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Anderson localization of a Rydberg electron along a classical orbit
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Anderson localization is related to exponential localization of a particle in the configuration space in the
presence of a disorder potential. Anderson localization can be also observed in the momentum space and
corresponds to quantum suppression of classical diffusion in systems that are classically chaotic. Another kind
of Anderson localization has been recently proposed, i.e., localization in the time domain due to the presence
of disorder in time. That is, the probability density for the detection of a system at a fixed position in the
configuration space is localized exponentially around a certain moment of time if a system is driven by a force
that fluctuates in time. We show that an electron in a Rydberg atom, perturbed by a fluctuating microwave field,
Anderson localizes along a classical periodic orbit. In other words the probability density for the detection of an
electron at a fixed position on an orbit is exponentially localized around a certain time moment. This phenomenon
can be experimentally observed.

DOI: 10.1103/PhysRevA.95.063402

I. INTRODUCTION

Transport of a particle in the presence of a disorder
potential can stop totally due destructive interference effects.
This phenomenon, which is accompanied by exponential
localization of eigenstates of a system in the configuration
space, is the famous Anderson localization [1]. It can occur in
a variety of different disordered systems ranging from acoustic
waves to matter waves of ultra-cold atomic gases [2–4].

Classical particles can perform diffusive motion in the
phase space if the dynamics of a system is chaotic. In the
quantum description one can observe Anderson localization in
momentum space that is induced not by external disorder but
by underlying chaotic classical dynamics. Such a dynamical
Anderson localization, predicted in the kicked rotor system, is
extensively investigated both theoretically and experimentally
[5–9].

Recently it has been shown that Anderson localization can
also occur in the time domain in systems that are perturbed
by a force fluctuating in time [10–12]. This phenomenon is
related to time crystals, i.e., systems which can spontaneously
switch to periodic motion [13,14]. While it is not easy to
find a system that spontaneously moves when it is prepared
in the ground state, models of time crystals with the help
of periodically driven systems are interesting and can reveal
new phenomena [15–32]. If a periodic perturbation starts
fluctuating in time, then, in analogy to space crystals with
disorder, Anderson localization of a system in the time domain
can be observed. In other words, a detector situated at a
certain position clicks with a probability that is localized
exponentially around a certain moment in time. Anderson
localization in the time domain is a general phenomenon that
can be observed in many different systems where periodic
driving starts behaving randomly [11]. Despite the fact that
the time degree of freedom forms a one-dimensional space, it
is possible to realize Anderson localization in the time domain
with properties of multidimensional disorder systems where
phase transition between localized and delocalized states can
be observed [12].

In the present paper we investigate Anderson localization in
the time domain in a Rydberg atom perturbed by a fluctuating
microwave field. Rydberg atoms driven by a monochromatic
microwave field can reveal nonspreading wave-packet motion
where a resonantly driven electron is represented by a localized
wave packet that moves periodically along a classical orbit
and does not spread. This phenomenon, discovered some time
ago [33–42] and observed in experiments [43–46], can be
realized in different dynamical systems if nonlinear classical
resonances can form [47]. Switching from a monochromatic
microwave field to a randomly fluctuating field we show
that in the frame moving with an electron along a classical
orbit, Anderson localization takes place. In the laboratory
frame, probability for detection of an electron at a given
point on the orbit is localized exponentially around a certain
moment of time. Such a behavior is repeated periodically
in analogy to Anderson localization of a particle in a space
crystal with disorder and with periodic boundary conditions
where by traveling periodically around the ring, one observes
periodically an exponentially localized density profile.

The paper is organized as follows. In Sec. II we explain
the phenomenon of Anderson localization in the time domain
in a one-dimensional (1D) model of a hydrogen atom. Then,
in Sec. III we switch to the 3D case and analyze a realistic
description of the system. Section IV is devoted to conclusions.

II. 1D MODEL

Let us consider a hydrogen atom perturbed by a linearly
polarized microwave field in the 1D model [47]. The classical
Hamiltonian of the system, in the dipole approximation and in
atomic units, reads

H = H0 + H1, (1)

H0 = p2

2
− 1

z
, (2)

H1 = Fzf (t), (3)
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where z � 0. Such a 1D model can describe classical elliptical
orbits degenerated to a line along the field polarization axis. F
is a parameter that allows one to change the amplitude of the
perturbation and f (t) is a periodic function which describes
the time dependance of the electric field. The electric field is
assumed to oscillate with a frequency ω, but between t = 0
and t = 2π/ω it performs random fluctuations, i.e.,

f (t) = f (t + 2π/ω) =
∑
k �=0

fke
ikωt , (4)

where Fourier components fk = f ∗
−k are random numbers.

We are interested in a resonant driving of the atom when the
frequency ω matches the frequency of electron motion on an
unperturbed orbit. The description of the system close to the
resonant trajectory can be significantly simplified if we employ
the secular perturbation theory [47,48]. First, we switch to the
action-angle variables, J and θ , of the unperturbed H atom
that results in the following form of the Hamiltonian:

H0 = − 1

2J 2
, (5)

H1 = FJ 2

⎛
⎝3

2
−

∑
m�=0

J ′
m(m)

m
eimθ

⎞
⎠f (t), (6)

whereJ ′
m’s are the derivatives of the ordinary Bessel functions.

The resonant condition means that

ω = ∂H0(J0)

∂J0
= 1

J 3
0

. (7)

In the moving frame, the position of an electron � = θ − ωt

is a slow variable if we choose the conjugate momentum close
to the resonant value P = J − J0 ≈ 0. Then, averaging the
Hamiltonian over time leads to the effective time-independent
Hamiltonian

Heff = − 3

2J 4
0

P 2 + FJ 2
0

∑
k �=0

J ′
k(k)

k
f−ke

ik�, (8)

where the constant term − 3
2J 2

0
has been omitted. The first-order

secular approximation (8) is the accurate description of the
system provided the second-order contribution (that scales
like F 2J 6

0 ) is small as compared to the first-order term [48].
It implies we may restrict ourselves to the first-order effective
Hamiltonian if FJ 4

0 � 1; for discussion of the validity of
the secular approximation in the context of the Anderson
localization in time see the Appendix in [11].

Before we move on, we would like to discuss the secular
Hamiltonian (8) and the conditions necessary to observe the
Anderson localization we are interested in. If f (t) were a
simple single harmonic function like cos(kωt), then we would
deal with a monochromatic resonant driving, and well-known
nonspreading wave packets could be realized [47]. That is,
for k = 1 we would deal with a single localized wave packet
moving along a Kepler orbit with the period 2π/ω; classically,
in the laboratory frame, an electron would move along a Kepler
orbit with small oscillations around it if the initial momentum
P ≈ 0. For k > 1, k wave packets would move along a Kepler
orbit and each wave packet would evolve with a period
k2π/ω, but each of them would be delayed with respect to

its neighbor by 2π/ω [47]. We will see that in order to observe
the Anderson localization we need f (t) to consist of many
harmonics at the same time. Then, the secular Hamiltonian (8)
is the result of the coherent addition of resonant terms between
the spatial harmonics of an unperturbed electronic motion
and the corresponding temporal harmonics of the disordered
driving amplitude. It also indicates that the electric dipole
moment z expressed in terms of the action-angle variables
must possess many spatial harmonics, cf. Eq. (6). It is possible
provided an electron moves along an elliptical orbit and
approaches closely to the nucleus. Thus, circular Kepler orbits
are not suitable for realization of the Anderson localization in
the time domain.

Harmonics of an unperturbed motion of an electron de-
crease with k like J ′

k(k)/k, cf. Eq. (6). If the fluctuations of
the microwave field are engineered so that the components f−k

fulfill ∣∣∣∣J
′
k(k)

k
f−k

∣∣∣∣ = 1√
2k0

(9)

for |k| � k0 and zero otherwise, and ϕ−k = −ϕk = Arg(f−k)
are random numbers chosen uniformly from the interval
[0,2π ), we end up with the effective Hamiltonian

Heff = P 2

2meff
+ FJ 2

0 V (�), (10)

V (�) = 1√
2k0

∑
|k| � k0
k �= 0

ei(k�+ϕk ), (11)

meff = −J 4
0

3
, (12)

which describes a particle with the negative effective mass
meff in the disorder potential characterized by the variance
F 2J 4

0 and the finite correlation length ζ = √
2/k0 [11]. Note

that F is not the amplitude of the electric field because the
microwave field is not monochromatic and ω

2π

∫ 2π/ω

0 dtf 2(t) �=
1
2 . The intensity of the microwave field reads

I = F 2

2

∑
k �=0

|fk|2 = F 2

4k0

∑
|k| � k0
k �= 0

(
k

J ′
k(k)

)2

. (13)

In the present paper we have chosen the fluctuations of the
microwave field that lead to the disorder potential (11) as an
example. By a proper choice of f (t) one can realize many
different effective disorder potentials.

In the case of the quantum version of the Hamiltonian (10),
i.e., quantizing the action angle variables (where J0 becomes
the principal quantum number n0 of a H atom), we can
expect Anderson localization. In 1D systems the presence
of a disorder results in Anderson localization regardless how
weak the disorder is. In the present case, the configuration
space extends from � = 0 to 2π due to the periodic boundary
conditions. Therefore, Anderson localization can be observed
if the localization length ξloc � 2π . In the weak disorder limit,
i.e., when F 2n4

0 � EEζ where E is an energy eigenvalue and
Eζ = k2

0/2meff is the so-called correlation energy, ξloc can be
calculated by means of the Born approximation [4,49] and it
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FIG. 1. Left panel: schematic illustration of the standard An-
derson localization in the configuration space, i.e., localization of
a particle on a ring of length d in the presence of a time-independent
disordered potential with periodic boundary conditions. Right panel:
Anderson localization in the time domain. For a fixed position in
the configuration space, the probability density for the detection of a
particle is exponentially localized around a certain moment of time.
Such a behavior is repeated with a period T = 2π/ω, similar to that
in the left panel where if one travels periodically around the ring, one
observes periodically an exponentially localized density profile.

reads

ξloc

ζ
= 2

√
2

π

EEζ

F 2n4
0

(14)

for E � Eζ /4. Note that the effective mass meff is negative,
thus, the Hamiltonian (10) is bounded from above not from
below as in a usual case. Consequently, the greatest eigenvalue
of Eq. (10) corresponds to the strongest localization. The
localization length increases with a decrease of E. The validity
of the Born approximation requires the localization length
ξloc to be much greater than the correlation length ζ , which,
together with the requirement ξloc � 2π , can be easily fulfilled
for sufficiently large n0 and with an appropriate choice of k0.

Anderson localization in the moving frame that is predicted
with the help of the Hamiltonian (10) means an exponential
localization in the time domain when we switch to the
laboratory frame [10–12]. Indeed, in the laboratory frame
a localized wave packet will move along an unperturbed
classical orbit. If we ask how the probability for the detection
of an electron, at a fixed position on an orbit, changes in
time, it will turn out that the exponential localization in the
� space translates into an exponential localization in time
around a certain t0 because for a fixed position in the laboratory
frame the relation between � and t is linear, i.e., � = θ − ωt .
However, if we fix t and ask whether an electron is also
exponentially localized in the configuration space, the answer
is no because the transformation from the � space to the
Cartesian space is nonlinear, compare Eqs. (3) and (6). In Fig. 1
we illustrate schematically the idea of Anderson localization
in the time domain and compare it to the standard Anderson
localization in the configuration space in systems with spatially
disordered potentials and periodic boundary conditions.

We have obtained the prediction for Anderson localization
in the time domain by means of the effective classical Hamilto-
nian and subsequent quantization of the classical action angle
variables. However, the same results can be obtained starting
with the full quantum Hamiltonian and applying a quantum
version of the secular approach [33]. The Hamiltonian (1) is

time periodic which means that although there are no energy
eigenstates, one can find a kind of stationary states ψm(z,t)
that are time periodic eigenfunctions of the so-called Floquet
Hamiltonian HF (t) [47],

HF ψm = (H − i∂t )ψm = Emψm, (15)

where Em are real eigenvalues which are called quasienergies
of a system. The Floquet theorem [50] that is used here is in
full analogy to the Bloch theorem known in condensed-matter
physics but we deal with a system periodic in time not in space.

Performing time-dependent unitary transformation Û =
ein̂ωt , where n̂ = (−2Ĥ0)−2 is the operator of the principal
quantum number of a hydrogen atom, we switch to the moving
frame as in the classical approach. Then, the matrix elements of
the resulting Floquet Hamiltonian in the hydrogenic eigenbasis
read

〈n′|Ĥ ′
F (t)|n〉 = 〈n′|ÛĤF (t)Û †|n〉

=
(

− 1

2n2
− nω − i∂t

)
δnn′

+F 〈n′|z|n〉f (t)e−i(n−n′)ωt . (16)

Averaging the last term of Eq. (16) over time we obtain the
quantum version of the effective Hamiltonian [33],

〈n′|Ĥeff|n〉 =
(

− 1

2n2
− nω

)
δnn′ + F 〈n′|z|n〉fn−n′ , (17)

where the operator i∂t has been omitted because for the time-
independent effective Hamiltonian it would only introduce a
shift of energy eigenvalues. The effective Hamiltonian (17)
corresponds to a single block of the matrix of the Floquet
Hamiltonian 〈n′,k′|Ĥ ′

F |n,k〉 in the basis spanned by the
hydrogenic eigenvectors |n〉 and the Fourier functions 〈t |k〉 =√

ω
2π

eikωt , i.e., to the block with k = k′ = 0. The omission
of couplings between the chosen block and other blocks is
valid if we want to describe the Hilbert subspace of states with
principal quantum numbers n close to the resonant value n0,
where n0 = ω−1/3, and if Fn4

0 � 1.
Numerical diagonalization of Eq. (17) allows us to obtain

Floquet eigenstates ψ ′
m(z) of the system in the moving frame

within the secular approximation. Switching to the laboratory
frame, ψm(z,t) = e−in̂ωtψ ′

m(z), we expect that time evolution
of the probability density for the detection of an electron at
a fixed position will reveal exponential localization in time if
Anderson localization takes place.

In Figs. 2 and 3 we show how the probability for the
detection of an electron close to the position of the nucleus of a
H atom changes in time for two different sets of the parameters.
Figure 2 presents the results for the case of n0 = 106 where
the Anderson localization can be described with the help
of the Born approximation, while in Fig. 3 we have used
values of the parameters that are attainable in present-day
laboratories. In order to afford small correlation length of the
effective disordered potential, ζ = √

2/k0, a big value of k0

is needed. Then, however, the value of F must be decreased
to stay in the validity range of the effective Hamiltonian
because the intensity (13) increases with k0. As the result, high
excitation of a hydrogen atom is necessary in order to observe
the Anderson localization in time. In Fig. 3 we have chosen an
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FIG. 2. Hydrogen atom in a fluctuating microwave field in the
1D model. Panels show probability density for the detection of an
electron close to the nucleus versus time (solid blue lines) in (a)
linear and (b) logarithmic scale corresponding to a Floquet eigenstate
with a quasienergy n2

0E = − 3
2 − 1.53×10−8 of the Hamiltonian (17).

Microwave field is resonant with electron motion, i.e., ω = n−3
0 where

n0 = 106, and consists of k0 = 500 harmonics with randomly chosen
relative phases; the amplitude parameter Fn4

0 = 1.6×10−8. An
additional smooth envelope [orange dashed line in (b)] corresponds to
the norm ||ψ(t)||2 = |ψ(t)|2 + α|∂tψ(t)|2 which better visualizes an
exponential profile; small positive α is introduced to avoid zeros of
||ψ(t)|| [51]. For such system parameters, the localization length
in the time domain can be predicted with the help of the Born
approximation (14) which results in 0.18/ω which agrees quite well
with the value of the localization length, 0.21/ω, obtained by a
numerical fit of an exponentially localized function [dotted green
line in (b)].

experimentally attainable value, n0 = 300. Then for k0 ≈ 5
and suitable choice of F the effective Hamiltonian is valid
and we can see signatures of Anderson localization in the
time domain.

We would like to note that the spectra obtained in diago-
nalization of the quantum secular Hamiltonian (17) and the
quantized version of the classical secular Hamiltonian (10)
are identical and the same is true for the time evolution of
the probabilities for the detection of an electron close to the
nucleus that are shown in Figs. 2 and 3.

III. 3D DESCRIPTION

The 1D model allowed us to present the idea of Anderson lo-
calization in the time domain in a Rydberg atom and to explain
the classical and quantum secular approximation methods. In
this section we show that the Anderson localization predicted
in Sec. II survives when we switch to the 3D description.
Moreover, the 3D case allows also the observation of Anderson
localization of an electron not only on an elongated one-
dimensional orbit but also on an elliptical trajectory.

We consider a H atom perturbed by a linearly polarized
microwave field, as in Sec. II, but now we add a static electric

FIG. 3. Same as in Fig. 2 but for parameters attainable in
a laboratory, i.e., ω = n−3

0 where n0 = 300, k0 = 5, and Fn4
0 =

0.00016 [i.e., the intensity I = 0.72 W
cm2 , Eq. (13)]. The Floquet

eigenstate corresponding to the third (from above) quasienergy of
the Hamiltonian (17) is chosen, i.e., n2

0E = − 3
2 − 2.45×10−5.

field along the polarization axis of the microwave field, i.e.,
the Hamiltonian of the system reads H = H0 + H1 with

H0 = p2

2
− 1

r
, H1 = Fzf (t) − Fsz, (18)

where f (t) fulfills Eq. (4) and Fs stands for the static electric
field amplitude. Projection of the angular momentum of an
electron on the z axis is conserved and in the following we
assume it is zero.

Let us begin with the classical description and perform
the canonical transformation to the action angle variables
(J,θ,L,). The canonically conjugate variables J and θ are
the same as in the 1D model, i.e., they describe the energy of
an unperturbed electron and its position on a Kepler ellipse,
respectively. The total angular momentum L is conjugate
to  and the latter is the angle between the major axis of
a Kepler ellipse and the z axis [41]. In the frame moving
with an electron, i.e., � = θ − ωt and P = J − J0 where
J0 = ω−1/3, � and P vary slowly in the vicinity of a resonant
orbit, i.e., when P ≈ 0. The total angular momentum L and
the angle  are also slowly varying variables if FJ 4

0 � 1
and FsJ

4
0 � 1 [42]. Thus, as in the 1D model, we may apply

the secular approximation and obtain the classical effective
Hamiltonian in the rotating frame by averaging the original
Hamiltonian over time, which yields

Heff = P 2

2meff
+ FJ 2

0

∑
k �=0

Uk(L,)f−ke
ik� + FsJ

2
0

3ẽ

2
cos ,

(19)

where

Uk(L,) = J ′
k(kẽ)

k
cos  + i

√
1 − ẽ2

kẽ
Jk(kẽ) sin , (20)
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and ẽ =
√

1 − L2/J 2
0 is the eccentricity of a Kepler ellipse.

As in Eq. (8) the constant term − 3
2J 2

0
has been omitted.

The Hamiltonian (19) describes electronic motion on a
resonant Kepler orbit and a slow precession of the orbit itself,
i.e., slow changes of the variables L and . The motion in
the (P,�) space effectively decouples from the slow motion
in the (L,) space and the semiclassical quantization of the
system can be performed in the spirit of the Born-Oppenheimer
approximation [41,42]. That is, first quantize the P and �

variables, for frozen L and , and then use the results to
construct an effective Hamiltonian for L and  which are
subsequently quantized. This procedure is particularly simple
if we are interested in eigenstates which are concentrated, in
the semiclassical picture, around a stable fixed point (L0,0)
in the (L,) phase space. Then, we may treat Eq. (19) as a 1D
Hamiltonian where L = L0 and  = 0 are fixed parameters.

FIG. 4. Structure of the (L,) phase space related to the effective
Hamiltonian (19) after the first stage of the Born-Oppenheimer
approximation, i.e., when the motion of J and � was quantized
and, e.g., the third eigenenergy (from above) was chosen. Then,
the total energy is a function L and  only, and its isovalue
contours are presented for Fs/F = 1.5 (top panel) and Fs/F = 0.33
(bottom panel)—the lighter the area, the greater the energy. Position
(L0 = 0,0 = 0) of the stable fixed point visible in the top panel
depends neither on an eigenenergy chosen in the first stage of the
Born-Oppenheimer approach nor on a realization of the fluctuating
microwave field. Position (L0/J0 = 0.4,0 = 0.06π ) of the fixed
point visible in the bottom panel changes weakly in different realiza-
tions of a randomly fluctuating field; this fixed point corresponds to
an elliptical Kepler orbit whose major axis is not precisely oriented
along the z axis. The other parameters are the following: ω = J−3

0

where J0 = 300, J 4
0 F = 0.00016, and fk as in Eq. (9) with k0 = 5.

FIG. 5. Top panel: portrait of the (P,�) phase space generated
by the 1D effective Hamiltonian (10). Bottom panel: stroboscopic
picture of the (P,�) phase space obtained in numerical integration of
the full classical equations of motion with initial values L/J0 = 0.1
and  = 0. The values of the parameters are the following: FJ 4

0 =
0.00016, FsJ

4
0 = 0.00024, and fk as in Eq. (9) with k0 = 5.

In Sec. II we have analyzed Anderson localization of
an electron on an orbit degenerated into a line within the
1D model. However, such an orbit is not stable in the 3D
description if only a linearly polarized microwave field is
applied. In order to change the structure of the classical (L,)
phase space and make (L0 = 0,0 = 0) a stable fixed point
we have included the static electric field in Eq. (18). If Fs

is sufficiently big the orbit with L0 = 0 oriented along the

FIG. 6. Black solid lines: quasi-energy levels versus Fs obtained
in diagonalization of the 3D quantum effective Hamiltonian (22).
Red dashed lines: eigenvalues obtained semiclassically and within
the Born-Oppenheimer approximation that correspond to the stable
fixed point of the highest energy visible in Fig. 4; different dashed
lines are related to different quantum numbers of the quantized
(P,�) motion. Green dotted lines: similar semiclassical eigenvalues
as indicated with red dashed lines but related to a fixed point in
the (L,) space of the lowest energy. Opens circles: quasienergy
levels that correspond to two Floquet eigenstates presented in Figs. 7
and 8. The other parameters are the following: ω = n−3

0 where
n0 = 300, Fn4

0 = 0.00016, and fk as in Eq. (9) with k0 = 5.
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FIG. 7. Hydrogen atom in a fluctuating microwave field in the 3D
model. Panels show probability density for the detection of an electron
at the nucleus versus time for (a) Fs/F = 1.5 and (b) Fs/F = 0.33.
The Floquet eigenstate presented in (a) corresponds to the eigenstate
obtained in the 1D model and shown in Fig. 3. Panel (b) presents
a Floquet eigenstate related to Anderson localization of an electron
on an elliptical trajectory. The corresponding quasienergy levels are
indicated in Fig. 6 with open circles. All parameters are the same as
in Fig. 6.

microwave field polarization axis does not precess and it keeps
its shape in time [41,42], see Fig. 4. Then, the coefficients (20)
become

Uk(0,0) = J ′
k(k)

k
, (21)

and the Hamiltonian (19) reduces to the 1D effective Hamilto-
nian (8). With f−k like in Eq. (9) we reproduce the previous 1D
predictions. This is illustrated in Fig. 5 where we present the
phase-space portrait generated by the 1D secular Hamiltonian
(10) and the stroboscopic picture of the (P,�) phase space
obtained in the full 3D classical evolution.

Quantum results that we will present in the following are
achieved by means of the quantum version of the 3D secular
Hamiltonian,

〈n′,l′|Ĥeff|n,l〉 =
(

− 1

2n2
− nω

)
δnn′δll′

+ 〈n′,l′|z|n,l〉(Ffn−n′ − Fsδnn′ ), (22)

where |n,l〉 is a hydrogenic eigenstate with the principal quan-
tum number n, total angular momentum l, and the projection
of the angular momentum on the z axis equal to zero, cf. the 1D
counterpart in Eq. (17). Diagonalization of Eq. (22) results in a
bunch of quasienergy levels as presented in Fig. 6 versus Fs . In
order to identify desired eigenstates it is very helpful to perform
semiclassical quantization of the Hamiltonian (19) within the
Born-Oppenheimer approximation; the obtained quasienergy

FIG. 8. Probability densities in the configuration space for dif-
ferent moments in time, i.e., ωt = π, 3

2 π,2π, 5π

2 from left to right,
for two Floquet eigenstates. Top panels are related to the eigenstate
shown in Fig. 7(a) while bottom panels to the eigenstate presented in
Fig. 7(b). Panels show cuts along an arbitrary plane containing the z

axis multiplied by ρ to simulate the density in cylindrical coordinates.
The ρ on the horizontal axis is either x or y or any other direction
in the xy plane. The axis scaling factors are identical. Note that in
the bottom panels a localized electron evolves along an elliptical
Kepler orbit whose major axis is not precisely oriented along the
z axis. Consequently the axial symmetry of the system results in two
parts of the orbits visible in the plots.

levels follow very closely the desired levels of the Hamiltonian
(22), see Fig. 6.

In Fig. 7 we present time evolution of the probability density
for the detection of an electron close to the position of a nucleus
of a H atom for two different Floquet eigenstates related
to two different values of the static electric field amplitude
Fs . Figure 7(a) corresponds to the parameters for which an
electron Anderson localizes along an orbit degenerated into
a line which is the 3D counterpart of the case described in
Sec. II in the 1D model, cf. Fig. 3. Figure 7(b) is related to the
case where the classical fixed point is located at (L/n0 ≈ 0.4,

 = 0.06π ), see Fig. 4. Then, an electron localizes along an
elliptical trajectory. Evolution of the probability densities in
the configuration space is illustrated in Fig. 8 where one can
see different shapes of the orbits on which a localized electron
moves. The major axis of an elliptical orbit visible in the
bottom panels of Fig. 8 is not exactly oriented along the z axis.
Therefore, due to the axial symmetry, one can see two parts of
an ellipse, i.e., a part corresponding to, e.g., x > 0 and a part
related to x < 0 but reflected with respect to x = 0 plane.
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IV. CONCLUSIONS

Anderson localization in the time domain is a localization
phenomenon that can be observed in time evolution of a system
exposed to a fluctuating force. The probability density for de-
tection of a system at a fixed position in the configuration space
becomes exponentially localized around a certain moment of
time due to the presence of disorder in time [10–12].

In the present paper we show that a Rydberg atom perturbed
by a fluctuating microwave field constitutes a suitable system
for realization of Anderson localization in the time domain.
Driving of a Rydberg electron by a superposition of a
monochromatic microwave field and its few harmonics with
random relative phases leads to Anderson localization of an
electron along a classical Kepler orbit. That is, the probability
for measurement of the electron, e.g., close to the nucleus, is
exponentially localized around a certain moment of time.

We analyze a Rydberg atom and present a range of
parameters for which Anderson localization in the time domain
can be observed experimentally. It seems that the phenomenon
can be realized in a laboratory very soon. There are two groups
which succeeded in creation of the so-called nonspreading
wave packets in Rydberg atoms driven by microwave fields
[43–46]. Realization of the Anderson localization in time
requires modification of the microwave fields only, i.e.,
switching from the monochromatic fields to fields that fluctuate
in time. It would be the first experimental demonstration of
Anderson localization in the time domain.
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