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Above-threshold ionization of helium in the long-wavelength regime: Examining the
single-active-electron approximation and the two-electron strong-field approximation
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We investigate high-order above-threshold ionization of model helium in the long-wavelength regime up
to 2400 nm by solving the two-electron time-dependent Schrödinger equation in one dimension. To bypass
the difficulty of solving the multielectron time-dependent Schrödinger equation with the long-wavelength
laser interaction, we revisit and examine two typically used theoretical methods: the single-active-electron
approximation and the strong-field approximation. For the description of the high-energy rescattered electrons
in the ground-state ionic channel, the single-active-electron approximation performs better with increasing
ponderomotive energy. Single ionization in the excited-state ionic channels, in general, has much weaker
spectral intensity than that in the ground-state ionic channel. The above-threshold-ionization cutoffs in the
excited-state ionic channels are clear signatures of two-electron dynamics, which cannot be explained within
the single-active-electron approximation. By applying the two-electron strong-field approximation including
rescattering and a saddle-point method analysis, we explain the channel-resolved cutoffs, and relate them to
elastic and inelastic rescattering processes.
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I. INTRODUCTION

Above-threshold ionization (ATI) of atoms and molecules,
in which more photons than the minimum required for
ionization are absorbed from the laser field, is one of the most
fundamental phenomena in strong-field physics. Since the first
experimental observation of ATI [1], numerous studies have
been performed to explore the ATI spectral features (see, e.g.,
Refs. [2–4] for reviews). When irradiated by an intense laser
field, a bound electron may be freed, drift away, and contribute
to the low-energy part of the ATI spectrum (typically below
2Up, where Up is the ponderomotive energy). Alternatively it
may be driven back to the ion by the laser field and rescatter.
The backscattered electrons gain more energy than the direct
electrons and contribute to the plateau-like high-energy part
of the ATI spectrum, typically ranging from 2Up to 10Up.
The high-energy region of the ATI spectrum is found to be
particularly sensitive to the structure of the target ion, allowing
for imaging applications. For example, laser-induced electron
diffraction (LIED) [5] is a time-resolved molecular self-
imaging technique based on extracting structural information
from strong-field-induced rescattering.

Recent development of intense few-cycle light sources
with long wavelengths, e.g., in the mid-infrared regime,
opens a new avenue of strong-field physics [6]. With long-
wavelength laser pulses used in the LIED, one can produce
very high energy rescattered electrons for imaging ultrafast
molecular dynamics, with femtosecond and subangstrom
resolution [7–9]. Although strong-field ionization in the long-
wavelength regime is promising in experimental research, the
corresponding numerical simulations are very challenging.
The difficulties of solving the time-dependent Schrödinger
equation (TDSE) in the long-wavelength regime come not
only from the involvement of many angular momentum states
but also from the large quiver radius that is proportional to the
wavelength squared. It is, hence, a formidable task to simulate
multielectron dynamics in the long-wavelength regime. So
a question arises: what theoretical methods other than full

TDSE calculations are useful for studying the long-wavelength
laser interaction with multielectron systems? In this paper, we
discuss this question by examining the single-active-electron
approximation (SAEA) and the two-electron strong-field
approximation (SFA) including rescattering. We focus on the
high-energy part of the ATI spectrum, which can be used for
high-resolution imaging with the LIED technique.

The SAEA assumes that only one electron is bound by an
effective potential and interacts with the laser field. However,
the validity of the SAEA in few-electron systems still remains
not fully investigated. In the long-wavelength regime, it is
particularly difficult to examine the validity of the SAEA,
since ab initio calculations beyond the SAEA are extremely
demanding. To overcome this difficulty, we consider a one-
dimensional (1D) model of helium in the presence of linearly
polarized infrared laser fields, and the maximum wavelength
considered is 2400 nm. For such a long wavelength, single
ionization (SI) is dominant. We compute the SI spectra in
different ionic channels corresponding to different final states
of He+, and compare them with the ATI spectra obtained
within the SAEA. In the long-wavelength regime, or the
strong-field regime with large Up, the SAEA is found to be
applicable for describing the high-order ATI in the lowest ionic
channel, which is the dominant SI channel. To some extent, this
validates the commonly used single-active-electron model.

In the two-electron TDSE calculations, however, there also
exist two-electron effects even in the SI channels, which cannot
be described within the SAEA. The channel-resolved ATI
spectra, especially those in the excited-state ionic channels,
contain clear two-electron features. To investigate the two-
electron features and the corresponding physical processes,
one needs theoretical methods beyond the SAEA. The SFA,
also known as the Keldysh-Faisal-Reiss theory [10–12],
and its modified versions have been extensively applied to
investigate both one-electron and two-electron dynamics (see,
e.g., Refs. [13–25]). To our knowledge, the SFA has not been
applied for the description of the channel-resolved high-order
ATI spectra. In this paper, we formulate the two-electron
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SFA including rescattering for the channel-resolved ATI of
helium and apply the saddle-point method (SPM) to analyze
the spectral cutoffs. As we will show, the SFA and the SPM
enable us to qualitatively explain the channel-resolved ATI
cutoffs, and to relate them to elastic and inelastic rescattering
processes. In this sense the SFA is a useful tool for qualitative
studies of the strong-field ionization in the long-wavelength
regime and for gaining physical insight about the relevant
processes.

This paper is organized as follows. In Sec. II, we introduce
the theoretical models and numerical methods used in the
TDSE calculations, and formulate the SAEA and the SFA
for our model. In Sec. III we present and discuss the results
of the calculations. Finally we give concluding remarks in
Sec. IV. Atomic units are used throughout unless stated
otherwise.

II. THEORETICAL MODELS AND METHODS

A. TDSE of the 1D helium model

We solve the TDSE of the widely used 1D two-electron
model [26–28]

i∂t�(x1,x2,t) = H (t)�(x1,x2,t), (1)

with the Hamiltonian

H (t) =
2∑

j=1

{
[pj + A(t)]2

2
+ Ven(xj )

}
+ Vee(x1,x2). (2)

Here xj and pj = −i∂xj
(j = 1,2) are the electron coordinate

and momentum operators, respectively;

Ven(xj ) = −2√
x2

j + 1
, (j = 1,2), (3)

Vee(x1,x2) = 1√
(x1 − x2)2 + 1

(4)

are the electron-nucleus and the electron-electron interactions,
which are softened to avoid the Coulomb singularity. The laser
interaction is described in velocity gauge by the vector poten-
tial A(t) within the dipole approximation. In our calculations,
a vector potential with the sine-squared envelope is used:

A(t) =
{−F0

ω
sin2

(
ωt

2Nc

)
cos(ωt), 0 < t < 2πNc

ω
,

0, else,
(5)

where F0 is the maximum field strength related to the peak
intensity I (in units of W/cm2) by F0 =

√
I/(3.509 × 1016), ω

is the angular frequency, and Nc is the number of cycles. We
consider Nc = 2 to shorten the simulation time. For a laser
pulse with a wavelength of 2400 nm and a peak intensity of
8 × 1013 W/cm2, the electron quiver radius is α0 = F0/ω

2 ≈
132, which is the largest quiver radius considered in this
work.

When numerically solving the TDSE, we discretize the
simulation volume by employing a finite-element discrete
variable representation (FEDVR) [29] combined with infinite-
range exterior complex scaling (irECS) [30]. The coordinate
space is divided into inner and outer regions by a complex
scaling radius rc, which is chosen to be larger than the

quiver radius. For example, we choose rc = 150 > α0 for
the laser parameters λ = 2400 nm and I = 8 × 1013 W/cm2.
The inner region [−rc,rc] is discretized by finite elements
with a fixed equal size of 2 and 11 Gauss-Lobatto basis
functions in each element. The outer regions (−∞, − rc] and
[rc, + ∞) are complex scaled with a scaling angle θ = 0.3 and
discretized by 100 basis functions (see Refs. [30,31] for details
of the irECS method and the basis functions). The number of
outer-region basis functions used in our work is larger than that
used in Refs. [30,31], where the numerical calculations were
performed for 800 nm only. For the long-wavelength regime
(e.g., 1600 nm and 2400 nm), we find that more outer-region
basis functions are needed for convergence than the typically
∼ 40 needed for 800 nm calculations.

We propagate the TDSE with the Arnoldi-Lanczos time
propagator [32,33] with a time step of 	t = 0.001. The initial
wave function is obtained by imaginary-time propagation
(ITP) [34]. For both the two-electron TDSE and the one-
electron TDSE within the SAEA, we extract the ATI spectra
(dP/dk, where k is the final momentum of the freed electron)
by using the time-dependent surface flux (tSURFF) method
[35–37] with the tSURFF surfaces placed at x = ±55. We em-
phasize that the irECS method works as an efficient absorber so
that the wave function in the inner region remains accurate for
applying the tSURFF method. For the TDSE within the SAEA,
we perform reference calculations on a large grid without any
absorber (a finite simulation box [−10000,10000] discretized
by 10000 equal-size finite elements and 11 Gauss-Lobatto
basis functions in each element). The convergence of the irECS
method for the SAEA calculations is checked by comparison
with the reference results. We apply the one-electron irECS
parameters found by this convergence test also for the two-
electron TDSE.

B. SAEA for the 1D helium model

Here we briefly introduce the SAEA used in this work
(see also Ref. [38]). To find the effective potential, we first
make the Hartree-Fock (HF) ansatz for the ground-state He
wave function and apply ITP to the equation for the field-free
single-electron orbital ψ0,

i∂tψ0(x,t) = H0(t)ψ0(x,t), (6)

with the Hamiltonian

H0(t) = p2

2
+ Ven(x) +

∫
dx ′Vee(x,x ′)|ψ0(x ′,t)|2. (7)

The SAEA assumes that the inactive electron is “frozen” in the
field-free single-electron orbital ψ0 while the active electron
feels the effective potential of the “frozen core”

Veff(x) = Ven(x) +
∫

dx ′Vee(x,x ′)|ψ0(x ′)|2, (8)

where the time dependence of ψ0 is dropped since the
distribution of the inactive electron |ψ0(x ′,t)|2 remains time-
invariant. With the laser interaction taken into account, the
TDSE for the active electron reads

i∂tψ1(x,t) = H1(t)ψ1(x,t), (9)
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where the SAEA Hamiltonian is

H1(t) = [p + A(t)]2

2
+ Veff(x). (10)

The ionization potential (Ip) obtained within the SAEA is
0.750, which is slightly smaller than Ip for the SI of the two-
electron model (0.755), due to the HF ansatz made in the
SAEA.

C. Two-electron SFA for the 1D helium model

The way in which we formulate the two-electron SFA
including rescattering follows the intense-field many-body
S-matrix theory (IMST) [39], which is a systematic method
to calculate the transition amplitude from an initial state ψi(ti)
to a final state ψf (tf ), based on different partitions of the total
Hamiltonian. The states ψi(t) and ψf (t) are solutions to the
TDSE with the Hamiltonians Hi(t) and Hf (t), respectively. We
have the initial- and final-state partitions of the total Hamilto-
nian H (t) = Hi(t) + Vi(t) = Hf (t) + Vf (t). Instead of using
Green’s functions as in Ref. [39], we formulate the theory
with time-evolution operators U (t,t ′), Ui(t,t ′), and Uf (t,t ′),
corresponding to H (t),Hi(t), and Hf (t), respectively. The
time-evolution operators solve the TDSEs

i∂tU (t,t ′) = H (t)U (t,t ′), (11)

i∂tUi(t,t
′) = Hi(t)Ui(t,t

′), (12)

i∂tUf (t,t ′) = Hf (t)Uf (t,t ′), (13)

and the total time-evolution operator U (t,t ′) can be related to
Ui(t,t ′) and Uf (t,t ′) by

U (t,t ′) = Ui(t,t
′) − i

∫ t

t ′
dt1U (t,t1)Vi(t1)Ui(t1,t

′), (14)

U (t,t ′) = Uf (t,t ′) − i

∫ t

t ′
dt1Uf (t,t1)Vf (t1)U (t1,t

′). (15)

Substituting Eq. (15) into Eq. (14) leads to

U (t,t ′) = Ui(t,t
′) − i

∫ t

t ′
dt1Uf (t,t1)Vi(t1)Ui(t1,t

′)

−
∫ t

t ′
dt1

∫ t

t1

dt2Uf (t,t2)Vf (t2)U (t2,t1)

×Vi(t1)Ui(t1,t
′). (16)

By evolving the system from ψi(ti) and applying Eq. (16), we
can evaluate the probability amplitude of finding the system in
ψf (tf ) as

〈ψf (tf )| U (tf ,ti) |ψi(ti)〉

= 〈ψf (tf )|ψi(tf )〉 − i

∫ tf

ti

dt1 〈ψf (t1)| Vi(t1) |ψi(t1)〉

−
∫ tf

ti

dt1

∫ tf

t1

dt2〈ψf (t2)|Vf (t2)U (t2,t1)Vi(t1)|ψi(t1)〉,

(17)

which is equivalent to the IMST expression [39].

In this work, the He ground state (denoted by |g; t〉 for time
t) is considered as the initial state, so the initial-state partition
of the total Hamiltonian is

Hi =
2∑

j=1

[
p2

j

2
+ Ven(xj )

]
+ Vee(x1,x2), (18)

Vi = A(t)[p1 + p2 + A(t)]. (19)

For the channel-resolved SI, we consider the single-continuum
state as the final state. In the SFA, exact continuum states
are approximated by Volkov states, so we use the product of
the Volkov state and the bound ionic state for the channel-
specific single-continuum state. Reserving the index 1 for the
freed electron, we have the final-state partition of the total
Hamiltonian

Hf = [p1 + A(t)]2

2
+ p2

2

2
+ Ven(x2), (20)

Vf = A(t)[p2 + A(t)/2] + Ven(x1) + Vee(x1,x2). (21)

Now we introduce the notation |k,n; t〉 for the approximated
single-continuum state (the product of the Volkov state and the
bound ionic state) at time t , meaning that the freed electron has
the canonical momentum k and the ion He+ is in its nth state.
Thus the time-evolution operator Uf (t,t ′) can be expressed as

Uf (t,t ′) =
∑

n

∫ +∞

−∞
dk |k,n; t〉 〈k,n; t ′| . (22)

By approximating 〈k,n; t |g; t ′〉 ≈ 0 and U (t2,t1) ≈ Uf (t2,t1)
in Eq. (17), we obtain the two-electron SFA transition
amplitude from the initial state |g; t = −∞〉 to the final state
|kf ,n; t = +∞〉:

TSFA(kf ,n)

= −i

∫ +∞

−∞
dt1 〈kf ,n; t1| Vi(t1) |g; t1〉

−
∑
m

∫ +∞

−∞
dt1

∫ +∞

t1

dt2

∫ +∞

−∞
dki 〈kf ,n; t2| Vf (t2) |ki,m; t2〉

× 〈ki,m; t1| Vi(t1) |g; t1〉 . (23)

The spectral intensity is proportional to |TSFA(kf ,n)|2. For
two-electron systems, the SFA has been extensively used in the
studies of double ionization (see, e.g., Refs. [14,17,22–25]).
In this work, we formulate the two-electron SFA [Eq. (23)] for
the channel-resolved SI.

The physical meaning of Eq. (23) is clear: the first term
describes the direct SI into the nth ionic channel via the laser
interaction while the second term (sum) describes two-step
processes leading to SI, including the rescattering. In the
two-step processes, the first step, similar to the direct SI, is
the SI (with intermediate momentum ki) into the mth ionic
channel induced by the laser interaction. The second step can
be understood by investigating the three terms in Eq. (21):
remember that the freed electron is denoted by the index 1, the
first interaction A(t2)[p2 + A(t2)/2] can give a nonvanishing
contribution only if kf = ki , describing a transition in the ion
induced by the laser interaction; the second interaction Ven(x1)
can give a nonvanishing contribution only if n and m are equal,
describing an elastic rescattering of the freed electron via the
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electron-nucleus interaction; the third interaction Vee(x1,x2)
allows for state changes in both the freed and bound electrons,
i.e., ki → kf and m → n, including both elastic and inelastic
rescattering processes via the electron-electron interaction.

Here we focus on the high-energy channel-resolved ATI
cutoffs; therefore in the two-electron SFA we only study
the terms that can contribute to the production of high-
energy electrons, i.e., the terms corresponding to rescattering
processes. For the high-energy part of the ATI spectra, Eq. (23)
can be approximated by a sum of all the rescattering terms that
result in the same final state |kf ,n; t = +∞〉:

TSFA(kf ,n) ≈
∑
m

T m,n
res (kf ), (24)

where T m,n
res (kf ) is a unified notation for both the elastic (m =

n) and inelastic (m 	= n) rescattering terms:

T m,n
res (kf ) = −

∫ +∞

−∞
dt1

∫ +∞

t1

dt2

∫ +∞

−∞
dki 〈kf ,n; t2| Vres |ki,m; t2〉

× 〈ki,m; t1| Vi(t1) |g; t1〉 . (25)

In Eq. (25) the notation Vres is used for both the elastic (m =
n) and inelastic (m 	= n) rescattering interactions, which are
time-independent:

V m,n
res = δm,nVen(x1) + Vee(x1,x2). (26)

With the He ground-state energy denoted by Eg and the nth
(mth) ionic energy denoted by En (Em), we introduce the
two-electron Volkov phase

S
m,n
kf

(ki,t1,t2) =
∫ t2

0
dt

[kf + A(t)]2

2
−

∫ t2

t1

dt
[ki + A(t)]2

2

+ (En − Em)t2 + (Em − Eg)t1, (27)

and the form factor

W
m,n
kf

(ki,t1) = 〈kf ,n; 0| V m,n
res |ki,m; 0〉

× 〈ki,m; 0| Vi(t1) |g; 0〉 . (28)

Then Eq. (25) can be rewritten as

T m,n
res (kf ) = −

∫ +∞

−∞
dt1

∫ +∞

t1

dt2

∫ +∞

−∞
dki

{
W

m,n
kf

(ki,t1)

× exp
[
iS

m,n
kf

(ki,t1,t2)
]}

. (29)

The SPM is applied to approximate the integral in Eq. (29)
(see, e.g., Refs. [13,15,19] for discussion of the SFA and the
SPM). First, we seek for solutions to the saddle-point equations

∂S
m,n
kf

∂ki

=
∂S

m,n
kf

∂t1
=

∂S
m,n
kf

∂t2
= 0, (30)

namely,

ki(t2 − t1) +
∫ t2

t1

dtA(t) = 0, (31)

[ki + A(t1)]2

2
+ (Em − Eg) = 0, (32)

[kf + A(t2)]2

2
− [ki + A(t2)]2

2
+ (En − Em) = 0. (33)

Equation (31) determines the intermediate momentum ki while
Eqs. (32) and (33) describe the energy conservation at the

ionization time t1 and the rescattering time t2. The solutions
are complex-valued and they come in pairs. We only consider
the physically relevant solutions, with additional conditions
0 < Re(t1) < Re(t2) < 2πNc/ω and Im(t1) > 0 imposed. The
nonlinear Eqs. (31)–(33) are solved numerically with the
Powell hybrid method.

Suppose that there are Q pairs of physically relevant
solutions for any final momentum kf . We introduce an index
s ∈ {q+,q−} (q = 1, . . . ,Q) for the solutions {ks

i ,t
s
1 ,t

s
2}, and

approximate Eq. (29) according to the SPM

T m,n
res (kf ) ∼ −

∑
s

{
W

m,n
kf

(
ks
i ,t

s
1

)
exp

[
iS

m,n
kf

(
ks
i ,t

s
1 ,t

s
2

)]

× [
	

m,n
kf

(
ks
i ,t

s
1 ,t

s
2

)]−1/2
(2πi)3/2

}
, (34)

where {ks
i ,t

s
1 ,t

s
2} are the solutions to Eqs. (31)–(33) and

	
m,n
kf

(ki,t1,t2) =
∂2S

m,n
kf

∂k2
i

∂2S
m,n
kf

∂t2
1

∂2S
m,n
kf

∂t2
2

. (35)

The ATI cutoff energy is solely determined by the exponen-
tial term within the SPM. The SPM fails for electron energies
near and beyond the cutoff; i.e., the pair of two solutions
approach each other closely near the cutoff and one of them
becomes unphysical after the cutoff. The contribution of the
unphysical solution diverges as the energy k2

f /2 → +∞ (see,
e.g, Refs. [13,15,18]). To solve this problem, one can drop
the unphysical solution for energies beyond the cutoff, or use
the uniform approximation [15,19]. For a pair of solutions
{kq+

i ,t
q+
1 ,t

q+
2 } and {kq−

i ,t
q−
1 ,t

q−
2 } as a function of the final

momentum kf , a cutoff energy k2
f /2 can be determined by

finding the kf that satisfies the condition

Re
[
S

m,n
kf

(
k

q+
i ,t

q+
1 ,t

q+
2

)] = Re
[
S

m,n
kf

(
k

q−
i ,t

q−
1 ,t

q−
2

)]
. (36)

Here we reserve the index {q−} for the unphysical solution
after the cutoff. There might be multiple pairs of solutions
that give different cutoff energies; however, the observed or
numerically obtained ATI cutoff is typically determined by
only one pair of solutions. In this work we apply the SFA
and the SPM to investigate the channel-resolved ATI cutoffs,
and we neglect the form factor W

m,n
kf

(ks
i ,t

s
1 ) in Eq. (34), which

does not affect the cutoffs. Denoting by {kc+
i ,t c+1 ,tc+2 } and

{kc−
i ,t c−1 ,tc−2 } the dominant pair of solutions that determines

the cutoff, we evaluate the ATI spectrum within the SPM as

∣∣T m,n
res (kf )

∣∣2 ∼
∣∣∣∣

∑
s={c+,c−}

exp
[
iS

m,n
kf

(
ks
i ,t

s
1 ,t

s
2

)]
[
	

m,n
kf

(
ks
i ,t

s
1 ,t

s
2

)]1/2

∣∣∣∣
2

, (37)

and simply drop the unphysical solution {kc−
i ,t c−1 ,tc−2 } for

energies beyond the cutoff. Although the absolute spectral
intensity is lost in Eq. (37), the SPM analysis enables us to
find well-defined cutoffs in different ionic channels, and to
identify the corresponding rescattering processes.

III. RESULTS AND DISCUSSION

A. Two-electron TDSE versus SAEA

We first investigate the validity of the SAEA for a fixed laser
intensity of 8 × 1013 W/cm2, but at different wavelengths.
Figure 1 shows the ATI spectra in the lowest three ionic
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FIG. 1. ATI spectra computed within the SAEA, compared with the SI spectra in the lowest three ionic channels (SI-1, SI-2, and SI-3)
extracted from the two-electron TDSE, for two-cycle laser pulses with wavelengths of 800, 1600, and 2400 nm. The peak intensity is fixed at
8 × 1013 W/cm2.

channels obtained from the two-electron TDSE [Eq. (1)]
compared with the ATI spectra obtained from the SAEA TDSE
[Eq. (6)], for wavelengths of 800, 1600, and 2400 nm. For the
considered two-cycle pulses, there exists obvious asymmetry
in the two opposite directions (k < 0 and k > 0) and the
prediction of the typical 10Up cutoff (for long pulses with
more than 10 cycles) is not valid.

Figure 1 shows that, in general, the SI in the ground-state
ionic channel (SI-1) is dominant while the ATI spectra in the
excited-state ionic channels are much weaker. The total SI
spectra (not shown) are well represented by the SI-1 spectra.
Therefore we focus on the comparison between the SI-1
and SAEA spectra, to study the validity of the SAEA. For
the wavelength of 800 nm, it is difficult to clearly identify
the ATI plateau and cutoff features. Also in Figs. 1(a) and
1(b) there exists a large disagreement between the SI-1 and
SAEA spectra, especially in the high-energy region, where
the SI-1 and SAEA spectral intensities differ by around two
orders of magnitude. Such disagreement becomes smaller and
the plateau and cutoff features become more pronounced, as
the wavelength increases to 1600 nm and 2400 nm. For a

wavelength of 2400 nm, the high-energy part of the SAEA
spectra is quite similar to that of the SI-1 spectra (and also
the total SI spectra). In terms of the high-order ATI spectra
corresponding to the back-rescattered electrons, we conclude
that the SAEA works better at longer wavelengths for a fixed
laser intensity.

A useful quantity for classifying strong-field ionization is
the Keldysh parameter γ = √

Ip/2Up [10]. For a fixed laser
intensity, the ponderomotive energy Up becomes larger as the
wavelength increases, resulting in a smaller Keldysh parameter
γ , which means that the ionization dynamics become more
tunneling-like. Thus the conclusion drawn from Fig. 1 implies
that the SAEA works better for dynamics in the tunneling
ionization regime. Now we investigate the validity of the
SAEA from a different perspective. We vary the intensity with
the wavelength, keeping Up (and γ ) fixed. The ponderomotive
energy is fixed at Up = 1.58, which is determined by the
laser parameters used in Figs. 1(e) and 1(f). The Keldysh
parameter for the 1D model of He is γ = 0.49 < 1, which
is in the tunneling ionization regime. For wavelengths of 800
and 1600 nm, the corresponding intensities are 7.2 × 1014 and
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FIG. 2. ATI spectra computed within the SAEA, compared with the SI spectra in the lowest three ionic channels (SI-1, SI-2, and SI-3)
extracted from the two-electron TDSE, for two-cycle laser pulses with wavelengths of 800 and 1600 nm. The corresponding peak intensities
are 7.2 × 1014 W/cm2 (for 800 nm) and 1.8 × 1014 W/cm2 (for 1600 nm), keeping Up = 1.58, as in Figs. 1(e) and 1(f).

1.8 × 1014 W/cm2, respectively, and the results are presented
in Fig. 2. Similarly to Figs. 1(e) and 1(f), Fig. 2 shows good
agreement between the SAEA and SI-1 spectra, especially for
energies near the cutoff. This means that the SAEA could also
be applied to the near-infrared regime (e.g., 800 nm), as long
as the ponderomotive energy is large.

The large Up leads to high-energy rescattering electrons,
which can be used for high-resolution imaging of ultrafast
dynamics with the LIED technique. Our work indicates that the
large Up also makes the SAEA applicable for the theoretical
analysis of the LIED. To achieve large Up , it is more practical to
increase the wavelength than the intensity. The LIED technique
based on mid-infrared laser sources has a great advantage that
the problematic ionization saturation can be easily avoided for
such long wavelengths.

From Figs. 1 and 2, we also find that the SI in different
ionic channels have different cutoffs. For example, one can
observe in Figs. 1(e) and 1(f) that the cutoff energies for both
(k < 0) and (k > 0) decrease in sequence from SI-1 to SI-3.
Although the spectral intensities of the SI in the excited-state
ionic channels are generally much lower than that of the SI-1,
their cutoffs are indeed signatures of two-electron dynamics,
which cannot be described within the SAEA. To study two-
electron dynamics in the SI of the helium model, we turn to
the application of the two-electron SFA described in Sec. II.

B. Two-electron TDSE versus two-electron SFA

As discussed in Sec. II, we consider rescattering processes
to analyze the channel-resolved ATI cutoffs via the transition

probabilities of Eq. (37). For any final state in a specific
ionic channel (n), there are many possible intermediate states
in different ionic channels (m). To isolate the dominant
rescattering process, we use the fact that the first step, i.e.,
the SI in the mth channel, is exponentially sensitive to the
ionization potential (Em − Eg). Among all the rescattering
processes, the first-step SI that goes into the ground-state
ionic channel (m = 1) is the most probable. Therefore we
restrict ourselves to T 1,n

res terms in the SFA and find the
corresponding cutoffs based on the SPM analysis. In the SPM
analysis, we only consider the dominant saddle-point solutions
in the high-energy region, which correspond to backward
rescattering processes. In the following discussion, we only
consider the laser parameters used in Figs. 1(e) and 1(f), i.e.,
λ = 2400 nm and I = 8 × 1013 W/cm2.

In the SPM analysis, the channel-resolved cutoffs are deter-
mined by one pair of saddle-point solutions to Eqs. (31)–(33)
regarding the elastic and inelastic rescattering processes. To
understand the rescattering in the time domain, we first show in
Figs. 3(a) and 3(b) the saddle-point solutions of the ionization
time t1 and the rescattering time t2 used in the evaluation of
the elastic rescattering term T 1,1

res . Note that only the dominant
pair of solutions that determines the cutoff is presented here.
The real parts of the solutions could be understood as the
physical times where the ionization and rescattering occur. By
comparing the solutions with the electric field F (t) = −∂tA(t),
whose variation is also indicated in Figs. 3(a) and 3(b), one
finds that the ionization and rescattering events are confined
to small regions of time.

063407-6



ABOVE-THRESHOLD IONIZATION OF HELIUM IN THE . . . PHYSICAL REVIEW A 95, 063407 (2017)

-0.1

0.0

0.1

0.0 0.5 1.0 1.5 2.0

Im
[ω
t /

(2
π )

]

Re[ωt /(2π)]

ωt1/(2π)

ωt2/(2π)(a) k < 0

-0.1

0.0

0.1

0.0 0.5 1.0 1.5 2.0

Im
[ω
t /

(2
π )

]

Re[ωt /(2π)]

ωt1/(2π)

ωt2/(2π)

(b) k > 0

0.04

0.06

0.08

0.10

0.82 0.84

Im
[ω
t 1

/(2
π )

]

Re[ωt1/(2π)]

(c)

3Up
3Up

9Up

9Up

0.15

0.17

0.36 0.40
Im

[ω
t 1

/(2
π )

]

Re[ωt1/(2π)]

(d)

3Up

3Up

9Up

9Up

-0.10

0.00

0.10

1.40 1.50

Im
[ ω
t 2

/(2
π)

]

Re[ωt2/(2π)]

(e)

3Up 3Up

9Up

9Up

-0.05

0.00

0.05

0.90 1.00 1.10

Im
[ ω
t 2

/(2
π)

]

Re[ωt2/(2π)]

(f)

3Up 3Up

9Up

9Up

FIG. 3. (a) and (b) Saddle-point solutions of the ionization time t1 and the rescattering time t2 (the red solid lines) used to evaluate the
elastic rescattering term T 1,1

res , for the final energy range from 3Up to 9Up . The considered laser parameters are the same as in Figs. 1(e) and 1(f).
The electric field F (t) = −∂tA(t) is presented (in arbitrary units) by the black dashed line. (c)–(f) Zoom-in view of the saddle-point solutions
used to evaluate T 1,1

res (red lines with square markers), T 1,2
res (green lines with circle markers), and T 1,3

res (blue lines with triangle markers), for the
same final energy range. The line markers indicate the final energies of 3Up and 9Up , i.e., the end points of the curves. For energies beyond the
cutoff, the solutions labeled by empty markers become unphysical and are dropped in the evaluation of Eq. (37).

To identify the common features of the elastic and inelastic
processes and the difference between them, we take a detailed
view of the saddle-point solutions for T 1,1

res , T 1,2
res , and T 1,3

res
in Figs. 3(c)–3(f), i.e., for the elastic rescattering in the
ground-state ionic channel T 1,1

res along with the inelastic
rescattering in the excited-state ionic channels T 1,2

res and T 1,3
res .

It is observed that the curves of the solutions for different
rescattering processes almost coincide. For a specific final
energy, however, the solutions for different rescattering pro-
cesses are different; e.g., the line markers of different types are
at different positions. Both the elastic and inelastic rescattering
processes considered here have the common feature that the
ionization occurs around a peak of the electric field while the
rescattering occurs when the electric field is close to zero.
It is worth mentioning that the actual ionization dynamics
may happen at any time during the laser interaction, which
makes the final outcome (e.g., the ATI spectra) complicated
to decode. By applying the SPM, however, one can find
the dominant processes for explaining parts of the results.
Therefore the SPM not only simplifies the evaluation of the
integrals in the SFA, but also provides physical insight into the
dynamics.

In Fig. 4 we present the SPM analysis of the ATI cutoffs
in the lowest three ionic channels. The cutoffs obtained from
the SPM analysis are indicated by the dotted vertical lines,
and the energies are given in the caption. For the ground-
state ionic channel (n = 1), the elastic rescattering term T 1,1

res
gives exact cutoff positions for both the (k < 0) and (k > 0)
cases. The inelastic rescattering terms T 1,2

res and T 1,3
res give exact

cutoff positions for the excited-state ionic channels (n = 2) and

(n = 3), respectively. In terms of the channel-resolved ATI
cutoffs, the good agreement between the SPM and the TDSE
results implies that the SFA could be a useful qualitative tool
for the strong-field ionization in the long-wavelength regime.
In the inelastic rescattering, part of the kinetic energy of the
freed electron is consumed for the excitation of the ionic state,
resulting in a smaller final kinetic energy than that in the elastic
rescattering. For the considered 1D model, the energies of
the lowest three ionic states are E1 = −1.483, E2 = −0.772,
and E3 = −0.465. The energy difference between the ionic
ground state and the first excited state is, hence, E2 − E1 =
0.711. Naively one might expect that this difference should
correspond to the difference in the cutoff energies for the SI-1
and SI-2 channels. However, the differences in cutoffs between
the SI-1 and SI-2 channels are 1.13 and 1.42 in Figs. 4(a) and
4(b), respectively. In both cases these cutoff differences are
very different from the energy difference in the ionic states, and
this discrepancy comes from the fact that the vector potential
at the rescattering time enters the cutoff analysis [see Eq. (33)].
Similar analysis can be performed for the other cutoffs, and
the conclusions are the same.

In closing this section, we briefly mention that although the
SFA has been widely applied, it is still a theoretical method
under investigation and modification. It is well known that the
SFA has drawbacks such as the loss of gauge invariance and the
neglect of Coulomb effects, which has stimulated many studies
aiming at improving the SFA (see, e.g., recent publications
[40–42]). For our purpose of qualitatively determining the
channel-resolved ATI cutoffs, the presented two-electron SFA
and SPM analyses are demonstrated to be sufficient. To
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FIG. 4. Channel-resolved ATI cutoffs analyzed with the SFA and
the SPM, for the same laser parameters as in Figs. 1(e) and 1(f). The
solid lines, from top to bottom, are the channel-resolved high-energy
ATI spectra obtained from T 1,1

res , T 1,2
res , and T 1,3

res , respectively. The
vertical dotted lines, from right to left, indicate the corresponding
cutoffs obtained from the SPM analysis, i.e., the cutoff energies of
7.33, 6.20, 5.69 in (a) and 13.31, 11.89, 11.26 in (b). For better
visualization, the solid curves are vertically shifted so that they are
clearly separated. The SI spectra in the lowest three ionic channels
(SI-1, SI-2, and SI-3) extracted from the two-electron TDSE are also
presented for comparison.

understand all the spectral features, however, one needs
an improved version of the SFA for multielectron
systems.

IV. COCLUSION AND OUTLOOK

We studied the channel-resolved ATI of He in the long-
wavelength regime by solving the two-electron TDSE in one
dimension, and examined the SAEA and the SFA including
rescattering for the two-electron model. For the description of
the high-energy rescattered electrons in the ground-state ionic
channel, the SAEA was found to perform better with increasing
Up. This finding to some extent validates the SAEA, which
is, e.g., commonly used in the theoretical analysis of LIED.
The SI in the excited-state ionic channels generally shows
much weaker spectral intensity than that in the ground-state
ionic channel. The channel-resolved ATI cutoffs are clear
signatures of two-electron dynamics, which are beyond the
applicability of the SAEA. Regarding the channel-resolved
ATI cutoffs at the wavelength of 2400 nm, we investigated
the elastic and inelastic rescattering processes by applying
the SFA and the SPM, and found good agreement of the
cutoff positions between the SPM and the TDSE results.
Therefore the two-electron SFA including elastic and inelastic
rescattering is proven to be a useful tool for qualitative studies
of the strong-field ionization in the long-wavelength regime.
Since the full TDSE calculations of multielectron systems are
very challenging for long-wavelength laser interactions, it is
mandatory to seek good theoretical methods that require fewer
computational resources. The two-electron 1D model is a prac-
tical reference for developing and examining multielectron
theories in the long-wavelength regime.
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