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We investigate the time- and energy-minimum optimal solutions for the robust control of two-level quantum
systems against offset or control-field uncertainties. Using the Pontryagin maximum principle, we derive the
global optimal pulses for the first robustness orders. We show that the dimension of the control landscape is lower
than or equal to 2N for a field robust to the N th order, which leads to an estimate of its complexity.
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I. INTRODUCTION

Quantum control techniques are nowadays at the core of
emergent quantum technologies in a multitude of domains
extending from molecular and solid-state physics to nuclear
magnetic resonance (NMR) and magnetic resonance imaging
[1–5]. One of the main obstructions to the experimental real-
ization of open-loop control processes is their high sensitivity
to experimental imperfections and model uncertainties. Since
the start of quantum control, this question has motivated
the development of pulse design methods addressing such
robustness issues [6–8]. Adiabatic quantum control techniques
were first applied with success in some examples, but these
protocols have a limited efficiency in a general setting due
to the requirement for high-energy and long-duration fields
[9,10]. Composite pulses [11–13] and shortcuts to adiabaticity
techniques [14–16] have also been proposed, but they cannot
reach the physical limits of the dynamical process in terms
of time or efficiency. We show that optimal control theory
can be a perfect tool to overcome these difficulties [8,17–19].
Optimal control theory is a general approach allowing us to
manipulate the system dynamics by determining the control
field that minimizes a cost functional, which can be, e.g.,
the control duration or its energy [20–22]. However, optimal
control fields are not robust by construction and this issue
is still at the center of a vivid debate [1,2,23,24]. Different
numerical approaches ranging from the simultaneous control
of an inhomogeneous ensemble of quantum systems [25–30]
to pseudospectral methods [31,32] have been proposed. Only
local optimal solutions are obtained, with no certitude about
the global optimality of the control process. In this work, we
show how this fundamental question can be solved through the
Pontryagin maximum principle (PMP) [17–19]. This approach
has already been used with success in different optimal
quantum problems [33–40] and we propose here to extend its
range of application to the design of robust control protocols.
The PMP transforms the optimal control problem into a
generalized Hamiltonian system subject to a maximization
condition and some boundary constraints. In this framework,
the goal consists in finding the Hamiltonian trajectory reaching
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the target state, while minimizing the cost functional which
defines the optimization procedure. A key advantage of the
PMP is that it reduces the initial infinite-dimensional control
landscape [2,41] to a finite space of low dimension. As shown
below, this property is crucial in the search for globally optimal
controls.

In this paper, we establish time- and energy-minimum opti-
mal control strategies leading to a robust and precise state-to-
state transfer of two-level quantum systems. The implemen-
tation of quantum gates is also analyzed. The measure of the
robustness is given by the deviation of the control fidelity
against offset or field inhomogeneities. This description
reproduces the standard experimental uncertainties that can
be encountered in quantum information processing, in NMR,
and in atomic or molecular physics [1,42–44]. The robustness
is defined either locally by expanding the state of the system
order by order with respect to the unknown parameters [15,16]
or globally by considering a discrete inhomogeneous ensemble
of quantum systems [25,26]. A precise definition is given later.
Ultraprecise or broadband excitation profiles are realized based
on the first or second measure, respectively, which is called
local or broadband robustness below. The two definitions are
considered in the different examples. Note that the controllabil-
ity of the different systems is assumed and not discussed in this
work [45,46].

The paper is organized as follows. Section II introduces
the model we study. The optimal solutions for the energy- and
time-minimum inversion robust against offset inhomogeneities
are presented in Sec. III. Section IV focuses on the robustness
with respect to control-field imperfections, while Sec. V is
dedicated to the broadband control of an ensemble of spins.
A comparison with the results obtained with a numerical
optimization algorithm is made in Sec. VI. The method
is generalized in Sec. VII to the robust implementation
of one-qubit gates. Conclusion and prospective views are
given in Sec. VIII. Technical computations are reported in
Appendixes A–C.

II. THE MODEL SYSTEM

We consider the Bloch representation of a two-level
quantum system whose dynamics is governed by the Bloch
equation. The Bloch vector �q(t) = t (x,y,z) satisfies the
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differential system

�̇q(t) =
⎛
⎝ 0 δ −(1 + α)uy

−δ 0 (1 + α)ux

(1 + α)uy −(1 + α)ux 0

⎞
⎠�q(t), (1)

where ux and uy are the two control fields. The parameters δ

and α represent the offset and control field inhomogeneities,
respectively. We first consider the case where α = 0. We
assume that the solution of the Bloch equation can be written
as a perturbative expansion in δ up to a given order,

�q(t) = �q0(t) + δ�q1(t) + · · · + δN �qN (t) + O(δN+1), (2)

with �qi = t (xi,yi,zi). The vector �q0 is the homogeneous part
of the solution and �qi the inhomogeneous contribution due to
the ith-order term of the expansion. We investigate the robust
control of the inversion of the Bloch vector; i.e., the goal is
to bring in a time tf the state �q(t) from the north pole to the
south pole of the Bloch sphere. Other initial or target states
can be analyzed in the same way. The control process can be
expressed in the perturbative expansion as

�q0(0) = t (0,0,1) �→ �q0(tf ) = t (0,0, − 1),

�qi(0) = t (0,0,0) �→ �qi(tf ) = t (0,0,0), for i ∈ {1, . . . ,N}.
(3)

Note that the target states of the inhomogeneous contributions
ensure that the offset term does not modify the final state of
the system up to order N in δ, thus improving the robustness
of the control protocol. Plugging Eq. (2) into Eq. (1), it is
straightforward to show that the differential system governing
the dynamics of each vector �qi is given by

d

dt

⎛
⎜⎜⎜⎜⎝

�q0

�q1

�q2
...

�qN

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

H0 0 0 · · · 0
∂δH H0 0 0

0 ∂δH H0 0
...

. . .
. . .

...
0 · · · 0 ∂δH H0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�q0

�q1

�q2
...

�qN

⎞
⎟⎟⎟⎟⎠, (4)

where

H0 =
⎛
⎝ 0 0 −uy

0 0 ux

uy −ux 0

⎞
⎠, ∂δH =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠. (5)

The originality of the method consists in directly solving the
PMP applied to Eq. (4). We show that the optimal control fields
must satisfy a certain differential system depending upon a
finite number of parameters for a robustness at order N . This
number can be interpreted as the dimension of the control
landscape. A careful investigation of this landscape allows us
to detect the global optimal solution of the process, at least for
low-robustness orders.

III. ENERGY- AND TIME-MINIMUM INVERSION OF
TWO-LEVEL QUANTUM SYSTEMS ROBUST AGAINST

OFFSET INHOMOGENEITIES

We consider in this paragraph the robust optimal inversion
with respect to offset uncertainties. In this case, the PMP is

formulated from the pseudo-Hamiltonian HP , which can be
written as follows [17–19]:

HP =
N∑

i=0

�pi · �̇qi + p0f 0. (6)

This leads to

HP = �p0 · (�q0 × �u) +
n∑

k=1

�pk · (�qk × �u + �qk−1 × �ez) + p0f 0,

(7)

where �pi is the adjoint state of �qi and p0 is a negative constant,
which is set to −1/2 and to −1 for the energy and time optimal
control problems, respectively [17–19]. f 0 is a function of ux

and uy whose integral over time gives the associated cost
functional C to minimize. We have

CE =
∫ tf

0
f 0(ux,uy)dt =

∫ tf

0

[
u2

x + u2
y

]
dt

for the energy and

Ct =
∫ tf

0
dt = tf

for the time, where the control duration tf is not fixed. In
Eq. (7), the vectors �u and �ez have the coordinates (ux,uy,0)
and (0,0,1) and × denotes the vector product of two three-
dimensional vectors.

We introduce the angular momenta ��a,b = �pa × �qb and the
partial sums ��n = (�nx,�ny,�nz) = ∑n

i=k
��i,i−k . Using the

properties of the scalar triple product, we arrive at

HP = �u · ��0 + �ez · ��1 + p0f 0.

The PMP states that the coordinates of the Bloch vector �q and
of the corresponding adjoint state �p fulfill the Hamiltonian’s
equations associated with HP ,

�̇q = ∂HP

∂ �p , �̇p = −∂HP

∂ �q ,

the control fields being given by the maximization condition
H (�x, �p) = max(ux,uy )∈U HP (�q, �p,ux,uy) [17–19]. The set U ,
which defines the constraint on the pulses, is given by U = R2

and by u2
x + u2

y � 1 for the energy and time minimization
problems, respectively. Note that the constraint u2

x + u2
y � 1

avoids the occurrence of very intense control fields which

are not relevant experimentally. We obtain H = �2
0x+�2

0y

2 +
�1z, with ux = �0x and uy = �0y , for the energy-minimum
and H = r + �1z, with ux = �0x/r , uy = �0y/r , and r =√
�2

0x + �2
0y , for the time-minimum problem.

Using the maximization condition of the PMP, a straight-
forward computation then leads to

�̇�0 = ��1 × �ez,

�̇�k = ��k × ��0 + ��k+1 × �ez, k ∈ {1, . . . ,N − 1},
�̇�N = ��N × ��0 (8)
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in the energy case and to

�̇�0 = ��1 × �ez,

�̇�k = 1

r
��k × ��0 + ��k+1 × �ez, k ∈ {1, . . . ,N − 1},

�̇�N = 1

r
��N × ��0 (9)

for the time-minimum problem. In the two situations, we
deduce that �0z(t) = cst . This constraint becomes �0z(t) = 0
when the initial point is the north pole of the Bloch sphere.
The differential systems (8) and (9) can be interpreted as the
conditions the control fields must satisfy to realize the control
process. Moreover, the initial phase of the control fields is irrel-
evant, which means that we can set �0y(t = 0) = 0. Another
point is related to the fact that the norm | ��N | is constant in time
and can be set to 1 without loss of generality (this is equivalent
to a time rescaling). We obtain that ��N (t = 0) depends only
on one angle, i.e., ��N (0) = (cos ϑ, sin ϑ,0). Finally, the field
depends on 2N parameters at order N−�0x(0), �kx(0), and
�ky(0) for k ∈ {1, . . . N − 1}—and the angle ϑ . This number
of parameters is also the dimension of the control landscape.
The last point to solve is to adjust these parameters to realize
the transfer, (3). Many different solutions can exist. For N

small enough, the low dimension of the control landscape
allows us to find the global optimal solution minimizing CE

or Ct .
We now describe the results for the energy-minimum

problem. We consider here only one control field along
�ex = (1,0,0), i.e., uy(t) = 0. We compute the global optimal
solutions for the first, second, and third robustness orders.
The analytical expression of the control field is derived at
first order, while numerical optimization techniques are used
for the second and third order. The computations are detailed
in Appendix A. Figure 1 displays the control fields and the
homogeneous contribution �q0 of the Bloch vector. We observe
the peculiar dynamics of the homogeneous part of the Bloch
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FIG. 1. Upper panels: Control fields of minimum energy robust to
first order (left), to second order (middle), and to third order (right) in
δ. Solid and dashed lines depict the fields ux(t) and uy , respectively.
Lower panels: Evolution of the components of the homogeneous
solution �q0 = t (x0,y0,z0) (which corresponds to the on-resonance
case). Dotted, dashed, and solid lines represent the dynamics of x0(t),
y0(t), and z0(t), respectively.
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FIG. 2. Left panel: Fidelity F = −z(tf ) for the local robustness
of the inversion transfer as a function of the offset δ for a standard
π pulse (dotted line), the first-order optimal robust solution (dashed
line), the second-order one (dashed-dotted line), and the third-order
one (solid line). Right panel: Same as the left panel, but for the
broadband robustness. The cases of two, three, and four two-level
quantum systems are displayed by dashed, dashed-dotted, and solid
lines, respectively. The offsets are set to ±0.5, ±0.5 and 0, and ±1/6
and ±0.5 for the three examples.

vector, which oscillates in the (y0,z0) plane like a damped
oscillator, with a number of oscillations increasing with the
robustness order in δ. The efficiency of the control protocol is
shown in Fig. 2. As would be expected, a better robustness is
achieved when higher orders are nullified.

In the time-optimal case, it can be shown that the minimum
time to cancel the first robustness order is associated with a
pulse of constant intensity along the x direction of the Bloch
sphere. This pulse switches between the values 1 and −1 at
time t = 3π/2 and it has a total duration of tf = 2π . The pulse
structure is not the same at second and third orders. The robust
inversion is realized by smooth fields of durations tf = 2.44π

and tf = 3.54π for the second- and third-order robust control
fields. The details of the computations are given in Appendix B.
Figure 3 displays the fields ux and uy and the homogeneous
contribution �q0(t) of the Bloch vector. We recover with this
geometrical analysis the transition from a square signal to a
smooth field found numerically in [25] and [26]. The different
numerical results are listed in Table I.
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FIG. 3. Same as Fig. 1, but for the time-optimal solution.
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TABLE I. Robustness of order n with respect to the offset terms
(type δ) or to the control-field inhomogeneities (type α) for the local
measure. The pulse area and the minimum time are given for the
energy- and time-minimum control problems, respectively.

Type Cost Orders Area or time (×π )

δ Time 1/2/3 2.0/2.44/3.54
α Time 1/2/3 1.86/2.71/3.56
δ Energy 1/2/3 1.45/1.81/2.11

IV. ROBUSTNESS AGAINST CONTROL-FIELD
INHOMOGENEITIES

The same method can be applied to the field inhomo-
geneities and the α parameter. We consider the on-resonance
case where δ = 0. We assume that the solution can be written
as a perturbative expansion of the form

�q(t) = �q0(t) + α�q1(t) + · · · + αN �qN (t) + O(αN+1). (10)

We obtain the differential system

d

dt

⎛
⎜⎜⎜⎜⎝

�q0

�q1

�q2
...

�qN

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

H0 0 0 · · · 0
H0 H0 0 0
0 H0 H0 0
...

. . .
. . .

...
0 · · · 0 H0 H0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�q0

�q1

�q2
...

�qN

⎞
⎟⎟⎟⎟⎠, (11)

with

H0 =
⎛
⎝ 0 0 −uy

0 0 ux

uy −ux 0

⎞
⎠. (12)

The pseudo-Hamiltonian of this system is given by Hp =∑N
i=0 �pi · �̇qi + p0f 0, where p0 and f 0 depend on the cost

functional to minimize. Introducing the angular momenta
��ij = �pi × �qi and the vectors

��k =
N∑

i=k

��i,i−k +
N∑

i=k+1

��i,i−k−1, k ∈ {1, . . . ,N − 1},
(13)��N = ��N,0,

we can show, using the Hamilton equations, that

d

dt

⎛
⎜⎜⎜⎜⎜⎝

��0
��1
��2
...

��N

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

H0 H0 0 · · · 0
0 H0 H0

...
0 0 H0

. . . 0
...

. . . H0

0 0 0 · · · H0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

��0
��1
��2
...

��N

⎞
⎟⎟⎟⎟⎟⎠

. (14)

Pontryagin’s Hamiltonian can be written as

HP = �u · ��0 + p0f 0, (15)

where �u = (ux,uy,0). In this case, the PMP leads to the
same condition for both the energy-minimum and the time-
minimum control problems. For minimization of the time,
the maximization condition gives ux = �0x√

�2
0x+�2

0y

and uy =
�0y√

�2
0x+�2

0y

. We deduce that Pontryagin’s Hamiltonian reads
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FIG. 4. Same as Fig. 1, but for the time-optimal solution robust
against control-field inhomogeneities.

(after absorbing the constant p0f 0 = −1 in the definition of
the pseudo-Hamiltonian)

H̃ =
√

�2
0x + �2

0y. (16)

If H̃ �= 0, we can consider the Hamiltonian

H = �2
0x + �2

0y, (17)

which is set to H = 1 without loss of generality. The
control fields are then given by ux = �0x and uy = �0y . The
application of the PMP in the energy-minimum case leads to
the same expression. The first consequence of the PMP is that
u2

x + u2
y = 1 for any time t . The differential system can be

written as

�̇�0 = ( ��0 + ��1) × �u,

�̇�1 = ( ��1 + ��2) × �u,

�̇�2 = ( ��2 + ��3) × �u, (18)

...

�̇�N = ��N × �u.

At time t = 0, we have �kz(0) = 0 since the initial state
of the Bloch vector is the north pole of the Bloch sphere.
Moreover, the initial phase of the control field is irrelevant
for the inversion transfer, leading to uy(0) = �0y(0) = 0 and
ux(0) = �0x(0) = 1. The dimension of the control landscape
is 2N , and this space can be parameterized by (�kx(0),�ky(0))
for k ∈ {1, . . . ,2N}. The results for orders 1, 2, and 3 are
displayed in Fig. 4. The analytical expression of the first-order
robust solution is given in Appendix C. The minimum times
are listed in Table I. Note the linear evolution of these times
as a function of the robustness order.

V. BROADBAND ROBUST OPTIMAL CONTROL

The robustness can also be defined through an inhomo-
geneous ensemble of quantum systems featured by different
parameters. A finite number of systems belonging to this set
is considered [25,26,28–30]. Our approach also works in this
situation and leads to the same control landscape complexity.
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For an ensemble of quantum systems with different offsets,
the dynamics of each element is of the form

�̇qk(t) =
⎛
⎝ 0 	k −uy

−	k 0 ux

uy −ux 0

⎞
⎠�qk(t), (19)

where 	k is the offset of system k. We define the individual
angular momentum ��k = �pk × �qk , where �pk is the adjoint
state of the system k. The optimal control fields, which invert
simultaneously all the elements of the set, satisfy

�̇�k = ��k × �u + 	k
��k × �ez, k ∈ {1, . . . ,N}, (20)

with ux = ∑
k �k,x , uy = ∑

k �k,y for the energy-minimum
problem and ux = 1

r

∑
k �k,x , uy = 1

r

∑
k �k,y with r =√

(
∑

k �k,x)2 + (
∑

k �k,y)2 for the time-minimum case. Since
the initial point of each system is the north pole of the Bloch
sphere, we deduce that �k,z = 0. A trajectory depends on
2N parameters but this number can be reduced to 2N − 2.
Indeed, since the initial phase of the control is arbitrary,
we can choose uy(0) = 0, which leads to

∑N
i=1 �iy(0) = 0.

Moreover, one of the first integrals can be set to 1 by rescaling
the time. Here we choose H = 1, which leads to r(0) =∑N

i=1 �ix(0) = 1. Thus, we have �Nx(0) = 1 − ∑N−1
i=1 �ix(0)

and �Ny(0) = −∑N−1
i=1 �iy(0). Finally, we deduce that the total

dimension of the control landscape is 2N − 2.
As displayed in Fig. 5, the time-optimal solutions for

two, three, and four quantum systems are very similar to the
trajectories in Fig. 3. For N = 2, we recover the results derived
in Ref. [47]. The right panel in Fig. 2 displays the inversion
profile against the offset δ. Note the very large robustness
obtained although only four quantum systems are considered.
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FIG. 5. Upper panels: Time-optimal control fields for simul-
taneous control of two spin- 1/2 particles with 	1 = −0.5 and
	2 = 0.5, three spins with 	1 = −0.5, 	2 = 0, and 	3 = 0.5, and
four spins with 	1 = −0.5, 	2 = −1/6, 	3 = 1/6, and 	4 = 0.5
(from left to right). Lower panels: Evolution of the z coordinate of
the corresponding Bloch vectors. z1(t) is represented by the dotted
black line; z2(t), the dashed blue line; z3(t), the dash-dotted green
line; and z4, the solid red line.
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FIG. 6. From left to right: Time-optimal phase of the control field
for the inversion of two spins with 	i ∈ {−1/2,1/2}, three spins with
	i ∈ {−1/2,0,1/2}, and four spins with 	i ∈ {−1/2,−1/6,1/6,1/2}
(solid blue line) and phase of the control field derived with a GRAPE
optimization (dashed green line).

VI. COMPARISON WITH THE GRAPE ALGORITHM

The broadband inversion has been investigated numerically
in Ref. [25] and [26]. The authors used the GRAPE algorithm
[20], which is based on the PMP. However, the pulses were
not optimized in the same way, in the sense that this algorithm
aims at controlling a large number of spins (�100) over a
certain range of offset inhomogeneities and for different pulse
durations. Here, the goal is to compare this method to the time-
optimal control of two, three, and four spins. We recall that the
control fields are such that ux = cos 
(t) and uy = sin 
(t).
As a consequence, we use the GRAPE algorithm to optimize
only the phase of the control fields (see Fig. 5 in Ref. [25]).

We proceed as follows. We have determined the optimal
time for controlling two spins with 	i ∈ {−1/2,1/2}, three
spins with 	i ∈ {−1/2,0,1/2}, and four spins with 	i ∈
{−1/2, − 1/6,1/6,1/2} (see Fig. 5). We optimize a pulse
of the same duration with GRAPE for 100 spins so that
	 ∈ [−1/2,1/2]. A guess field is chosen for the optimization
algorithm in order to recover the results of Fig. 5 in Ref. [25].
The result is presented in Fig. 6 here.

We observe a strong similarity between the GRAPE
solution and the global one with two, three, and four spins.
This result was not obvious since the GRAPE algorithm
optimizes a large number of spins. Another interesting point is
the robustness profile achieved with each pulse. We compute
the fidelity 1 + z(tf ) obtained by integrating Eq. (19) for 1000
spins with an offset 	 ∈ [−0.6,0.6]. The result is displayed in
Fig. 7. A remarkable point is the fact that the number of peaks
in the robustness profiles is the same when a small vs a large

FIG. 7. From left to right: Robustness profile of the time-optimal
control pulse for the inversion of two spins with 	i ∈ {−1/2,1/2},
three spins with 	i ∈ {−1/2,0,1/2}, and four spins with 	i ∈
{−1/2, − 1/6,1/6,1/2} (solid blue line) and of the control field
derived with a GRAPE optimization (dashed green line).
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number of spins is considered. This suggests a way to limit the
computational time of robust control sequences.

VII. IMPLEMENTATION OF ONE-QUBIT
QUANTUM GATES

The method presented in this work can be adapted to the
implementation of quantum gates. A quantum gate can be
written as a rotation matrix belonging to SO(3). As an example,
a NOT gate is associated with a rotation of angle π about the
axis �ex (or �ey) of the Bloch sphere. This matrix is given by

GNOT =
⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠. (21)

The Bloch equation can be derived for this rotation matrix,
which is equivalent to considering the dynamics of three
orthogonal Bloch vectors. This matrix is called below the
Bloch matrix. In the case of offset inhomogeneities, the
evolution of the Bloch matrix is governed by the following
equation:

Ṙ =
⎛
⎝ 0 δ −uy

−δ 0 ux

uy −ux 0

⎞
⎠R. (22)

We assume that the solution of system (22) can be expressed
as a perturbative expansion in terms of δ:

R(t) = R0(t) + δR1(t) + · · · + δNRN (t) + O(δN+1). (23)

The matrix R0 is the homogeneous part of the solution. It can
be shown that the dynamics of the system is of the form

d

dt

⎛
⎜⎜⎜⎜⎝

R0

R1

R2
...

RN

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

H0 0 0 · · · 0
∂δH H0 0 0

0 ∂δH H0 0
...

. . .
. . .

...
0 · · · 0 ∂δH H0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

R0

R1

R2
...

RN

⎞
⎟⎟⎟⎟⎠,

(24)

with

H0 =
⎛
⎝ 0 0 −uy

0 0 ux

uy −ux 0

⎞
⎠, ∂δH =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠.

(25)

At time t = 0, the matrix R0(0) is the identity matrix and the
matrices Rk�1 are 0. A robust gate G is a transfer of the form

R0(0) = 13×3 �→ R0(tf ) = G, (26)

Rk�1(0) = 03×3 �→ Rk�1(tf ) = 03×3. (27)

Each matrix Rk has nine components, which we denote a
(k)
ij ,

i.e.,

Rk =

⎛
⎜⎜⎝

a
(k)
11 a

(k)
12 a

(k)
13

a
(k)
21 a

(k)
22 a

(k)
23

a
(k)
31 a

(k)
32 a

(k)
33

⎞
⎟⎟⎠. (28)

We introduce the vector �qk (with nine elements) defined as
the concatenation of the three columns in matrix Rk , i.e.,
�qk = t (a(k)

11 ,a
(k)
21 , . . . ,a

(k)
33 ). The pseudo-Hamiltonian HP of the

system is given by

HP =
K∑

k=1

�pk · �̇qk + p0f 0, (29)

where p0f 0 depends on the cost functional of the system.
The components of the adjoint state �p are given by �pk =
t (b(k)

11 ,b
(k)
21 , . . . ,b

(k)
33 ). We also define some three-dimensional

angular momentum vectors ��(i,j ) as

��(i,j ) =

⎛
⎜⎝

�
(i,j )
x

�
(i,j )
y

�
(i,j )
z

⎞
⎟⎠ =

3∑
n=1

⎛
⎜⎝

b
(i)
1n

b
(i)
2n

b
(i)
3n

⎞
⎟⎠ ×

⎛
⎜⎝

a
(j )
1n

a
(j )
2n

a
(j )
3n

⎞
⎟⎠, (30)

and we introduce the vectors ��k , defined as

��k =
N∑

i=k

��(i,i−k), k ∈ {0, . . . ,N}. (31)

Finally, we can show that the pseudo-Hamiltonian can be
expressed in terms of the vectors ��k as

HP = �u · ��0 + �1z, (32)

with �u = (ux,uy,0). Using the Hamilton equations, we can
deduce the dynamics of each ��k . We find exactly the same
equation as Eq. (8), that is,

�̇�k = ��k × �u + ��k+1 × �ez, k ∈ {0, . . . ,N}. (33)

We can then apply the PMP. For the time-minimum problem,
the maximization of the pseudo-Hamiltonian leads to ux =
�0x

r
and uy = �0y

r
, with r =

√
�2

0x + �2
0y . Substituting the

expressions of ux and uy into Eq. (33), it is then straightforward
to show that �0z is constant, but this constant can be different
from 0. We set �0z = I . The time-optimal control field is the
solution of the following system of equations:

�̇�0 =
(

��1 − I

r
��0

)
× �ez;

�̇�k = 1

r
��k × ��0 +

(
��k+1 − I

r
��k

)
× �ez,

(34)
with k ∈ {1, . . . ,N − 1};
�̇�N = 1

r
��N × ��0 − I

r
��N × �ez.

Pontryagin’s Hamiltonian is constant and is given by

H = r + �1z. (35)

One difference from a state-to-state control problem is that,
in general, �kz �= 0. The dimension of the control landscape
can only be reduced by 1 by noting that | ��N | is a constant,
which can be set to 1 without loss of generality. Thus,
a solution of system (34) depends on 3N + 2 parameters,
which are �0x(0), �0y(0), �0z = I , �kx(0), �ky(0), �kz(0), ϑ ,
and ϕ, with �Nx(0) = sin ϑ cos ϕ, �Ny(0) = sin ϑ sin ϕ, and
�Nz(0) = cos ϑ . Figure 8 displays the control fields robust to
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FIG. 8. Upper panels: Phase 
 of the control fields, which
realizes a NOT gate robust to first order in δ (left) and to second
order (right). Lower panels: Corresponding control fields ux = cos 


and uy = sin 
. The second-order solution is not exact, in the sense
that the inhomogeneous part of the Bloch matrix is canceled with a
precision of the order of 0.1.

first and second order in δ. Further work will be necessary to
improve this first solution.

VIII. CONCLUSION

Using the PMP, we have derived the global robust optimal
control strategies (for the lowest orders) for inversion transfer
in the energy- and time-minimum cases. The derived pulses
have an explicit and relatively simple form which is easily
implementable experimentally. The analytical expression of
some control fields is also obtained. We stress that the global
optimality of the solutions of this work is in sharp contrast with
the fields designed by numerical methods, which correspond
to local maxima.

These results can be viewed as a first step towards a
complete answer of the robustness issue, which is a long-
standing problem in quantum control. They also pave the way
to other studies using the same approach, such as a transfer
robust with respect to the two inhomogeneous parameters or
the design of robust propagators, which will be interesting in
quantum computing. A first step in this direction is made in
Sec. VII with the derivation of a NOT gate robust to the second
order in δ. The main obstacle in these two generalizations will
be the dimension of the control landscape, which makes the
search for global optimal controls difficult. Another interesting
study would be to generalize this approach to the robustness
against noise, for which the experimental uncertainties are not
constant in time.
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APPENDIX A: APPLICATION OF THE PMP
IN THE ENERGY-MINIMUM CASE

We consider the control of population inversion in the
energy-minimum case. We show how to determine the control-
field robust at orders 1, 2, and 3. The general method consists
in first computing a solution of system (8) and then using the
control fields ux = �0x and uy = �0y in system (1) in order
to realize a robust inversion. We add the constraint to use only
one control field by setting uy = 0. Note that better results
could be achieved at second order (but not at first order) when
two fields are considered.

1. Analytical derivation at first order

For N = 1, the system of Eq. (8) becomes

�̇�0 = ��1 × �ez, �̇�1 = ��1 × ��0. (A1)

Setting uy = �0y = 0, we can show that the system simplifies
to

�̇0x = �1y, �̇1y = �0x�1z, �̇1z = −�0x�1y. (A2)

It has two constants of motion:

H = 1
2�2

0x + �1z, � = �2
1y + �2

1z. (A3)

We can set � = 1 without loss of generality. These two con-
stants are associated with two surfaces in the (�0x,�1y,�1z)
space. The conservation of H corresponds to a parabolic
plane, and that of � to a cylinder of radius � = 1 along the
�0x direction. These two surfaces are represented in Fig. 9.
The solution of system (A2) belongs to the intersection of
these two surfaces. The plot of this intersection for different
values of H leads to the phase portrait of the system, (A2),
depicted on the cylinder. We get the same phase portrait as
for a planar pendulum, with three families of solutions [48].
Rotating solutions occur for H > 1, oscillating solutions for
−1 � H � 1, and the separatrix for H = 1. Trajectories for
which −1 � H < 0 are not solutions of the problem, since
in this case we have �1z < 0, which is not possible since
�1z(0) = 0. The solution of system (A2) can be expressed
in terms of the Jacobi amplitude function am(u,m) [49],
which is an angle defined as the inverse of the incomplete
elliptic integral of the first kind, F(u,m) = ∫ u

0
dt√

1−m sin2 t
. Note

the relation d am(u,m)/du =
√

1 − m sin2(am(u,m)), which
is useful for integrating the following equations. We consider
only the oscillating trajectories which contain the global
optimum of the problem. The explicit solution of system (A2)
can be expressed in the oscillating case as �0x = 2

√
m cos ν,

�1y = −2
√

m sin ν
√

1 − m sin2 ν, and �1z = 2m sin2 ν − 1,
where ν(t) = am(t + ρ,m), ρ = ± F ( arcsin ( 1√

2m
),m), and
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FIG. 9. Upper panels: Parabolic plane associated with the con-
servation of H (left) and cylinder corresponding to the conservation
of � [right; see Eq. (A3)]. Lower panels: Intersection of the two
surfaces for a given value of H < 1 (left). The solution of system
(A2) belongs to this intersection (represented by the solid line). Phase
portrait of system (A2) plotted on the cylinder (right). The rotating and
oscillating trajectories are represented in blue and in red, respectively.
The separatrix is shown by the dotted black line.

m = 1+H
2 . The initial phase ρ is computed so that �10z = 0.

Note that the initial conditions are such that �0x(0) = √
2H

and �1y(0) = ±1, the sign being the same as the sign of −ρ.
Each trajectory of the phase portrait is associated with a

control, �0x(t), which is a candidate for realization of a robust
population inversion. Since a control field depends only on
H (and eventually on the sign of ρ), the goal is to find the
parameter H which inverts the population with a minimum of
energy. For that purpose, we integrate the coordinates �qi(t). At
first order in δ, the differential system governing the dynamics
of �q0 = (x0,y0,z0) and �q1 = (x1,y1,z1) is given by

�̇q0 = �q0 × ��0, �̇q1 = �q0 × �ez + �q1 × ��0. (A4)

Since we have �0y(t) = �0z(t) = 0 and �q1(0) = (0,0,0), the
system simplifies to

ẏ0 = �0xz0, ż0 = −�0xy0, ẋ1 = y0. (A5)

All the other coordinates are equal to 0. Introducing the angle
θ (t) so that sin θ = y0 and cos θ = z0, the problem consists in
computing the parameter H which realizes the transfer:

(θ (0),x1(0)) = (0,0) → (θ (tf ),x1(tf )) = (±π,0). (A6)

The differential system is given in these coordinates by

θ̇ = �0x, ẋ1 = sin θ. (A7)

The solution of this system can be written as

θ (t) = 2 arcsin(
√

m sin ν(t)) ± π

2
, x1(t) =

∫ t

0
sin θ (t ′)dt ′,

(A8)

where the sign is the same as that of ρ. The solution x1(t) could
be expressed as the sum of a linear term and an elliptic integral
of the second kind [49]. Figure 10 shows the trajectories

−π −π/2 0 π/2 π 3π/2

−0.5

0

0.5

1

1.5

θ

x
1

FIG. 10. Plot of the trajectories x1 as a function of the angle
θ . Dashed lines correspond to ρ = F ( arcsin ( 1√

2m
),m) [�1y(0) =

−1], and solid lines to ρ = − F ( arcsin ( 1√
2m

),m) [�1y(0) = 1]. X’s
represent the robust target state (θ (tf ),x1(tf )) = (±π,0). Black lines
are the solutions associated with the separatrices in Fig. 9, that is,
for the limit H → 1. Thick brown lines are two equivalent optimal
solutions for the population inversion.

x1 = f (θ ) starting from (0,0) for different values of H . Note
that Fig. 10 represents some trajectories starting from the north
pole of the Bloch sphere driven by the control-field solution of
the PMP. Optimal robust transfers can be found from Fig. 10.
As an example, it is shown that the point (θ = −π/2,x1 = 0)
belongs to some of the trajectories, which corresponds to an
optimal robust excitation transfer.

For the inversion, the optimal time t∗ is computed so that
θ (t∗) = ±π . We find

t∗ = 2 K(m) = 2
∫ π

2

0

dt√
1 − m sin2 t

, (A9)

where K is a complete elliptic integral of the first kind [49].
A robust control is achieved by finding the parameter H for
which

∫ t∗

0 sin θdt = 0, in order to cancel the contribution to
the first-order term in δ. We get

H = 0.6522 (A10)

for the two possible signs of ρ. The corresponding trajectories
in the (θ,x1) plane are represented in Fig. 10, for ρ > 0 and
ρ < 0. The two optimal solutions are equivalent and give the
global optimum. The corresponding pulse ux = �0x is plotted
in Fig. 1. Its area is given by

A =
∫ t∗

0
|�0x(t)|dt = 1.45π. (A11)

Note that other local optima exist and can be used to realize
the population inversion.

2. Derivation of the control field at second order

We compute in this paragraph the solution at second order
with one control field ux . Better solutions can be achieved if a
second field is considered. The second-order solution satisfies
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FIG. 11. Upper panels: Paraboloid of the J constant (left).
Intersection with the surface of the H constant (see Fig. 9). The
solution of system (A14) belongs to this intersection, represented by
the black curve. Lower panels: Phase portrait of Eq. (A14) for two
values of J .

the following differential system:

�̇�0 = ��1 × �ez, �̇�1 = ��1 × ��0 + ��2 × �ez,

�̇�2 = ��2 × ��0. (A12)

This system has six constants of the motion, given by

H = 1
2 | ��0|2 + �1z,

I = ��1 · ��2,

J = 1
2 | ��1|2 + ��0 · ��2,

(A13)
K = ��0 · ��1 + �2z,

0 = �0z,

1 = | ��2|2.
In the case where uy = �0y = 0, we obtain that K = I = 0
and that �1x = �2y = �3y = 0, which also means that �2x =
−1 (note that the sign could be set to +1, but the result is
equivalent). The system then becomes

�̇0x = �1y, �̇1y = �0x�1z + 1, �̇1z = −�1y�0x.

(A14)

It has two constants of motion:

H = 1
2�2

0x + �1z, J = 1
2�2

1y + 1
2�2

1z − �0x. (A15)

The conservation of H is associated with the same parabolic
plane as the one represented in Fig. 9. The conservation of J is
described by a symmetric paraboloid of axis �0x as shown in
Fig. 11. The solution belongs to the intersection of these two
surfaces, and the phase portrait is obtained by drawing it for
every pair (H,J ). We plot the phase portrait for two values of
J in Fig. 11. The system (A14) can be integrated by using the
fact that:

(�̇0x)2 = − 1
4�4

0x + H�2
0x + 2�0x + 2J − H. (A16)

The solution �0x can be expressed in terms of Jacobi’s elliptic
functions [50]. However, here we use a numerical analysis to
find the optimal pulse.

A solution of system (A14) depends on two parameters,
which are the initial conditions �0x(0) and �1y(0) [�1z(0) is
equal to 0 by construction]. These parameters can be related
to H and J through the relations �0x = √

2H and �0y(0) =√
2J + 2

√
2H . In other words, the control landscape is two-

dimensional and is parameterized by H and J .
We introduce the time-dependent fidelity

F (t) = −||�q0T − �q0(t)||2 − ||�q1T − �q1(t)||2
− ||�q2T − �q2(t)||2, (A17)

where �q0T = (0,0, − 1) and �qkT ,k>0 = (0,0,0) are the target
states for a robust population inversion. The general method
can be described as follows. For a set of parameters (H,J ),
we integrate numerically system (A14) until an arbitrary time
tf . We then use the solution �0x(t) as a control field in system
(1). We integrate this system until the time t = tf and we
compute the fidelity F (t) of Eq. (A17). This leads to the time
t∗ for which the fidelity F (t) is maximum, and we denote
by F (t∗) = F ∗ the corresponding fidelity. We also obtain
the area of the control field A∗ = ∫ t∗

0 |�0x(t)|dt . Since the
control landscape is a two-dimensional space, the different
quantities F ∗, t∗, and A∗ can be determined for every couple
(H,J ). It is then straightforward to find the global optimal
solution of the control problem. This approach is shown in
Fig. 12. It can be seen in Fig. 12 that F ∗ = 0 is satisfied for
many pairs (H,J ). One solution is associated with the lowest
energy (and with a very small area A∗). This solution is the
global optimum of the control problem and is given by

H = 0.7256, J = 0.7985, t∗ = 1.95π. (A18)

From a numerical point of view, the target is reached with a
precision of F ∗ = −3.4 × 10−6, and the area of the pulse is
A∗ = 1.81π . The control field ux = �0x and the homogeneous
solution �q0 are represented in Fig. 1.

3. Derivation of the control field at third order

With only one control field ux , we can show that the system
governing the optimal control field is such that �0y = �1x =
�2y = �2z = �3x = 0. The other coordinates satisfy

�̇0x = �1y,

�̇1y = �0x�1z − �2x,

�̇1z = −�0x�1y,
(A19)

�̇2x = �3y,

�̇3y = �0x�3z,

�̇3z = −�0z�3y.

The system has the following four first integrals:

2H = �2
0x + 2�1z,

2I = �2
2x + 2�1y�3y + 2�1z�3z,

(A20)
2J = �2

1y + �2
1z + 2�0x�2x + 2�3z,
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FIG. 12. Maximum value F ∗ of the fidelity F (t) of Eq. (A17)
(top), time t∗ for which F (t∗) = F ∗ (middle), and area of the
corresponding control field (bottom) in the plane (H,J ). The white
cross indicates the position of the global optimal solution.

1 ≡ �2
3y + �2

3z.

Since the Bloch vector starts on the north pole of the sphere
at time t = 0, we have �kz(0) = 0 for all k. We thus have

�3y(0) = −1 (we could also choose +1), and a solution of
system (A19) depends on the three parameters

�0x(0), �1y(0), �2x(0), (A21)

which involves that the control landscape is three-dimensional.
An analytical solution of this system is difficult to compute.
The corresponding parameters for a robust inversion are
determined with a numerical gradient algorithm. We find that
�0x(0) = 1.2384, �1y(0) = 2.9848, �2x(0) = −2.8019, with
t∗ = 2.43π and F ∗ = −9 × 10−8. The area of the control
field is

A∗ =
∫ t∗

0
|ux(t)|dt = 2.11π. (A22)

The control fields and the homogenous solution �q0(t) are
depicted in Fig. 1.

APPENDIX B: APPLICATION OF THE PMP
TO THE TIME-MINIMUM CASE

In this section, we apply the PMP to the time-minimum
case. For the optimal control problem at first order, the
differential system can be expressed as

�̇0x = �1y,

�̇0y = −�1x,

�̇1x = −1

r
�0y�1z, (B1)

�̇1y = 1

r
�0x�1z,

�̇1z = 1

r
(�0y�1x − �0x�1y).

In addition to Pontryagin’s Hamiltonian, this system has two
first integrals, of the form | ��1| ≡ 1 and I = ��0 · ��1. The
control landscape of system (B1) is parameterized by �0x(0)
and ϑ so that �1x(0) = cos ϑ and �1y(0) = sin ϑ . A numerical
analysis shows that the global optimum occurs for ϑ = π/2.
Since the quantity I = ��0 · ��1 is constant, and is equal to 0 in
this optimal situation, we deduce that ��1 is perpendicular to
��0 for any time t . This constraint can be fulfilled if and only if
�0y(t) = 0, that is, uy(t) = 0. The control is therefore of the
form ux = sgn(�0x).

The robust time-optimal solution at first order is thus a
pulse along the axis �ex of constant amplitude. Some switches
between the maximum and the minimum values of the field
can exist. In this case, the differential system becomes

�̇0x = �1y, �̇1y = sgn(�0x)�1z, �̇1z = −sgn(�0x)�1y,

(B2)
and the first integrals are given by

H = |�0x | + �1z, 1 = �2
1y + �2

1z. (B3)

Note that the conservation of H is associated with two
semiplanes intersecting along the line of equation (�0x ,�0z) =
(0,H ), as shown in Fig. 13.

If H > 1, the sign of �0x remains the same for any time
t , which means that no switch appears. The control field ux

is a constant pulse and it cannot realize a robust inversion.
We now analyze the case H ∈ [0,1], and we explicitly derive
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FIG. 13. Intersection of the two surfaces associated with the first
integrals (top) and phase portrait of system (B2) (bottom) plotted on
a cylinder of radius 1.

a solution starting at time t = 0 from the point �0x(0) = H

and �0y(0) = 1. We consider one period, that is, one cycle of
a trajectory. For one period, we can see that the sign of �0x

changes two times. We denote by T1 and T2 the times of the
first and second switches. The solutions can be expressed as

�0x = H + sin t, �1y = cos t, �1z = − sin t (B4)

for t ∈ [0,T1],

�0x = sin(t − 2T1) − H,

�1y = cos(t − 2T1), (B5)

�1z = sin(t − 2T1)

for t ∈ [T1,T2], and

�0x = H + sin(t + 2(T1 − T2)),

�1y = cos(t + 2(T1 − T2)), (B6)

�1z = − sin(t + 2(T1 − T2))

for t ∈ [T2,T ]. Note that the solutions of system (B2) are given
for any initial condition so that �0x(0) = H and �0y(0) = 1.
The times T1 and T2 correspond to the switches of �0x . T is
the period of the solution. We have T1 = π + arctan ( H√

1−H 2 ),
T2 = 3T1 − π , and T = 4T1 − 2π . The evolution of �0x(t) is
displayed in Fig. 14. To summarize, the control field is a pulse
of constant amplitude with switches at times T1 and T2 given in
terms of H . The final goal is then to determine the value of H

which allows us to realize a robust transfer in minimum time.
We start by integrating the dynamics of states �q0(t) and �q1(t)
in system (1) with a control field given by ux = sgn(�0x). The
system is of the form

ẏ0 = sgn(�0x)z0, ż0 = −sgn(�0x)y0, ẋ1 = y0. (B7)

Introducing the angle θ = arctan(y0/z0), we can show that the
system becomes

θ̇ = sgn(�0x), ẋ1 = sin θ. (B8)

0

0

t

Ω
0
x

T1 T2 T

1+H

-1-H

FIG. 14. Solution �0x(t) over one period (solid blue line). Curves
of the equations (�0x = H + sin t), (�0x = sin(t − 2T1) − H ), and
(�0x = H + sin(t + 2(T1 − T2))) are plotted by the dashed black line,
dashed red line, and dashed green line.

With these coordinates, a robust transfer is of the form θ (0) =
0 → θ (tf ) = π and x1(0) = 0 → x1(tf ) = 0. The solutions of
this equation are

θ = t, x1 = 1 − cos(t) (B9)

for t ∈ [0,T1],

θ = −t + 2T1, x1 = 1 + 2
√

1 − H 2 + cos(t − 2T1) (B10)

for t ∈ [T1,T2], and

θ = t + 2(T1 − T2),

x1 = 1 + 4
√

1 − H 2 − cos(t + 2(T1 − T2)) (B11)

for t ∈ [T2,T ].

−3π/2 −π −π/2 0 π/2 π 3π/2
−3

−2

−1

0

1

2

3

θ

x
1

FIG. 15. Solutions of Eq. (B8) in the plane (θ,x1). X’s represent
the target states. Every trajectory starts at the origin (0,0) of this
plane. Solid red lines are the solutions described in the text. Dashed
lines correspond to the trajectories associated with some solutions of
system (B2) starting at a point �0x(0) = H and �1y(0) = −1. Blue
circles correspond to the first bang, and green circles to the second
bang. The thick golden/brown solid line is the global optimal solution,
and the dashed one a suboptimal solution.
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We plot in Fig. 15 the solutions in the plane (θ,x1) for
different values of H in order to find the optimal solution.

We obtain that the global optimum corresponds to a
very particular case, which occurs in the limit H → 1. The
corresponding control field is associated with a trajectory
infinitely close to the separatrix in Fig. 13. Note that H cannot
be exactly equal to 1, because, in this case, there is no switch.
The solution satisfies T1 → 3π/2 and t∗ → 2π . This point is
shown in Fig. 3. The duration t∗ = 2π is thus the physical
minimum time required to make a first-order robust inversion
with a control field bounded by 1. The computation of the
second- and third-order robust parameters is made with a
numerical gradient algorithm.

APPENDIX C: ROBUSTNESS AGAINST CONTROL-FIELD
INHOMOGENEITIES

In this paragraph, we derive the robust optimal field at first
order. The differential system to solve is given by

�̇0x = −�0y(�0z + �1z), �̇0y = �0x(�0z + �1z),

�̇0z = �0y�1x − �0x�1y, �̇1x = −�0y�1z, (C1)

�̇1y = �0x�1z, �̇1z = �0y�1x − �0x�1y.

Note that the control landscape is parameterized by the two
initial values of �1x(0) and �1y(0). In addition to Pontryagin’s
Hamiltonian, this system has five first integrals: �0z − �1z =
0, Ix = �0x − 2�1x , Iy = �0y − 2�1y , J = ��0 · ��1, and
M = | ��1|. The relation �0z − �1z = 0 is due to the initial
conditions �kz(0) = 0 for all k. Using these constants, the
system becomes

�̇0x = −2�0y�0z,

�̇0y = 2�0x�0z, (C2)

�̇0z = − 1
2Ix�0y + 1

2Iy�0x.

Since �0x(0) = 1 and �0y(0) = �0z(0) = 0, a solution de-
pends only on the two parameters Ix and Iy and we can show
that 2J = 1 − Ix . This system can be integrated in terms of
Jacobi’s elliptic functions. We introduce the parameters ω and
m so that

ω = (
I 2
x + I 2

y

) 1
4 , m = 1

2
− Ix

2ω2
, (C3)

and the Jacobi’s amplitude function

ν = am(ωt + K(m),m). (C4)

We also introduce the phase of the control field ϕ so that �0x =
cos ϕ and �0y = sin ϕ. It can be checked that the following
functions are solutions of the problem:

ϕ = −2

[
sin ν

| sin ν| arccos(
√

1 − m sin2 ν)

− arccos(
√

1 − m)

]
,

�0z = −ω
√

m cos ν. (C5)

At time t = tf , we must have �0z(tf ) = 0 since the Bloch
vector reaches the south pole of the Bloch sphere. Furthermore,
�0z returns to 0 when the time t is a multiple of 2 K(m)/ω.

In order to locate the global optimum, we use a method
similar to that in Appendix A 2. We integrate system (11) with
the control fields, (C5), and we compute the corresponding
fidelity for every pair (Ix,Iy). We obtain that the optimal
control field verifies that

Ix = 0.6995, Iy = 1.1192, tf = 4 K(m)

ω
= 1.86π.

(C6)
The result is presented in the left panels in Fig. 4. We use a
numerical algorithm to compute the solutions robust at second
and third order.
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