs. (6.3)–(6.9), and comments
below these equations). This consideration would result in
an imaginary part of the energy Em making the G2PICS at
the resonance finite. Without the imaginary part, the G2PICS
at the resonance energy is infinite and, therefore, the quantity
“full width at half maximum” has no meaning. To make a
quantitative comparison of the G2PICSs of Ar and Xe we
introduced the “widths” determined at σ = 6 × 10−51 cm4 s.
One can see that both the “widths” and the profiles of the
resonances in Ar and Xe are different.

To clarify the reason for those differences we have calcu-
lated the dependence of the radial part of the dipole matrix
element 〈εp|dV |(n + 1)s〉, describing the second step of the
process (Ia), on the exciting-photon energy ω (connected with
the photoelectron energy ε as ω = 1

2 (E(i)
np + ε). The results

of the calculation are depicted for Ar and Xe in the lower
panel of Fig. 1. The potentials for the εp electron differ much
in the np5εp(1S) and np5εp(1D) final states. The difference
of the spherical parts of exchange interaction, Xεp, for those
channels is 6G0(npεp). As a consequence, the radial matrix
element of the transition to the np5εp(1S) state has the Cooper
minimum region at much larger photon energies than it has
to the np5εp(1D) state. Therefore, the 5p56s(1P ) resonance
in the 5p5εp(1S) and 5p5εp(1D) channels lies on different
sides from the Cooper minimum. The 〈εp|dV |6s〉 integrals
have comparable values but opposite signs. Therefore, the
5p56s(1P ) resonances in Xe have comparable “widths” but
inverse asymmetry.

In Ar the energy of the 3p54s(1P ) resonance is very close
to the Cooper minimum in the 3p5εp(1S) channel providing
a narrow profile in G2PICS. In the 3p5εp(1D) channel the
position of this resonance is substantially above the Cooper
minimum. Therefore, the 〈εp|dV |4s〉 integral is large and
the respective resonance has a large “width” and the same
asymmetry as in xenon.

Another interesting observation in Fig. 1 is that the thresh-
old value of the G2PICS in Xe is three times larger than in
Ar. To understand the reason for this difference we calculated
the single-photon ionization cross section (PICS) of the outer
np shell of both atoms because the right-hand side of Eq. (5)
contains the respective transition matrix element. Frozen-core
single-electron approximation and the LS-coupling scheme
were used. The results are presented in Fig. 2 for the length
form of the dipole transition operator. One can see that the
threshold single-photon PICS of Xe is about twice larger than
that for Ar. Thus, a large difference between threshold G2PICS
of Xe and Ar is caused by a large difference in the density of
the oscillator strengths of the single-electron np-εd transition
near the np thresholds.

B. Influence of relativistic effects and core polarization
on the energy positions of the 5 p5

jc
n� resonances

Previously, we revealed that in the case of Ar core
polarization decreases the energy of the intermediate 3p54s

resonance by 
E
(CP)
3p54s

= −0.27 eV providing good agreement
between theory and experiment [8]. In the case of Xe, the
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FIG. 2. Calculated partial single-photon ionization cross section
of the outer np shells of Ar and Xe.

influence of core polarization is larger than in Ar. The shift
of the 5p56s resonance resulting from taking into account
the core polarization potential V CP(r) [28] is 
E

(CP)
5p56s

=
−0.36 eV. The shift of the 5p56s resonance connected with
relativistic effects is smaller than 
E

(CP)
5p56s

being, however,

substantial: 
E
(rel)
5p56s

= −0.11 eV. In the case of the 5p55d

resonance the influence of both effects is much smaller:

E

(CP)
5p55d

= −0.08 eV, 
E
(rel)
5p55d

= −0.02 eV.
The influence of both effects on the position of the

intermediate-state resonances is presented in Fig. 3. In the
upper panel the extended energy region starting from the
double-photon ionization threshold including the 5p5

3/26s,

5p5
1/26s, 5p5

3/25d, and 5p5
3/27s resonances is displayed. In the

lower panel the enlarged region of the closely lying 5p5
3/25d

and 5p5
3/27s resonances is shown. In the top panel of Fig. 3

experimental energies of the intermediate resonances from
the NIST database [18] are also shown. Notations of the
resonances are labeled using the jK coupling: 6s[3/2]1 and
6s ′[1/2]1 denote 5p5

3/26s[3/2]J = 1 and 5p5
1/26s[1/2]J = 1,

respectively (the prime is a commonly used mark for the states
with jc = 1/2).

It is evident from Fig. 3 that core polarization and relativistic
effects substantially improve the agreement between the com-
puted and measured energies of the intermediate resonances.
In Xe, however, the overall agreement between experiment
and theory is not as good as in Ar. An additional investigation
showed that this is explained by the 5p55d-5p5εd Coulomb
interaction and s-d mixing due to the interaction of the,
e.g., 6s ′[1/2]1 and 5d[K]1 resonances, which are particularly
strong in Xe [29] and which have not been included in the
present work.

C. Results of calculation of the 5 p G2PICS of Xe

The G2PICS computed for the 5p shell of Xe within the
LOPT [processes (Ia) and (Ib)] are depicted in Fig. 4 in
a logarithmic scale (curves PF L and PF V ). In the same
figure we also show the G2PICS computed with taking into
account correlation amplitudes (II)–(VI) and core polarization
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FIG. 3. The 5p total G2PICS of Xe computed in the nonrelativis-
tic LOPT (HF), relativistic LOPT (PF), and with taking into account
core polarization (PFCP). The length form of electric dipole operator
for the linear polarization of exciting radiation was used. In the bottom
panel the region of close-lying 5p5

3/25d and 5p5
3/27s resonances is

presented with enlarged scale. In the top panel the experimental [18]
energies of the resonances are shown.

(curves CIPFCP L and CIPFCP V ). When computing cross
sections CIPFCP L and CIPFCP V we accounted for some
correlations of the third orders of PT by scaling the transition
amplitudes (II)–(VI) with a factor 1/1.26 (see [8,10], and
references therein). In the same figure we denote the only
experimental G2PICS [30] by a star and the experimental
energies of the intermediate 5p5n� resonances [18] by bars.

Taking into account the above correlations reduces the
relative difference |σL − σV |/[ 1

2 (σL + σV )] at the threshold
from 80% (PF approach) to 7.7% (CIPFCP). The latter number
can be considered as a measure of accuracy of the present
calculation.

In order to illustrate the influence of the intershell corre-
lations [last two steps of the processes (V) and (VI)] on the
difference between σL and σV we used the L-form data for
the 5p5

3/26s(J0 = 2) → 5p5
3/2εp3/2(J = 3) transition from our

earlier work [24] together with the calculation performed in
the present paper in the V form. The main correlations which
were taken into account in [24] are the intershell correlations.
The importance of these correlations is illustrated in Fig. 5
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FIG. 4. The 5p total G2PICS of Xe in length (L) and velocity
(V ) form for linearly polarized incoming radiation calculated in
relativistic LOPT approximation (PF) and with taking into account
correlation and core-polarization effects (CIPFCP). Experimental
point: [30]. Top panel: experimental [18] energies of the resonances.

where transition amplitudes for this process computed with
(CIPF) and without (PF) many-electron correlations are
depicted. We would like to note that the resulting “many-
electron” amplitude neither coincides with the “single-
electron” amplitude in length form nor in velocity form. The
importance of this statement is connected with long-term
discussion on what form of the electric dipole operator is
better for the calculations (see, e.g., works [16,31,32]).
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FIG. 5. Partial photoionization amplitudes of the 5p5
3/26s(J0 = 2)

state of Xe� calculated in a single-electron relativistic Pauli-Fock
approximation (PF) and with taking into account many-electron
correlations (CIPF) in the length (L) and velocity (V ) form of the
electric dipole operator.
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FIG. 6. Comparison between the 5p total G2PICS of Xe com-
puted by L’Huillier and Wendin [14] and in the present paper with
(W) and without (WO) “nonlinear screening.” Linearly polarized
exciting photons and the length form of the transition operator were
used in both calculations.

A linear extrapolation of the CIPFCP cross section to
the region below 6.72 eV shows good agreement between
computed and measured [30] G2PICSs (see Fig. 4).

D. Comparison with other calculations

The importance of the final-state electron scattering correla-
tions (V) and (VI) in computing the 5p two-photon ionization
of Xe has been pointed out by L’Huillier and Wendin [14]
who called these correlations “nonlinear screening.” The 5p

total G2PICS computed in [14] with (W) and without (WO)
nonlinear screening are compared with the corresponding
present cross sections in Fig. 6. In order to provide consistency
of comparison between data [14] and our data we excluded the
correlation (IV) from our calculation, which was also not taken
into account in [14]. An essential difference in the positions
of the intermediate-state resonances is seen from Fig. 6. It is
because the nonrelativistic HF approach was applied in [14]
and, therefore, the 6s and 6s ′ resonances have equal energy.

Our calculation confirms, in general, the statement of
L’Huillier and Wendin [14] that the non-linear screening
decreases the G2PICS. However, in our case this decrease
is less pronounced as in [14]: at a photon energy of 8 eV
the nonlinear screening correlation decreases the G2PICS by
a factor of 4 in [14], whereas in the present calculation the
respective factor equals only to 2. The difference could be
connected with the different set of AOs (relativistic with core
polarization PFCP in our case and nonrelativistic HF in [14]).

Pan et al. [15] have revealed the importance of the
intermediate-state shake-up correlation (IV) in computing
the G2PICS of Ar. Taking into account this correlation
significantly changes cross sections and pulls together the
3p G2PICS of Ar computed in length and velocity gauges.
In the case of Xe, the shake-up correlation (IV) has a
similar influence on the 5p G2PICS. One can recognize this
from Fig. 7, where partial G2PICSs for the transition to the
5p5

3/2εp3/2(J = 0) channel, computed in the present paper, are
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shake-up correlation (IV).

depicted. Calculation was performed with (CIPF) and without
(CIPF shake-up excluded) shake-up correlation (IV).

The Xe 5p G2PICSs computed in the present paper
for linearly polarized exciting radiation are compared with
G2PICS computed in [13,16] in Fig. 8. Fink and Johnson
[16] performed a calculation using a fairly precise relativistic
TDDF method which, as was mentioned by the authors, is
closely related to the RRPA. One can see that our G2PICSs
are in close agreement with the G2PICS obtained in [16] in the
energy range between the two-photon 5p1/2 threshold and the
lowest 5p5

3/26s resonance. In the close-to-resonance region the
iterative procedure of solving the TDDF equations converges
poorly [16] and above the 5p5

3/26s resonance it is difficult
to obtain convergence at all [16]. Figure 8 shows that, indeed,
both the width of the resonance and the absolute G2PICS differ
significantly from quantities computed in the present paper.

The earlier calculations of the Xe 5p G2PICSs [11,13] have
been performed with approximate atomic orbitals and, there-
fore, there is a strong difference between them and both our
calculation and the calculation [16] even in the off-resonance
region. McGuire [11] has used a straight-line approximation
of the nonrelativistic Hermann-Skillman potential [12] and
the Green’s function technique in order to compute G2PICS
of all rare gases. The energies of intermediate resonances were
taken from experiment. This approximation overestimated the
G2PICS at the off-resonance region by a factor of about 4
(see lower panel of Fig. 8). This result can be connected
with the fact that the local density approximation used in [12]
results in more localized near-threshold continuum orbitals
and, therefore, in too large cross sections.

Gangopadhyay et al. [13] applied in their calculation
the MQDT approximation taking experimental energies of
intermediate resonances, as well. The computed cross section
is about a factor of 3 smaller than ours (see upper panel of
Fig. 8). The character of disagreement between the MQDT
and CIPFCP 5p G2PICS allows us to assume that the
MQDT underestimates the density of the oscillator strengths
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FIG. 8. The 5p total G2PICS of Xe calculated in the length form
of the electric dipole operator for the linear (upper panel) and circular
(lower panel) polarizations of incoming radiation in the present paper
(CIPFCP), in [11], in [13], and in [16]. Experimental data: [30].
Experimental energies [18] of the intermediate resonances are shown
as vertical lines.

of the single-electron np-ε� transition for heavy atoms. The
calculation published in [13] results also in approximately
equal G2PICSs of 5p5

3/2 and 5p5
1/2 levels. However, as follows

from Table I, the summed 5p5
3/2 G2PICS should be twice larger

than the summed 5p5
1/2 G2PICS, which was also confirmed by

the calculation in [16].

IV. ANGULAR DISTRIBUTION OF PHOTOELECTRONS

The expression for the differential G2PICS is as follows:

dσq(ω)

d�

= σq(ω)

4π

[
1 + β

q

2 (ω)P2(cos θ ) + β
q

4 (ω)P4(cos θ )
]
, (22)

where β
q

λ are angular-distribution parameters for photoelec-
trons, Pλ is the Legendre polynomial, and θ is the angle
between the momentum of photoelectron and electric field
vectors for the linearly polarized incident radiation (q = 0)
or between the momentum of photoelectron and the direction

063414-8



RELATIVISTIC, CORRELATION, AND POLARIZATION . . . PHYSICAL REVIEW A 95, 063414 (2017)

of propagation vectors of the circularly polarized incoming
radiation (q = ±1).

The formula for the photoelectron angular-distribution
parameters was obtained using a method similar to that
described in [8] but for the case of jj coupling:

β
q

λ (ω) = 8π3αa5
0

cσq(ω)
ω±2

∑
��′jj ′JJ ′

(−1)J+2q+1/2−J ′−jc

× [λ]([�][�′][j ][j ′][J ][J ′])1/2ei(δ�j −δ�′j ′)

×
(

λ � �′
0 0 0

)(
λ J J ′
0 −2q 2q

)

×
{

λ j j ′
1/2 �′ �

}{
λ J J ′
jc j ′ j

}
× Tq,ω(jc,�,j,J )T ∗

q,ω(jc,�
′,j ′,J ′). (23)

As in the paper [8] the standard phase system [22] for the
spherical harmonics was used in Eq. (23). In addition, in
Eq. (23) we took explicitly into account that the projection of
the total angular momentum MJ of the final state 5p5ε�j (J )
after the absorption of two photons with polarization q equals
to 2q.

The parameter β0
2 of the angular distribution of photoelec-

trons in two-photon ionization of the 5p shell of Xe calculated
in the LOPT approximation [the processes (Ia) and (Ib) were
taken into account only] is presented in Fig. 9(a) for the case of
linearly polarized incoming radiation. The computed energies
of the intermediate resonances are plotted as dashed lines.

The β0
λ parameters computed after taking into account

many-electron correlations [processes (II)–(VI)] and core
polarization are depicted in Figs. 9(b) and 9(c). In the case
of circularly polarized incoming radiation the β±1

2 and β±1
4

parameters are connected by the simple expression β±1
2 =

−1 − β±1
4 . Therefore, we show in Fig. 9(d) only the β±1

4
parameter.

One can recognize that electron correlations (including
core polarization) improve agreement between β0

2 parameters
at the two-photon ionization threshold region (up to 8.5 eV
of the exciting photon energy) only. At larger energies there
exists a quite substantial difference between the β

q

λ parameters
computed in length and velocity forms. These disagreements
indicate that the angular-distribution parameters are more
sensitive to the accuracy of calculation of many-electron
effects and indicate the necessity of taking into account higher
orders of PT corrections.

V. CONCLUSIONS

In the current work the influence of the relativistic effects
and many-electron correlations including core polarization on
the two-photon ionization of the 5p shell of Xe was studied.
The two-photon transition amplitudes were calculated using
the noniterative correlation function method, developed earlier
in nonrelativistic approximation [8] and extended here for the
relativistic case. Relativistic effects mainly shift energies of
the intermediate 5p5

jc
ns resonances toward the threshold. A

similar trend can be seen when core polarization is included in
the calculations. Both effects together improve considerably
the agreement between calculated and measured resonance
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FIG. 9. Angular-distribution parameters β
q

λ for photoelectrons
computed for the 5p two-photon ionization of Xe in the length (L)
and velocity (V ) form in relativistic LOPT approximation (PF) and
with taking into account correlation and core-polarization effects
(CIPFCP). Energies of the intermediate resonances calculated in
CIPFCP approximation are shown as vertical lines.

energies. As there is only one experimental data point for this
process a meaningful comparison to experiment for the full
investigated exciting-photon energy range cannot be carried
out this time. Therefore we checked the consistency between
calculations using the length and the velocity form of the
dipole operator. It turned out that the calculated cross sections
are close to each other only when electron correlations are
included in the calculations. Additionally the calculated cross
sections are 22% higher when core polarization is included in
the calculations. Finally, the angular-distribution parameters of
the outgoing photoelectrons have been calculated. We intend to
stimulate with the present theoretical work more experiments
to benchmark the present calculations and to pin down those
effects being dominant for this two-photon photoionization
process.
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