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Vibrational-ground-state zero-width resonances for laser filtration:
An extended semiclassical analysis

Amine Jaouadi
Qatar Foundation, P.O. Box 5825, Doha, Qatar

Roland Lefebvre and Osman Atabek*

ISMO, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
(Received 25 April 2017; published 13 June 2017)

A semiclassical model supporting the destructive interference interpretation of zero-width resonances (ZWRs)
is extended to wavelengths inducing c−-type curve crossing situations in Na2 strong-field dissociation. This
opens the possibility to get critical couples of wavelengths λ and field intensities I to reach ZWRs associated
with the ground vibrationless level v = 0, that, contrary to other vibrational states (v > 0), is not attainable for
the commonly referred c+-type crossings. The morphology of such ZWRs in the laser (I,λ) parameter plane and
their usefulness in filtration strategies aiming at molecular cooling down to the ground v = 0 state are examined
within the frame of an adiabatic transport scheme.
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I. INTRODUCTION

Laser filtration based on zero-width resonances (ZWRs) has
already been referred to as a selective and robust technique that,
starting from a given vibrational distribution, aims at shaping
a chirped laser pulse such as to efficiently photodissociate
all vibrational states, with the exception of one [1,2]. The
basic mechanism is an adiabatic transport of the vibrational
state to be filtrated (i.e., protected against dissociation) on its
associated infinitely long-lived ZWR. Such control strategies
have already been worked out for vibrational cooling purposes
on the specific example of Na2, prepared by photoassociation
in some excited vibrational levels. The theoretical observation
is that for certain critical field parameters (wavelength λ and
intensity I ) the photodissociation rate vanishes, resulting in
a ZWR. The objective is to produce ZWRs at will and in a
controllable way, by continuously tuning the laser parameters.
A laser pulse is shaped in such a way so as to adiabatically
transport a given vibrational state v on its parent ZWR and
to track it all along the pulse, referring to an effective phase
strategy [3]. For long enough durations, when the pulse is
switched off, only the single vibrational state v remains
populated, all others v′ �= v having decayed, leading thus to a
robust vibrational cooling control strategy.

It has been shown that ZWRs result from destructive inter-
ference between two outgoing-wave components accommo-
dated by laser-induced adiabatic potentials of a semiclassical
two-channel description [4,5]. Roughly speaking, the critical
phase matching of the interference scheme relies on the
degeneracy of two energy levels: one which originates, in
field-free conditions, from v, and the other, v+, supported by
the field-dressed upper bound adiabatic potential. Depending
on the wavelength, field dressing is such that a given v could
be brought in energy coincidence with any v+ = 0,1, . . .,
resulting in several ZWRs. But it has recently been argued that

*osman.atabek@u-psud.fr

the ground vibrational level v = 0 constitutes an exception (in
a generic sense and at least for Na2), without the possibility of
merging into any ZWR [6]. This does not, however, prevent a
vibrational cooling objective, still achievable through filtration
aiming at a single-level protection v′ �= 0, although this is not
the ground one. In a second step, a stimulated Raman adiabatic
passage (STIRAP) process could then bring the v′ population
onto v = 0 [7].

The purpose of the present paper is to extend the semiclas-
sical analysis, having in mind the specific goal of preparing the
vibrationless state directly from a Boltzmann-type thermal dis-
tribution. This is done by referring to some wavelength regime
inducing curve crossing schemes at internuclear distances less
than the equilibrium geometry of v = 0. Such situations are
labeled as c− crossings, as opposed to the c+ ones of previous
investigations [8].

The paper is organized in the following way: In Sec. II,
ZWRs are introduced within a two-state photodissociation
model of Na2 in a time-independent close-coupled Floquet
Hamiltonian formalism. Their interpretation is based on a
semiclassical model with an original extension to c− avoided
crossings. The filtration strategy based both on the ground
and first excited vibrational states (v = 0,1) are presented in
Sec. III.

II. PHOTODISSOCIATION DYNAMICS

A. Zero-width resonances: Quantum description

Rotationless Na2 multiphoton dissociation is described
within a two-electronic-state Born-Oppenheimer approxima-
tion. These are labeled |1〉 for the bound a 3�+

u (3 2S + 3 2S)
and |2〉 for the dissociative excited state (1)3�g(3 2S +
3 2P ). With R being the internuclear distance, the nu-
clear components φ1,2(R,t) of the time-dependent wave
function,

|�(R,t)〉 = |φ1(R,t)〉|1〉 + |φ2(R,t)〉|2〉, (1)
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FIG. 1. Potential energy curves of the a 3�+
u (3 2S + 3 2S) triplet

(bound, V1) and (1)3�g(3 2S + 3 2P ) excited (dissociative, V2)
electronic states of Na2 (dashed black). Adiabatic potential energies
V±(R) for a c− case corresponding to a wavelength λ = 551.5 nm and
an intensity I = 0.468 × 109 W/cm2 are given in solid red, together
with relevant internuclear distances (Re and Rc for the equilibrium
and crossing positions, R− and R+ for the left turning points). The
modified adiabatic potential Ṽ (R) is built as the lower adiabatic
potential V−(R) for R < Rc, a vertical energy jump at R = Rc (red
solid line), and the upper adiabatic potential V+(R) for R > Rc.

are solutions of the time-dependent Schrödinger equation
(TDSE),

ih̄
∂

∂t

[
φ1(R,t)
φ2(R,t)

]
=

(
TN +

[
V1(R) 0

0 V2(R)

]

− μ12(R)E(t)

[
0 1
1 0

])[
φ1(R,t)
φ2(R,t)

]
, (2)

where TN represents the nuclear kinetic energy. V1(R) and
V2(R) are the Born-Oppenheimer potentials illustrated in Fig. 1
and μ12(R) is the transition dipole between |1〉 and |2〉. The
linearly polarized electric field E(t) is given, for a continuous
wave (cw) laser, by

E(t) = E cos(ωt). (3)

The intensity and the wavelength are given by I ∝ E2 and λ =
2πc/ω, with c being the speed of light. Due to time periodicity,
the Floquet ansatz leads to [9][

φ1(R,t)
φ2(R,t)

]
= e−iEvt/h̄

[
χ1(R,t)
χ2(R,t)

]
, (4)

where Fourier-expanded χk(R,t) (k = 1,2),

χk(R,t) =
∞∑

n=−∞
einωtϕk,n(R), (5)

involve components satisfying a set of coupled differential
equations, for any n, which for moderate field intensities
(retaining only n = 0,1) reduce to

[TN + V1(R) + h̄ω − Ev]ϕ1,1(R) − 1/2Eμ12(R)ϕ2,0(R) = 0,

[TN + V2(R) − Ev]ϕ2,0(R) − 1/2Eμ12(R)ϕ1,1(R) = 0.

(6)

Resonances are quantized solutions with Siegert-type
outgoing-wave boundary conditions [10] and have complex
quasienergies of the form Re(Ev) − i�v/2, where �v is the
resonance width related to its decay rate. In the following,
label v designates both the field-free vibrational level and the
laser-induced resonance originating from this vibrational state.

Going beyond the cw laser assumption, we consider a
chirped laser pulse with parameters ε(t) ≡ {E(t),ω(t)} involv-
ing a slowly varying envelope and frequency. The purpose of
optimizing laser parameters such that the survival probability
of a resonance state originating in field-free conditions from
a given vibrational state v be maximized, while all other
resonances (originating from v′ �= v) are decaying fast, is
conducted within the frame of the adiabatic Floquet formalism
[11]. The full control strategy consists in trapping the system
into a single eigenvector of the adiabatic Floquet Hamiltonian,
in a so-called extended Hilbert space and shaping a pulse with
field parameters such that this eigenstate presents the lowest
(zero, if possible) dissociation rate. We have recently shown
[3] that this is achieved by an optimal choice for the field
parameters,

ε∗(t) ≡ {
EZWR(t),ωZWR

eff (t)
}
,

with ωeff being an effective frequency in this extended Hilbert
space and such that

Im[Ev{εZWR(t)}] = 0 ∀t, (7)

where Im(Ev) is the imaginary part of the energies of
these field-induced resonances. Equation (7) is nothing but
a ZWR path (originating from |v〉) in the amplitude, frequency
parameter plane (or equivalently, intensity I , wavelength λ) as
a function of t , that is,

εZWR(t) ≡
{

EZWR(t) = [IZWR(t)]1/2,

ωZWR
eff (t) = 2πc/λZWR(t).

}
(8)

Finally, the optimal laser pulse acting in the original Hilbert
space where the evolution is monitored by the TDSE displayed
in Eq. (2) is given by [3]

E∗(t) = [IZWR(t)]1/2 cos

(∫ t

0
2πc/λZWR(t ′)dt ′

)
. (9)

It has in particular been shown that ZWRs are good candidates
for a full adiabatic Floquet treatment as initially derived
for pure bound states [3,11]. The molecule, initially in a
particular field-free vibrational state v, is supposed to be
adiabatically driven by such a pulse. Adiabaticity means here
that a single resonance �v(t), labeled v according to its
field-free parent bound state, is followed during the whole
dynamics. This resonance wave function involves, through its
complete basis set expansion, a combination of both bound and
continuum eigenstates of the field-free molecular Hamiltonian.
But the important issue is that, at the end of the pulse, the
molecule is again on its initial single vibrational state v

(adiabaticity condition). For such open systems, contrary to
dynamics involving bound states only, there is unavoidably
an irreversible decay process, precisely due to the fact that
vibrational continuum states are temporarily populated under
the effect of the pulse, even though this is minimized by a
ZWR path tracking. A quantitative measure of such a decay
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is given in terms of the overall fraction of nondissociated
molecules, assuming a perfect adiabatic following of the
selected resonance [1],

Pv(t) = exp

[
−h̄−1

∫ t

0
�v[ε(t ′)]dt ′

]
, (10)

where the decay rate �v[ε(t)] is associated with the relevant
Floquet resonance quasienergy Ev[ε(t)] using the instanta-
neous field parameters ε(t) ≡ {E(t),ω(t)} at time t .

The control issue consists in investigating how rates are
changing with the field parameters, and in particular finding
optimal combinations εZWR(t) for which these rates are small
enough (or even ideally zero) to ensure the survival of the
vibrational state v to the laser excitation, that is, Pv(τ ) ≈ 1,
with τ being the total pulse duration.

B. Zero-width resonances: Semiclassical model

A full destructive interference interpretation of ZWRs is
provided by a semiclassical theory based on a two-channel
scattering model, involving adiabatic potentials V±(R) result-
ing from the diagonalization of the molecule-field interaction
matrix [4,12]. Dissociation quenching related to a null value of
the outgoing scattering amplitude in the lower (open) adiabatic
channel V− occurs when the following two conditions are
simultaneously fulfilled [4,12],∫ Rc

R+
dR′k+(R′) +

∫ Rt

Rc

dR′k+(R′) + χ =
(

ṽ+ + 1

2

)
π

(11)

and ∫ Rc

R−
dR′k−(R′) +

∫ Rt

Rc

dR′k+(R′) =
(

ṽ + 1

2

)
π. (12)

The wave numbers are given by

k±(R) = h̄−1[2m(ε − V±(R))]1/2. (13)

m is the reduced nuclear mass, R± are the left turning points
of V± potentials, Rt is the right turning point of V+, and Rc

is the diabatic crossing point resulting from field dressing, as
displayed in Fig. 1. With integer quantum numbers ṽ+ and
ṽ, these conditions are nothing more than the requirements
of Bohr-Sommerfeld quantization involving a coincidence
between two energies, namely, one ε = εṽ+ of the upper
adiabatic potential V+(R), together with a phase correction
χ , which in weak coupling is −π/4 [12], and another ε = εṽ

of a potential Ṽ (R) made of two branches as identified in
Fig. 1. More precisely, Ṽ (R) is nothing but the lower adiabatic
potential V−(R) for R < Rc, and the upper one V+(R) for
R > Rc, with a vertical energy jump at R = Rc. It is important
to note that for a weak coupling, Ṽ (R) turns out to be close
to the field-free attractive adiabatic potential V1(R). As for the
notations, four quantum numbers labeling vibrational levels
are in consideration, namely, v for the field-free potential
V1(R), ṽ for the two-branch modified adiabatic potential Ṽ (R),
v+ for the upper adiabatic potential V+(R), and ṽ+ for the
same potential but including the additional phase factor χ in
the quantization condition of Eq. (11).

An analytical expression of the resonance width �v is [12]

�v = 2π

h̄

e2πν(e2πν − 1)ωdω+
[ω+ + (e2πν − 1)ωd ]3

(εṽ − εṽ+ )2. (14)

This expression clearly displays the role played by such energy
coincidences, in terms of the square of their differences. In
Eq. (14), ωd and ω+ are the local energy spacings of the
modified diabatic and adiabatic potentials, respectively. ν is
the Landau-Zener coupling parameter

ν = μ2
12(Rc)E2

h̄v̄|�F | , (15)

where v̄ and �F are the classical velocity and slope difference
of the diabatic potentials at Rc. Clearly, the two energies ε = εṽ

and ε = εṽ+ , and therefore the width �v , are dependent on field
parameters, i.e., both frequency (or wavelength) and amplitude
(or intensity). This is in particular due to the (λ,I ) depen-
dence of the corresponding field-dressed adiabatic potentials
V±(R). As a consequence, ZWRs in photodissociation can
be produced at will by a fine tuning of the wavelength and
intensity. Moreover, for a wavelength λ which roughly brings
into coincidence the levels ṽ (corresponding to the field-free
vibrational level v in consideration) and ṽ+ = 0, a fine tuning
of the intensity I will result in an accurate determination of
a ZWR, that is, �v(λ,I ) = 0. In some cases, a stronger field
(higher I ) may also bring into coincidence ṽ with ṽ+ = 1, thus
producing a second ZWR, for the same wavelength, and so on
for ṽ+ = 2,3, . . .. But, one can also envisage slightly different
wavelengths which build energetically close enough ṽ and ṽ+
levels in a field-dressed picture, such that a subsequent fine
tuning of the intensity brings them into precise coincidence.
This flexibility offered by the field parameters that, in principle,
can be continuously modified, is at the origin of not only
quasi-zero-width photodissociation resonances, but also for
their multiple occurrence in the (λ,I ) parameter plane [13].

We emphasize that the semiclassical description of pho-
todissociation is based on field-dressed adiabatic potential
energy curves with avoided crossings mainly controlled by
frequency, whereas couplings are intensity dependent. In
addition, according to Child’s diagrammatic approach we are
following here, these crossings should be reached classically
for both channels, their turning points being at the left of the
crossing point. Such a situation is the one which is valid for
the most commonly referred to c+-type crossings. But, as will
be discussed hereafter, the semiclassical analysis could still
be useful, for some c−-type crossings, occurring at higher
frequencies, compatible with the classically allowed picture
and leading to the previously discarded possibility to reach a
ZWR associated with v = 0. Finally, it is worth noting that
some extensions, at even higher frequencies, to classically
nonreachable crossing situations have already been worked
out using complex crossing points [14].

We now examine in more detail some generic properties of
ZWR behaviors in the (λ,I ) parameter plane, by distinguishing
the c+ and c− cases.

1. Low-frequency regime: c+-type crossing

Such cases correspond to low-frequency field dressing
with a diabatic curve crossing at the right of the equilibrium
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FIG. 2. Schematic view of field-dressed potential energy curves
(upper panels) and ZWR maps (lower panels) for the c+ (left panels)
and the c− (right panels) cases. Na2 upper adiabatic potentials V+(R)
for negligible field intensities are indicated by solid red lines.

distance, Rc > Re. A typical situation is the one illustrated on
the left panel of the schematic view of Fig. 2 with the lowest
possible wavelength λ0 leading to Rc = Re. Semiclassical
rationalization of ZWRs generic behaviors, according to
the energy coincidences between εṽ and εṽ+ involved in
Eq. (14), can be conducted in three steps: (i) field dressing
with λ (intensity being taken as negligible), which is the
major shifting effect on v+ levels not affecting ṽ = v; (ii)
introduction of the additional phase χ (taken as −π/4, for low
enough intensities) affecting v+, which becomes ṽ+; and (iii)
consideration of the role played by the field intensity in locally
changing the adiabatic potentials supporting both ṽ and ṽ+.

The argument discarding the possibility of a ZWR asso-
ciated with v = 0 is based on the fact that in a field-dressed
picture, the upper adiabatic potential V+(R) accommodating
level v+ presents a local curvature (close to Rc) higher than
the one of the bound diabatic state V1(R) supporting level v, at
least for low intensities. This is depicted in Fig. 2 for the lowest
possible wavelength λ = λ0, the most favorable candidate for
an energy coincidence. The consequence is that

εṽ+=0 > εṽ=0. (16)

Moreover, the phase χ produces an additional energy increase
on εṽ+=0. Finally, the effect of the field intensity is such that
it will affect the system by increasing εṽ+=0, while slightly
decreasing εṽ=0. Obviously, all other wavelengths (λ > λ0) of
this low-frequency c+ regime will shift εṽ+=0 at even higher
energies. The coincidence condition for v = 0, required by

Eq. (14), can never be fulfilled for wavelengths inducing a
c+-type crossing.

For all other levels v > 0, semiclassical expectations are
different. As is clear from Fig. 2, for λ = λ0 and v = 1,

εṽ+=0 < εṽ=1. (17)

Both the neglected additional phase χ and changes in field con-
trol parameters (increase of wavelength λ > λ0 and intensity
I ) result in increasing εṽ+ = 0. It is important to note that εṽ=1

is in turn affected by the increase of the field intensity, but much
less than εṽ+=0. Specific laser parameters (λZWR,IZWR) could
then be found to achieve the semiclassical energy coincidence
of Eq. (14), leading to ZWR(v = 1,v+ = 0) originating from
v = 1.

To follow a typical ZWR map in the laser parameter
plane, we suppose that a first coincidence (εṽ = εṽ+ ) has
been obtained for some critical (I,λ) parameters. When the
wavelength is progressively increased, εṽ+ is blueshifted,
whereas εṽ is only slightly affected. The coincidence required
for a ZWR is no longer achieved. In order to compensate
the increase of εṽ+ we have to lower the field intensity. As a
consequence, the ZWR path in the (I,λ) plane is of negative
slope, as illustrated in Fig. 2.

2. High-frequency regime: c−-type crossing

At higher frequencies, for λ < λ0, curve crossings occur
on the left of the equilibrium geometry, that is, Rc < Re. The
right panels of Fig. 2 illustrate such a typical situation. As
already mentioned, there is still a wavelength window for
which, even in this regime, the semiclassical model is still
valid, with the left turning points of Eq. (14) satisfying the
following condition,

R− < R+ < Rc < R0. (18)

At negligible field intensities, the two laser-dressed potentials
V1(R) and V+(R) are very similar, at least in the deeper
part of their common well accommodating the lowest vi-
brational levels, and in particular v = 0. The consequence
is that the coincidence condition could be reached, at least
approximately. It is important to note that, even if for v >

0 such c−-type crossings are merely an extension of the
wavelength regime for which ZWRs are expected, the situation
is completely different for v = 0. Concerning semiclassical
energy coincidence arguments, this actually appears to be the
only regime where, at least approximately, one can expect
εṽ+=0 � εṽ=0, that is, to get a ZWR originating from the
vibrationless ground state v = 0 at field-free conditions.

Finally, similarities between adiabatic potentials Ṽ (R)
and V+(R) regarding their common potential well around
equilibrium geometry, are better obtained by (i) decreasing
the wavelength λ < λ0 in order to enhance the potential well
extension, and (ii) decreasing the intensity I in order to
reduce energy separations of the avoided crossing area. The
conclusion is that ZWRs’ paths in the (I,λ) plane should
behave with a positive slope, as opposite to the c+-type
crossing situation.
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III. RESULTS

Transitionally and rotationally cold, tightly bound, and
vibrationally hot Na2 species are experimentally produced by
photoassociation in the metastable bound state 3�+

u (3 2S +
3 2S), considered as an initial ground state (referred to
as state 1) radiatively coupled with the repulsive, excited
(1)3�g(3 2S + 3 2P ) electronic state (referred to as state
2). The corresponding Born-Oppenheimer potential energy
curves V1,2(R) and the electronic transition dipole moment
μ12(R) between states 1 and 2 are taken from the literature
[15–17]. Finally, Na2 reduced mass is taken as 20 963.2195 a.u.
As depicted in Fig. 1, the equilibrium geometry corresponds
to Re = 9.79 a.u. The critical wavelength for c0 crossing (for
Rc = Re) is actually λ0 = 552 nm, such that c+-type crossings
are obtained for λ > λ0, whereas wavelengths λ < λ0 lead to
c−-type crossings. Moreover, the lowest possible wavelength
still fulfilling the requirement of Eq. (18), for v = 0, turns
out to be λ = 550 nm. This means that the c− extension of
the semiclassical model within its diagrammatic presentation
would only concern a moderate range of wavelengths, namely,
550 nm < λ < 552 nm.

Photoassociation typically prepares vibrational levels with
quantum numbers v � 8. We have previously used a filtration
strategy using ZWR tracking in the (I,λ) parameter plane by
adiabatically transporting the v = 8 level on its associated
ZWR [2]. This leads, after the laser pulse is over, to
a vibrational population left only on v = 8 and therefore
achieving efficient and robust cooling by preparing a single
vibrational level, although not the ground one, v = 0. In other
experimental situations, with an initial thermal distribution
of vibrational states, the filtration targeting the vibrationless
ground state v = 0 would require the generalization of a
similar strategy but now based on a ZWR associated with
v = 0. In the following, we start with the more common
case of filtration referring to ZWR(v = 1) to illustrate both
c+- and c−-type crossing behaviors, in conformity with the
previous semiclassical model. In a second attempt, we analyze
the case of ZWR(v = 0), showing that, with a specific range
of wavelengths (roughly inducing c−-type crossings), efficient
filtration still remains possible.

A. Filtering using ZWR(v = 1)

Solving time-independent coupled equations (6) with
Siegert boundary conditions for a set of cw laser parameters
{I,λ} gives rise to resonances with complex eigenvalues Ev

correlating, in field-free conditions, with the real vibrational
eigenenergies. We are actually interested in finding specific
couples of field parameters for which the imaginary part of the
resonance eigenvalues are close to zero. More specifically, we
analyze the wavelength regime 549 nm < λ < λ0 correspond-
ing to the semiclassical extended c−-type crossing region for
v = 1.

Results of exploratory calculations illustrating the behavior
of resonances originating from v = 1 are displayed in Fig. 3(a).
We have selected three wavelengths within the semiclassical
extension window and intensities up to I = 2 GW/cm2.
The overall tendency is for a smooth regular decrease of
the widths for increasing field strengths, in agreement with
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FIG. 3. ZWR(v = 1) morphology and filtration strategy.
(a) Resonance widths as a function of intensity for selected wave-
lengths (λ = 549, 549.5, 550 nm) in log scale. (b) ZWR map in the
(I,λ) parameter plane. (c) Vibrational populations as a function of
time with initial state v = 1. (d) Vibrational populations as a function
of time with initial states v = 0,2.

the generic behavior of Feshbach-type resonances (due to de-
creasing nonadiabatic couplings [18]). But, more interestingly,
for specific intensities, we obtain sharp dips corresponding
to resonance widths typically less than 10−3 cm−1, clear
signatures of ZWRs. Within numerical inaccuracies inherent
to the evaluation of such very small width resonances (less
than 10−6 cm−1), we observe that there are several couples
of critical wavelengths and intensities producing ZWRs orig-
inating from a single vibrational level v. Figure 3(b) displays
in the (I,λ) laser parameter plane, ZWR paths originating
from (v = 1) for both c− and c+ regimes. As expected from
the extended semiclassical analysis summarized in Fig. 2,
the c−-type crossing region reached for 549 nm < λ < λ0,
roughly corresponds to a ZWR path with a positive slope. This
is to be contrasted with the behavior in the c+ crossing region
λ > λ0, where the slope is negative, once again in conformity
with the semiclassical analysis of Fig. 2. The last step for
filtration control is to shape the frequency chirped laser pulses
resulting from the effective phase adiabatic transport strategy
of Eq. (9), where λZWR and IZWR are those depicted in Fig. 3(b),
exclusively for the c− region. A wave-packet evolution, based
on TDSE solved by a third-order split-operator technique
[2,19], gives the vibrational population dynamics under the
effect of such a pulse acting either on v = 1 as an initial state,
or neighboring v = 0,2 levels. The results are displayed in
Figs. 3(c) and 3(d). The efficiency of the filtration strategy
is well proven. The vibrational population of level v = 1 is
well protected against dissociation [up to 80%, in Fig. 3(c)].
It is worth noting that within the pulse duration and starting
from level v = 1 as an initial state, the populations of levels
v = 0 and 2 are temporarily increasing due to some residual
nonadiabatic contamination with level v = 1 [Fig. 3(c)].
As expected from adiabatic transport, when the pulse is
switched off, all populations (except v = 1) completely vanish.
Applying the same pulse to the neighboring levels (v = 0,2)
results into fast population decays [Fig. 3(d)]. We emphasize
that similar observations have previously been discussed for
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FIG. 4. Same as for Fig. 3, but for ZWR(v = 0) and selected
wavelengths λ = 549, 550, 551, and 552 nm.

c+-type crossings, and the originality of the present work is to
show their possible extension to c−-type crossings. However,
we notice that when referring to ZWRs in the c− semiclassical
extension regime, the filtration process is slightly less selective
(the remaining v = 0 population being not less than 30%).
This is due to the fact that ZWRs originating from v = 1 and
v = 0 are close to each other. As is clear from Fig. 2, the laser
parameters inducing an energy coincidence which is looked
for v = 0 approximately correspond to the ones valid for a
similar coincidence for v = 1.

B. Filtering using ZWR(v = 0)

Having shown the validity of a possible extension of the
semiclassical approach to c−-type crossings, we are now in a
position to examine the most challenging case of a ZWR orig-
inating from the vibrationless ground (v = 0) state, together
with its potentiality to support robust filtration control. The
results are gathered in Fig. 4 following a graphical illustration
similar to the above discussed case of v = 1. As previously,
exploratory calculations are carried out for a c−-type crossing
regime, covered by 550 nm < λ < λ0. A selection of three
such wavelengths is illustrated in Fig. 4(a) for the resonance
widths originating from v = 0 as a function of intensity. This
clearly shows the possibility to reach ZWRs as sharp dips
(widths typically less than 10−4 cm−1) superimposed to a
smoothly decreasing background. More unexpectedly, some
smaller wavelengths are also producing ZWRs. One of them,
corresponding to λ = 549 nm, is shown in Fig. 4. Figure 4(b)
displays the ZWR(v = 0) path in the (I,λ) parameter plane.
A few observations deserve interest: (i) No ZWR is obtained
in the low-frequency regime, for wavelengths λ > λ0 leading
to c+-type crossing, in conformity with the semiclassical
analysis; (ii) unexpectedly, for wavelengths λ < 550 nm,
ZWRs are still observed, although the semiclassical model
is no longer valid, due to the fact that the crossing is not within
the classically allowed region (or even no crossing at all); (iii)
in the intermediate-wavelength regime 550 nm < λ < λ0 fully

supported by the extended semiclassical c−-type crossing, the
slope of the ZWRs’ path is positive in a region well on the left
of Re (550 nm < λ < 550.5 nm), as expected from the anal-
ysis of Fig. 2. But, when Rc becomes closer to Re, the slope
changes to be negative, presumably due to a competition
between decreasing energy separations (εṽ+=0 − εṽ=0) on the
one hand, and an increasing additional phase χ on the other
hand, when the field strength is decreasing. Figure 4(c)
shows the robustness of the v = 0 population efficiently
protected against dissociation (up to 95%), whereas Fig. 4(d)
displays populations of neighboring states (v = 1,2) which are
decaying fast, but with still 27% remaining v = 1 population
at the end of the pulse, for reasons similar to those already
discussed above.

IV. CONCLUSION

The diagrammatic semiclassical model, of crucial impor-
tance in the destructive interference interpretation of ZWRs
and in their localization in the laser (I,λ) parameter plane,
is extended to wavelengths inducing c−-type crossings in the
description of adiabatic potentials. Such an extension, how-
ever, remains limited to wavelength windows of moderate size,
as additional requirements of classically reachable crossings
within vibrational wave functions’ spatial stretching should
be fulfilled. With this extension, the validity of which is
first checked on the standard case of v = 1, the semiclassical
model acquires the capacity for a possible depiction of ZWRs
originating, in field-free conditions, from the vibrationless
ground state v = 0, by approximately defining a couple of
(I,λ) parameters. Actually, quantum Floquet photodissocia-
tion theory confirms these ZWR(v = 0) parameters by refining
their values. But, more unexpectedly, additional ZWRs(v = 0)
are obtained in the c− regime, even though classical conditions
are no longer fulfilled.

A full quantum wave-packet propagation shows that an
adiabatic transport of population from v = 0 to its associated
ZWRs(v = 0) tracked all along an appropriately shaped
laser pulse duration results in efficient vibrational population
protection against photodissociation. When the pulse is over,
the v = 0 population is almost unchanged, thus pointing
to the robustness of the mechanism. At the same time, all
other (v > 0) vibrational populations of the initial thermal
distribution are decaying, pointing to the selectivity of the
filtration process, even though this is less than the one of the
c+ case.

In conclusion, a laser-controlled filtration strategy based on
(v = 0) ZWR tracking is shown to be robust and is selective
enough for molecular vibrational cooling aimed at obtaining
the ground vibrational state in a single-step laser excitation.
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