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Tunneling of two bosonic atoms from a one-dimensional anharmonic trap
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We investigate the quantum dynamics of two interacting bosonic atoms confined in a one-dimensional
anharmonic trap. The tunneling rate, an experimentally measurable parameter of the system, is calculated as
a function of the effective coupling interatomic constant g from the ground (n = N = 0) and first excited atomic
states in the trap with respect to relative (n = 2,N = 0) and center-of-mass (n = 0,N = 2) atomic motion. This
allows us to investigate the initial population and pair correlation, as well as the effective coupling constant
g, of the system by comparing the calculated tunneling rate with the experimental one. We observe that the
only possible tunneling scenario is a sequential particle tunneling in the cases we consider. We also analyze a
rearrangement (0,2) � (2,0) of the spectrum in the limit g → ±0 of noninteracting atoms.
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I. INTRODUCTION

One of the basic effects of quantum mechanics, a particle
tunneling through a repulsive barrier, responsible for such
fundamental processes as α decay and nuclear fission and
fusion, has attracted in recent years a great deal of attention
in connection with the cold-atom simulation of different phe-
nomena from solid state to nuclear and high-energy physics.
In particular, in recent experiments [1] aspects of atomic
tunneling through the walls of confining traps such as pairing
and BCS-BEC crossover (from a Bardeen-Cooper-Schrieffer
pairing to a Bose-Einstein condensate) have been investigated.
Also attributable to this class of problems are tunneling of
a BEC [2] and ultracold bosonic few-body systems [3,4],
a simulation with ultracold atoms of tunneling processes
stimulated by ultrashort intense laser fields [5], transport of
the repulsive BEC, and modeling of the Josephson effect
in a double-well trap [6]. In Refs. [1,7] it was shown that
a tunneling rate through the walls of atomic traps is an
experimentally measurable parameter containing important
information about the atomic dynamics inside the trap as
well as the initial state of the quantum system. However, to
extract this information one has to perform a corresponding
accurate calculation of the tunneling rate for comparison with
the experimental one.

So far, a theoretical description of the tunneling dynamics
through repulsive barriers of different form is a quite non-
trivial task. In modern computations a semiclassical Wentzel-
Kramers-Brillouin (WKB) approach remains the basic analyt-
ical method despite its known shortcomings [8,9]. The main
disadvantage here is that the WKB method completely neglects
interparticle interactions and therefore can produce significant
errors in the end results [10]. Therefore, to treat different
tunneling dynamics, which depends on the specific peculiar-
ities of each problem, a variety of numerical approaches was
developed during the past two decades in atomic, molecular,
and nuclear physics [10–15].
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In the present work we investigate the tunneling dynamics
of two interacting bosonic atoms through the walls of a
one-dimensional (1D) anharmonic trap by using an extension
of the computational splitting-up technique suggested in [11]
for ionization of hydrogenlike atoms by strong electric fields.
With this approach we calculate the dependence of the
tunneling rate from the first three low-lying atomic states in
a confining trap on the effective coupling constant g. The
rates of the transitions between the states are also investigated.
The obtained results can be used to recover the physical
picture inside the confining trap by comparing the calculated
tunneling rates with the experimental ones. Similar tunneling
processes were qualitatively investigated for tunneling through
a box-shaped potential model from the ground state of a
rectangular potential well [16].

The paper is organized as follows. In Sec. II we define
the Hamiltonian of the two-atom system confined in a 1D
anharmonic trap. Key points of the splitting-up method
are given in Sec. III for numerical integration of the 2D
time-dependent Schrödinger equation describing the two-body
quantum dynamics in a 1D anharmonic atomic trap. Special
attention is paid to the stable and accurate procedure of
extracting the tunneling rate of the system. The obtained
results of the calculation of the tunneling rates and transition
probabilities are given and discussed in Sec. IV. We also
discuss a rearrangement of the spectrum of the two confined
atoms in the limit g → ±0 of noninteracting atoms. Finally, in
Sec. V we draw our conclusions and provide a short outlook.

II. PROBLEM FORMULATION

A. Interaction potentials

The quantum dynamics of two identical bosonic atoms with
masses m in a 1D confining trap

∑
j=1,2 V (xj ) is described by

the following Hamiltonian:

H = − h̄2

2m

∂2

∂x2
1

− h̄2

2m

∂2

∂x2
2

+ V (x1) + V (x2) + Vint(x1 − x2),

(2.1)
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TABLE I. Trap parameters from the Haller et al. experiment [20].

Parameter Value

trap frequency ω 2π×14.5 kHz
wavelength λ 1.064 49×10−4 cm
anharmonicity α −0.030 455 2

where the interatomic potential Vint(x1 − x2) is chosen in the
Gaussian form

Vint(x1 − x2) = −V0 exp

{
− (x1 − x2)2

2r2
0

}
, (2.2)

with the depth V0 and r0 defining the range of the interaction.
The Hamiltonian (2.1) can be considered as an effective
Hamiltonian describing the dynamics of two atoms tightly
confined in the transverse direction (y,z) (atomic motion
is forbidden in the transverse direction) but with a softer
confinement in the longitudinal direction x described by a
standing-wave form [17,18]

V (xj ) = Vd sin2

(
2π

λ
xj

)
, j = 1,2. (2.3)

The interaction of the atom j with the optical trap (2.3) is
defined by the wavelength λ of the external laser field and the
atomic polarizability (included in the parameter Vd) [17,18].
Here we use the parametrization of Refs. [17,19],

V (xj ) = − h̄ω

12α
sin2

(√−6α
xj

�

)
, j = 1,2, (2.4)

where the parameter of anharmonicity α = − 8π2h̄
12λ2mω

and ω and

�, defined as ω = 2π
λ

√
2|Vd|
m

and � =
√

h̄
mω

, were introduced.
To have a realistic scale for the atom-trap interaction (2.4)

we use the parameters λ and ω corresponding to the optical
traps from the experiment in [20], where confined 133Cs atoms
were investigated (see Table I). In the present work we restrict
ourselves to the consideration of the atomic dynamics in the
single well of the 1D lattice (2.4) by approximating the latter
as

V (SW)(xj ) =
{

− h̄ω
12α

sin2
(√−6α

xj

�

)
, |xj | � π�√−6α

0, |xj | > π�√−6α
,

(2.5)

where j = 1,2. Such an approximation neglects the tunneling
of the atoms through the walls of the 1D lattice neighbor to
the single-well trap as well as the reflection from the walls
(see Fig. 1).

B. Initial-state preparation

A modern experimental setup permits a preparation of the
well-defined and practically nondecaying initial atomic states
in confining traps with the subsequent “switching on” of the
tunneling process by means of a narrowing of the width of
the confining potential [1,7]. To model such a process [10],
first we prepare the nondecaying initial atomic bound state
at t � 0 by solving the eigenvalue problem for the potential
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FIG. 1. Approximation (2.5) (blue solid curve) of the exact trap
potential (2.4) (red dashed curve) for α = −0.030 455 2.

Vint(x1−x2)+∑
j=1,2 V (6)(xj ) with the confining trap [21,22]

V (6)(xj ) = h̄ω

[
1

2

(
xj

�

)2

+ α

(
xj

�

)4

+ 4α2

5

(
xj

�

)6
]
,

j = 1,2 (2.6)

having an infinite width of the walls and repeating the form
of the internal part of the confining potential (2.5) V (SW)(xj ).
At t > 0, the trap V (6)(xj ) is replaced by V (SW)(xj ) to allow
the atoms to tunnel out of it. A plot of the potentials V (SW)(xj )
and V (6)(xj ) is presented in Fig. 2.

III. METHOD

To calculate a tunneling rate γ from the bound state of
the potential Vint(x1 − x2) + ∑

j=1,2 V (SW)(xj ) we integrate
the 2D time-dependent Schrödinger equation

ih̄
∂ψ(x1,x2,t)

∂t
= H (x1,x2)ψ(x1,x2,t) (3.1)

with the Hamiltonian H (x1,x2) defined by Eqs. (2.1), (2.2),
and (2.5). Based on ideas from [23], which were developed in
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FIG. 2. Initial confining trap V (6)(x) (red solid curve), which
confines the motion of the atoms at t � 0, and a modified trap
V (SW)(x) (blue dashed curve), which releases the atoms due to
quantum tunneling at t > 0.
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Refs. [24,25] in application to confined ultracold atom-atom
collisions in waveguidelike traps, we employ the component-
by-component split-operator method to integrate Eq. (3.1):

ψ(x1,x2,t + 
t) = exp

{
−i


t

2h̄
Vint(x1 − x2)

}

× exp

{
− i
tH1(x1)

h̄

}
exp

{
− i
tH2(x2)

h̄

}

× exp

{
−i


t

2h̄
Vint(x1 − x2)

}
ψ(x1,x2,t),

(3.2)

where

Hj (xj ) = − h̄2

2m

∂2

∂x2
j

+ V (SW)(xj ), j = 1,2. (3.3)

The computational scheme (3.2) is correct up to terms of
O(
t3). Following [24,25], we approximate the action of
the differential operators exp{−i
t/h̄Hj (xj )} by an implicit
Crank-Nicolson scheme

exp

{
− i
tHj (xj )

h̄

}
=

(
1 + 1

2h̄
iHj
t

)−1(
1 − 1

2h̄
iHj
t

)
,

which maintains the accuracy of the split-operator
method (3.2).

The finiteness of the width of the confining potential
wall causes a broadening of the energy levels in the po-
tential describing the interatomic and atom-trap interactions
Vint(x1 − x2) + ∑

j=1,2 V (SW)(xj ) due to atom tunneling
through the wall of the confining trap. This means that we
need to have an outgoing wave away from the region of action
of the confining potential, i.e., at x1,x2 → ±∞ [14,26]. This
kind of boundary condition in the time-dependent scheme can
be modeled by introducing at the edge of the radial grid xm

some type of an absorber [26] or a mask function [27]. Here
we choose the scheme with the additional complex absorbing
potential (CAP) near the edge of the radial grid in the form
suggested in [15,26],

W (xj ) = wc(|xj | − xc)2θ (|xj | − xc), j = 1,2, (3.4)

where θ (x) is the Heaviside step function and the parameter xc

defines a region where the CAP switches on and it should be
chosen at a point behind the barrier of the confining potential
V (SW). The choice of the parameter wc is discussed in the
paragraph after Eq. (3.6). A plot of the CAP (3.4) with the
confining potential V (SW) (2.5) is shown in Fig. 3.

The numerical integration of the Schrödinger equa-
tion (3.1) with the Hamiltonian H (x1,x2) = ∑

j=1,2[Hj (xj ) +
iW (xj )] + Vint(x1 − x2) defined by (3.3), (2.5), (3.4), and (2.2)
permits us to extract the desired tunneling rate γ (or the energy
level width � = h̄γ ) from the decay of the total probability

P (t) =
∫ xm

−xm

∫ xm

−xm

dx1dx2|ψ(x1,x2,t)|2 ∼ exp{−γ t} (3.5)

to find the atoms in the box |x1,x2| � xm, i.e., the total
population of the atomic bound states in the box. From
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FIG. 3. Plot of the absorbing potential W (x) (3.4) (thick
red solid curve) and the confining potential V (SW)(x) (2.5) for
α = −0.030 455 2 (blue solid curve). We also plot the wave function
ψn=2(x) (black dashed curve) of the first even excited state in the
confining potential to illustrate the scale of the problem.

Eq. (3.5) one can define the tunneling rate as

γ = − 1

P (t)

dP (t)

dt
. (3.6)

The determination of the tunneling rate from (3.6) obvi-
ously holds only for the exponential decay of the probability
(3.5). This condition restricts the choice of the parameters
xc and wc of the CAP (3.4) as well as the time domain
where the decay of the norm (3.5) is stabilized after the
beginning of the tunneling [11]. Here we choose xc = 10�

and wc = −0.1h̄ω�−2 from a domain where the tunneling rate
γ is independent, to a good accuracy, of the variation of these
parameters.

Following the pioneering works in [28,29], which laid the
foundation for investigations of the confined two-body systems
in a quasi-1D geometry of atomic traps, we define here the
interatomic interaction through the effective coupling constant
g connected with the 1D scattering length a1D as

g = − 2h̄2

ma1D
. (3.7)

The scattering length a1D was calculated by the integration of
the 1D Schrödinger equation[

− h̄2

2μ

d2

dx2
+ Vint(x)

]
ψsc(x) = h̄2k2

2μ
ψsc(x), (3.8)

describing the atom-atom collision in 1D free space, with the
boundary condition

ψsc(x) −−−−→
x→±∞ cos[k|x| + δ(k)] (3.9)

at the zero-energy limit k = √
2μE/h̄ → 0. The calculated

scattering phase δ(k) defines at k → 0 the 1D scattering
length

a1D = lim
k→0

cot[δ(k)]

k
. (3.10)

Here μ = m/2 and x = x1 − x2 are the reduced mass and the
relative coordinate of the atomic pair, respectively.
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FIG. 4. Dependence of the effective coupling constant g on the
depth V0 of the interaction potential (2.2) (blue solid line) at r0 = 0.1�.

The dependence of the coupling constant g on the depth
V0 of the interaction potential Vint (2.2), calculated at
r0 = 0.1�, is shown in Fig. 4. The choice of the parameter
r0, fixed in [10,30], adequately corresponds to current exper-
iments [1,7,20] where the range of the confining potential
� always essentially exceeds the range of the interatomic
interaction: r0 � �.

In the calculations, the parameter V0 varied in the range
−64 � V0/h̄ω � 53, which corresponds to +∞ � g/h̄ω� �
−8. It has permitted us to investigate the tunneling processes
in a wide range of coupling strength g from an attraction g < 0
to a strong repulsion g → +∞

IV. RESULTS

A. Energy spectrum of the system in a nondecaying initial state

In Fig. 5 we present the energy spectrum of two bosonic
atoms calculated as a function of the coupling constant g in
the confining potential V (6)(xj ) (2.6) and in the harmonic trap
V (2)(xj ) corresponding to the case α = 0. For an identification
of the calculated states of the spectrum we use quantum

-6 -4 -2 0 2 4 6 8
0

1

2

3

4

α=−0.0304552:
(2,0)
(0,2)
(0,0)

repulsive side

attractive side

ω
)

upper branch
lower branch
ground state

g ( ω )

(2,0)

(0,2)

(0,0)

α=0:

FIG. 5. Three lowest energy levels of two bosonic atoms as
a function of the coupling constant g in the confining potential
V (6)(xj ) with α = −0.030 455 2 (blue curves) and in the harmonic
trap V (2)(xj ) = 1

2 mω2x2
j (gray curves).

numbers n and N characterizing the quantization (induced
by the trap) of the relative and center-of-mass atomic motions,
respectively, which are good ones in the harmonic limit [i.e.,
when α = 0 in (2.6)] due to the separation of the relative and
center-of-mass atomic variables. In Fig. 5 the three lowest
states of the calculated spectrum are presented: the ground
state (n = 0,N = 0) and the first two excited states (0,2) and
(2,0). We define the quantum numbers (n,N ) of the two-atom
state inside the trap by the nodal structure of the calculated
wave function ψn,N (x,y,t = 0) with respect to the variables of
the relative x = x1 − x2 and center-of-mass y = (x1 + x2)/2
motions.

The analysis of the nodal structure of the wave function
ψn,N (x,y,t = 0) given in Sec. IV C shows that the first excited
state at negative g is (0,2) and the second one is (2,0). When
α = 0 the energy branches (0,2) and (2,0) cross each other at
zero coupling g = 0 (noninteracting atoms). This corresponds
to a pure two-dimensional harmonic oscillator and these levels
become degenerate due to rotational symmetry. This symmetry
breaks if α �= 0 and we observe an avoided crossing of these
energy levels at g = 0. Moreover, at positive g, the first excited
state becomes (2,0) and the second one (0,2), i.e., we observe
a rearrangement (0,2) � (2,0) of the spectrum in the limit
g → ±0.

B. Tunneling dynamics from bound states
of the two-atom confined system

By numerically integrating the 2D time-dependent
Schrödinger equation (3.1) for t > 0, we calculate the time
evolution (3.2) of the two-atom wave packet ψn,N (x,y,t) from
the ground (0,0) and the excited states (0,2) and (2,0) as a
function of the coupling constant g. In the calculation the
sixth-order finite-difference approximation on the uniform
spatial grid over x1 and x2 was used [24,25]. The range
|xj | � xm of the space of radial variables was chosen as
xm = 20� and the steps of integration over radial variables
as well as the steps of integration over the time 
t = 0.01ω−1

were chosen to keep the accuracy of the calculation of the
tunneling rates within the order of 1%.

1. Ground state

First we calculated the tunneling rate γ from the ground
state (0,0) as a function of the coupling constant g for
a fixed parameter of the anharmonicity α = −0.030 455 2.
The tunneling rates γ were extracted from the calculated
dependence on time of the total probability P (t) (3.5) with the
help of Eq. (3.6). The result of the calculations are presented
in Figs. 6(a) and 7. Figure 7 demonstrates excellent agreement
of the calculated time dependence of the probability P (t) with
Eq. (3.5) at t � 1 ms. The agreement qualitatively persists in
all the considered range of variation of the coupling constant
g. This circumstance permitted us to use Eq. (3.6) to extract
the tunneling rates given in Fig. 6.

In Fig. 6 we observe rather week monotonic grow of the
tunneling rate γ with increasing coupling constant g. The rate
γ reaches a finite asymptotic value γ → 2.6 s−1 in the limiting
case of a resonantly strong interaction g → +∞ (see Fig. 7).
This week dependence of the rate γ on the coupling constant g
is understood due to the sufficiently large thickness of the walls
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FIG. 6. (a) Tunneling rate γ from the ground state as a function
of the coupling constant g and (b) the corresponding energy
of the initial state in the closed trapping potential (2.6) with
α = −0.030 455 2.

of the confining potential in the ground state when compared
with excited states.

2. Excited states

In Fig. 8(a) we present the tunneling rates γ calculated with
(3.5) and (3.6) from the first two excited states (0,2) and (2,0)
for a wide range of variation of the coupling constant g. The
corresponding eigenenergies of the initial state for the trap
potential V (6)(xj ) (2.6) are also shown in Fig. 8(b).

a. Upper energy branch of the excited states. Figure 9
demonstrates the calculated time evolution of the total proba-
bilities P (t) (3.5) decaying from the upper branch of excited-
state energy levels presented in Fig. 8(b) and the corresponding
tunneling rates γ (t) (3.6). Here one can observe a quite fast
transition of the decay of the total probabilities P (t) to the
exponential law as well as a fast convergence of the tunneling
rates γ (t) to the limiting value γ (t) → γ (∞) for a wide range
of variation of the coupling constant g. One should notice a
dramatic change of the tunneling rate γ in Fig. 9 with the
change of g. It is also reflected in Fig. 8(a), where one can
observe a nonmonotonic dependence of the tunneling rate γ
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4

t (units of ms)

0.98

0.99

1.00
γ (units of s-1)P(t)

P(t)
γ (units of s-1)

FIG. 7. Tunneling rate γ (blue solid curve) and the total proba-
bility P (t) (black dashed curve) from the ground state at g → ∞.
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FIG. 8. (a) Tunneling rates from the first two excited states as
a function of the coupling constant g for α = −0.030 455 2. (b)
Energies of the first two excited states in the closed trapping potential
(2.6) with α = −0.030 455 2 as a function of the coupling constant g.

on the coupling constant g. The origin of this effect is explained
in Sec. IV C.

To understand the mechanism of tunneling from the upper
energy branch of the excited states we also calculate the
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FIG. 9. Time evolution of the total probability P (t) (black dashed
curves) from the upper branch of excited-state energy levels presented
in Fig. 8(b) and the corresponding tunneling rates γ (blue solid
curves). Calculations were performed for a few values of the coupling
constant: g/h̄ω� = −6, −1,0,3,20.
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FIG. 10. Distribution of a modulus of the flux |j(x1,x2,t)| (in ω�−1 units) from the upper branch of the excited states presented in Fig. 5
[or equivalently in Fig. 8(b)] and its direction (in arbitrary units) for different values of the coupling constant g at t = 120ω−1 ≈ 1.32 ms.

probability current density jk(x1,x2,t),

jk(x1,x2,t) = h̄

2mi

(
ψ∗ ∂ψ

∂xk

− ψ
∂ψ∗

∂xk

)
, k = 1,2, (4.1)

at a certain time t . In Fig. 10 the fluxes |j(x1,x2,t)|, calculated
for different values of the coupling constant g, are presented.

From Fig. 10 we see that the flux in all of the cases shows
a complicated behavior near the origin x1 = x2 = 0. What all
the graphs in Fig. 10 have in common is that the dominant flux
directions are along the axes x1 and x2. This corresponds to a
single-particle tunneling.

To analyze the mechanism of the tunneling more quanti-
tatively we divide (following [14]) the whole space of radial
variables (x1,x2) into several regions (see Fig. 11) and calculate
partial probabilities Pk to find the atom or atomic pair in each
region k,

Pk(t) =
∫∫

region k

dx1dx2|�(x1,x2,t)|2, k = 1,2,3,4. (4.2)

Detection of the atom in regions 3 corresponds to a sequential
single-particle tunneling from the trap and the detection in
regions 1 corresponds to a tunneling of two particles as a
bound system. More complicated tunneling to regions 2 was
discussed in [14] for an example of the two-proton decay of
nuclei. We define the size of region 4 to approximately cover

-R

+R

+R-R

4

1

21

2

3 3

3

3

x1

x2

FIG. 11. Division of the radial variable space into several regions
for an analysis of the partial probabilities Pk .

the initial atomic distribution in the confining trap V (6) (2.6),
which leads to an estimate of the region as R = 5�.

The calculated time evolution of the partial probabilities
Pk(t) is shown in Fig. 12. Figure 12 demonstrates that
the partial probabilities P3(t) are a few order of magnitude
larger than P1(t) + P2(t) in all of the cases considered. This
clearly shows that the sequential particle tunneling is the
dominating mechanism of the tunneling. Due to the smallness
of the quantities P1(t), P2(t), and P3(t) in comparison with
P4(t), this latter partial probability approximately equals the
total probability P (t) (3.5) and that is why we omit P4(t)
from Fig. 12.

b. Lower energy branch of the excited states. To understand
the dynamics of a tunneling process of the atoms bound
initially in the lower energy branch of the excited states
[Fig. 5 or equivalently Fig. 8(b)] we analyze in detail the
case g/h̄ω� = 5 since it captures all the features of such
tunneling (see Fig. 13). From Fig. 13 we clearly see that

0.0

1.0x10-3

0.0

2.0x10-4

4.0x10-4

0 1 2 3
0.0

1.5x10-2

g=-6 ω

P3
(P1+P2)x10

3

g=0

t (units of ms)

g=20 ω

FIG. 12. Partial probabilities Pk(t) (4.2) to populate the regions
k for three different values of the coupling constant g.
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FIG. 13. Tunneling rate γ (blue solid curve) from the lower
energy branch of the excited states [shown in Fig. 8(b)] and the
corresponding total probability P (t) (black dashed curve) at g/h̄ω� =
5 and α = −0.030 455 2. The inset shows a close-up of γ and P (t) in
the time window t = 2–8 ms, which corresponds to the second stage
decay (described in the text).

the total probability P (t) decreases in two stages, i.e., we
see that the initial exponential behavior of P (t) decreases
as exp{−γ1t}, which turns to, approximately at 1.5–2.5 ms,
the same exponential law, but now with different tunneling
rate γ1 → γ2. The tunneling rate γ1 calculated with Eq. (3.6)
highly oscillates during the first stage of the decay and after
approximately 
1.5–2.5 ms, when the second stage of the
decay begins to dominate, the oscillations in γ2(t) significantly
damp out, which can be noticed in the inset of Fig. 13.

To extract the tunneling rate γ1 we fit the total probability
P (t) to the exponential function at the time interval t �
1.5–2.5 ms (see Fig. 14),

Pfit = P0e
−γ1t . (4.3)

By using this fitting procedure we extract the tunneling rate
γ1 of the first decay stage for a wide range of the coupling

0 1 2 3
10-4

10-3

10-2

10-1

100

P(t)
Pfit(t)

t (units of ms)

FIG. 14. Total probability P (t) (black dashed curve) and a fitting
function (4.3) (red solid line) on a logarithmic scale at g/h̄ω� = 5
and α = −0.030 455 2. The tunneling rate extracted from the fitting
function is about γ1 
 4520 s−1 in the time window t = 0.4–2 ms.

0 5 10 15
10-5
10-4
10-3
10-2
10-1
100

PG(t)

PU(t)

t (units of ms)

P(t)
PL(t)

FIG. 15. Time evolution of the populations PL(t) (blue), PU (t)
(transparent red), PG(t) (magenta), and the total probability P (t)
(black solid curve) to find atoms in the trap, calculated at g/h̄ω� = 5.

constant g. The result of the calculation of the tunneling rate
γ1 is plotted in Fig. 8(a) with open circles.

The tunneling rate γ2 of the second decay stage from
the lower energy branch of the excited states converges to
a constant value with increasing time much better than γ1

but not as good as the tunneling rates from the upper energy
branch given in Fig. 9, which can be noticed in the inset of
Fig. 13. If we fit the total probability P (t) with the exponential
function in the window 2–10 ms we get γ2 
 580 s−1. This
value approximately coincides with the value of a tunneling
rate from the upper energy branch, which equals 
592 s−1 at
g/h̄ω� = 5 [see tunneling rates in Fig. 8(a) labeled with closed
circles]. To understand this effect we have calculated the time
evolution of the populations of the first three low-lying bound
states of the two-atom confined system (see Fig. 15) by the
formulas

PL(t) = |〈ψ(x1,x2,t)|ψ (L)(x1,x2)〉|2,

PU (t) = |〈ψ(x1,x2,t)|ψ (U )(x1,x2)〉|2,

PG(t) = |〈ψ(x1,x2,t)|ψ (G)(x1,x2)〉|2,

(4.4)

where ψ (L), ψ (U ), and ψ (G) are the wave functions of the
two-atom bound system confined in the trap (2.6) at the
initial states (at t = 0) corresponding to the lower and upper
energy branches of the excited states and the ground state,
respectively.

From Fig. 15 one can notice that after approximately 2.5 ms,
the population PU (t) of the upper energy branch becomes
dominant due to a transition from the lower energy branch.
That is, after about 2.5 ms the tunneling goes from the upper
energy branch and therefore the value γ2 of the tunneling rate
approaches the tunneling rate from the upper energy branch
calculated in the preceding section.

With an increase of time to about 8 ms the populations of the
upper energy branch and the ground states become comparable
(see Fig. 15) and with a further increase of time the system
passes to the ground state, where the tunneling rate is naturally
defined by the decay of the ground state. It is interesting that
in the case of a very strong interatomic coupling g → ∞ the
second stage goes with the tunneling rate that approximately
coincides with the tunneling rate from the initial ground state
(Fig. 16) due to a faster population of the ground state than the
upper energy branch. To see that, one has to compare the inset
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FIG. 16. Tunneling rate γ (blue solid curve) from the lower
branch of the excited state [shown in Fig. 8(b)] at g → ∞ and
the corresponding total probability P (t) (black dashed curve).
The inset shows a convergence γ (t) → γ (∞) to the value, which
approximately coincides with γ from the ground state.

of Fig. 16 with the converged result for the tunneling rate γ

from the ground state given in Fig. 7.

C. Spectrum rearrangement

In this section we analyze a spectrum rearrangement of two
atoms confined in an anharmonic trap V (6) (2.6) at a transition
of the special point g = 0 of noninteracting atoms with
increasing of g from small negative values to small positive
values or vice versa. In Fig. 5 we labeled the upper and lower
energy branches at the negative side of the coupling constant g

with quantum numbers (2,0) and (0,2) correspondingly. These
quantum numbers are conserved only at the negative side of
the coupling constant g. When these branches cross the point
g = 0 the nodal structures of these states are rearranged and
the states (2,0) and (0,2) are interchanged. With decreasing
anharmonic parameter α (see Fig. 17) the effect becomes more
pronounced.

-10 -5 0 5 10

0

2

4

6

α=-0.01

α=-0.0304552

ω
)

x ( )

FIG. 17. Confining potential V (6)(x) for two values of the
anharmonic parameter α: α = −0.030 455 2 (red dashed curve) and
α = −0.01 (blue solid curve).

-1 0 1 2
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3.0

3.2

3.4

(2,0)
(0,2)

un
its
of

ω
)

g (units of ω )

α=-0.01

FIG. 18. Pair of energy levels of the first excited states (2,0)
(closed circles) and (0,2) (open circles) for two atoms confined in the
anharmonic trap V (6) with α = −0.01.

Figure 18 shows the calculated energy levels of the pair
of first excited states (2,0) and (0,2) for α = −0.01. The
corresponding wave functions for the two cases α = −0.01
and α = −0.030 455 2 of the upper and lower branches, given
in Figs. 18 and 5, respectively, are presented in Figs. 19 and 20,
which are plotted as functions of the relative x = x1 − x2 and
center-of-mass y = (x1 + x2)/2 variables.

From Figs. 19 and 20 we see how the wave functions change
their nodal structures when crossing the point g = 0: The nodal
structure of the upper branch’s eigenfunction interchanges
between (2,0) and (0,2) states; the same effect occurs for
the nodal structure of the lower branch’s eigenfunction, only
vice versa. A similar effect of the spectrum rearrangement for
two atoms confined in a 3D anharmonic trap was observed
in [22].

We have also observed some kind of rearrangement of the
nodal structure of the calculated wave function in the vicinity
of the point g/h̄ω� 
 3 at α = −0.030 455 2 (see Figs. 19
and 20). However, due to the strong interatomic coupling g

and considerable anharmonic parameter α we have strong
mixing of the states with different quantum numbers and
cannot interpret this effect as a simple transition from one
state with good quantum numbers (n,N ) to another one, like
near the point g = 0, where the rearrangement of the states
(0,2) � (2,0) occurs.

The calculated dependence of the initial atomic distribution
[the probability density |ψ(x,y,t = 0)|2] on the coupling
constant g clarifies the monotonic increase of the tunneling
rate from the lower energy branch of the excited states with
an increase of g [Fig. 8(a), open circles]: With the increase
of g the maxima of the probability density move closer to
regions 3 in Fig. 11 (see Fig. 20).1 The dependence on g for
the tunneling rate from the upper energy branch of the excited
states has nonmonotonic character [Fig. 8(a), closed circles]
due to the more complicated dependence of the probability
density |ψ(x,y,t = 0)|2 on g: With a deviation to the left or
right of the point g = 0 the maxima of the probability density

1Figures 19 and 20 show wave functions ψ(x,y), which can be
used for analysis of the dependence on g of the maximum of the
corresponding density distribution probability |ψ(x,y,t = 0)|2.
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FIG. 19. Wave function ψ(x,y,t = 0) (in �−1 units) of the upper energy branch. The coupling strength g is in h̄ω� units.

first approach regions 3 in Fig. 11, but then start to move from
regions 3 to region 4 and finally stabilize (see Fig. 19).

V. CONCLUSION

We have investigated the tunneling dynamics of a 1D system
of two interacting atoms confined in the anharmonic trap (2.5).
We have calculated the tunneling rates γ from the three lowest
atomic bound states as a function of the coupling constant
g. It was found that in the tunneling from the upper energy

branch of the excited states, γ behaves nonmonotonically and
the sequential particle channel dominates in the tunneling.
Note that the domination of the sequential tunneling was also
observed in the box-shaped potential model from the ground
state of a rectangular potential well [16]. When the atoms
are initially in the lower energy branch of the excited states,
γ grows very fast with increasing coupling strength g at the
beginning of the tunneling. Then it was found that the tunneling
passes to a new regime (or regimes) with a slower tunneling
rate (or rates) due to the competition of the tunneling with the
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FIG. 20. Wave function ψ(x,y,t = 0) (in �−1 units) of the lower energy branch. The coupling strength g is in h̄ω� units.
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transition to the upper energy branch of the excited states and
to the ground state. When the atoms tunnel from the ground
state, γ grows slowly and monotonically with increasing g.

We have also analyzed a rearrangement (0,2) � (2,0) of
the spectrum in the limit g → ±0 of noninteracting atoms
with the exchange of the wave function’s nodal structure. A
more complicated rearrangement of the nodal structure of the
calculated wave function of the confined pair of atoms was
found when crossing the point g/h̄ω� 
 3.

The computational scheme developed can be extended to
technically more complicated but close to current and planned
experiments [1,7], the problem of the tunneling from quasi-1D
cigarlike and quasi-2D pancakelike traps. Inclusion of the spin

dynamics in the model for the tunneling process is another
actual problem that can be investigated with the technique
developed.

ACKNOWLEDGMENTS

The authors are very grateful to P. Schmelcher, V. V.
Pupyshev, Y. V. Popov, and S. I. Vinitsky for very helpful
comments and fruitful discussions. The work was financially
supported by the Ministry of Education and Science of the
Russian Federation (Agreement No. 02.a003.21.0008) and by
a grant of the Plenipotentiary Representative of the Republic
of Kazakhstan to JINR.

[1] G. Zürn, A. N. Wenz, S. Murmann, A. Bergschneider, T. Lompe,
and S. Jochim, Pairing in Few-Fermion Systems with Attractive
Interactions, Phys. Rev. Lett. 111, 175302 (2013).

[2] R. Beinke, S. Klaiman, L. S. Cederbaum, A. I. Streltsov,
and O. E. Alon, Many-body tunneling dynamics of Bose-
Einstein condensates and vortex states in two spatial dimensions,
Phys. Rev. A 92, 043627 (2015).

[3] A. U. J. Lode, A. I. Streltsov, O. E. Alon, H.-D. Meyer, and L. S.
Cederbaum, Exact decay and tunnelling dynamics of interacting
few-boson systems, J. Phys. B 42, 044018 (2009).

[4] A.U.J. Lode, Tunneling Dynamics in Open Ultracold Bosonic
Systems (Springer, Heidelberg, 2015).

[5] S. Sala, J. Förster, and A. Saenz, Ultracold-atom quantum
simulator for attosecond science, Phys. Rev. A 95, 011403(R)
(2017).

[6] V. O. Nesterenko, A. N. Novikov, and E. Suraud, Transport
of the repulsive Bose-Einstein condensate in a double-well
trap: Interaction impact and relation to the Josephson effect,
Laser Phys. 24, 125501 (2014).

[7] G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E.
Bohn, and S. Jochim, Fermionization of Two Distinguishable
Fermions, Phys. Rev. Lett. 108, 075303 (2012).

[8] M. Rontani, Tunneling Theory of Two Interacting Atoms in a
Trap, Phys. Rev. Lett. 108, 115302 (2012).

[9] M. Rontani, Pair tunneling of two atoms out of a trap, Phys. Rev.
A 88, 043633 (2013).

[10] S. E. Gharashi and D. Blume, Tunneling dynamics of two
interacting one-dimensional particles, Phys. Rev. A 92, 033629
(2015).

[11] V. S. Melezhik, A computational method for quantum dynamics
of a three-dimensional atom in strong fields, in Atoms and
Molecules in Strong External Fields, edited by P. Schmelcher
and W. Schweizer (Plenum, New York, 1998), pp. 89–94.

[12] P. M. Krassovitskiy and F. M. Pen’kov, Contribution of reso-
nance tunneling of molecule to physical observables, J. Phys. B:
At. Mol. Opt. Phys. 47, 225210 (2014).

[13] A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, V. L. Derbov, A.
Góźdź, and P. M. Krassovitskiy, Metastable states of a composite
system tunneling through repulsive barriers, Theor. Math. Phys.
186, 21 (2016).

[14] T. Maruyama, T. Oishi, K. Hagino, and H. Sagawa, Time-
dependent approach to many-particle tunneling in one dimen-
sion, Phys. Rev. C 86, 044301 (2012).

[15] G. Scamps and K. Hagino, Multidimensional fission model with
a complex absorbing potential, Phys. Rev. C 91, 044606 (2015).

[16] S. Hunn, K. Zimmermann, M. Hiller, and A. Buchleitner,
Tunneling decay of two interacting bosons in an asymmetric
double-well potential: A spectral approach, Phys. Rev. A 87,
043626 (2013).

[17] S.-G. Peng, H. Hu, X.-J. Liu, and P. D. Drummond,
Confinement-induced resonances in anharmonic waveguides,
Phys. Rev. A 84, 043619 (2011).

[18] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[19] I. S. Ishmukhamedov, D. T. Aznabayev, and S. A. Zhaugasheva,
Two-body atomic system in a one-dimensional anharmonic trap:
The energy spectrum, Phys. Part. Nucl. Lett. 12, 680 (2015).

[20] E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsollner,
V. Melezhik, P. Schmelcher, and H.-C. Nägerl, Confinement-
Induced Resonances in Low-Dimensional Quantum Systems,
Phys. Rev. Lett. 104, 153203 (2010).

[21] S. Grishkevich and A. Saenz, Theoretical description of two
ultracold atoms in a single site of a three-dimensional op-
tical lattice using realistic interatomic interaction potentials,
Phys. Rev. A 80, 013403 (2009).

[22] S. Sala and A. Saenz, Theory of inelastic confinement-induced
resonances due to the coupling of center-of-mass and relative
motion, Phys. Rev. A 94, 022713 (2016).

[23] G. I. Marchuk, Methods of Numerical Mathematics (Springer,
New York, 1975), Sec. 4.3.3.

[24] V. S. Melezhik, J. I. Kim, and P. Schmelcher, Wave packet
dynamical analysis of ultracold scattering in cylindrical wave-
guides, Phys. Rev. A 76, 053611 (2007).

[25] V. S. Melezhik, Mathematical modeling of ultracold few-body
processes in atomic traps, EPJ Web Conf. 108, 01008 (2016).

[26] U. V. Riss and H.-D. Meyer, Calculation of resonance energies
and widths using the complex absorbing potential method,
J. Phys. B 26, 4503 (1993).

[27] J. L. Krause, K. J. Schafer, and K. C. Kulander, Calculation
of photoemission from atoms subject to intense laser fields,
Phys. Rev. A 45, 4998 (1992).

[28] M. Olshanii, Atomic Scattering in the Presence of an External
Confinement and a Gas of Impenetrable Bosons, Phys. Rev. Lett.
81, 938 (1998).

[29] T. Busch, B. Englert, K. Rzazewski, and M. Wilkens, Two cold
atoms in a harmonic trap, Found. Phys. 28, 549 (1998).

[30] I. S. Ishmukhamedov, D. S. Valiolda, and S. A. Zhaugasheva,
Description of ultracold atoms in a one-dimensional geometry
of a harmonic trap with a realistic interaction, Phys. Part. Nucl.
Lett. 11, 238 (2014).

062701-10

https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1103/PhysRevA.95.011403
https://doi.org/10.1103/PhysRevA.95.011403
https://doi.org/10.1103/PhysRevA.95.011403
https://doi.org/10.1103/PhysRevA.95.011403
https://doi.org/10.1088/1054-660X/24/12/125501
https://doi.org/10.1088/1054-660X/24/12/125501
https://doi.org/10.1088/1054-660X/24/12/125501
https://doi.org/10.1088/1054-660X/24/12/125501
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.115302
https://doi.org/10.1103/PhysRevLett.108.115302
https://doi.org/10.1103/PhysRevLett.108.115302
https://doi.org/10.1103/PhysRevLett.108.115302
https://doi.org/10.1103/PhysRevA.88.043633
https://doi.org/10.1103/PhysRevA.88.043633
https://doi.org/10.1103/PhysRevA.88.043633
https://doi.org/10.1103/PhysRevA.88.043633
https://doi.org/10.1103/PhysRevA.92.033629
https://doi.org/10.1103/PhysRevA.92.033629
https://doi.org/10.1103/PhysRevA.92.033629
https://doi.org/10.1103/PhysRevA.92.033629
https://doi.org/10.1088/0953-4075/47/22/225210
https://doi.org/10.1088/0953-4075/47/22/225210
https://doi.org/10.1088/0953-4075/47/22/225210
https://doi.org/10.1088/0953-4075/47/22/225210
https://doi.org/10.1134/S0040577916010037
https://doi.org/10.1134/S0040577916010037
https://doi.org/10.1134/S0040577916010037
https://doi.org/10.1134/S0040577916010037
https://doi.org/10.1103/PhysRevC.86.044301
https://doi.org/10.1103/PhysRevC.86.044301
https://doi.org/10.1103/PhysRevC.86.044301
https://doi.org/10.1103/PhysRevC.86.044301
https://doi.org/10.1103/PhysRevC.91.044606
https://doi.org/10.1103/PhysRevC.91.044606
https://doi.org/10.1103/PhysRevC.91.044606
https://doi.org/10.1103/PhysRevC.91.044606
https://doi.org/10.1103/PhysRevA.87.043626
https://doi.org/10.1103/PhysRevA.87.043626
https://doi.org/10.1103/PhysRevA.87.043626
https://doi.org/10.1103/PhysRevA.87.043626
https://doi.org/10.1103/PhysRevA.84.043619
https://doi.org/10.1103/PhysRevA.84.043619
https://doi.org/10.1103/PhysRevA.84.043619
https://doi.org/10.1103/PhysRevA.84.043619
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1134/S1547477115050076
https://doi.org/10.1134/S1547477115050076
https://doi.org/10.1134/S1547477115050076
https://doi.org/10.1134/S1547477115050076
https://doi.org/10.1103/PhysRevLett.104.153203
https://doi.org/10.1103/PhysRevLett.104.153203
https://doi.org/10.1103/PhysRevLett.104.153203
https://doi.org/10.1103/PhysRevLett.104.153203
https://doi.org/10.1103/PhysRevA.80.013403
https://doi.org/10.1103/PhysRevA.80.013403
https://doi.org/10.1103/PhysRevA.80.013403
https://doi.org/10.1103/PhysRevA.80.013403
https://doi.org/10.1103/PhysRevA.94.022713
https://doi.org/10.1103/PhysRevA.94.022713
https://doi.org/10.1103/PhysRevA.94.022713
https://doi.org/10.1103/PhysRevA.94.022713
https://doi.org/10.1103/PhysRevA.76.053611
https://doi.org/10.1103/PhysRevA.76.053611
https://doi.org/10.1103/PhysRevA.76.053611
https://doi.org/10.1103/PhysRevA.76.053611
https://doi.org/10.1051/epjconf/201610801008
https://doi.org/10.1051/epjconf/201610801008
https://doi.org/10.1051/epjconf/201610801008
https://doi.org/10.1051/epjconf/201610801008
https://doi.org/10.1088/0953-4075/26/23/021
https://doi.org/10.1088/0953-4075/26/23/021
https://doi.org/10.1088/0953-4075/26/23/021
https://doi.org/10.1088/0953-4075/26/23/021
https://doi.org/10.1103/PhysRevA.45.4998
https://doi.org/10.1103/PhysRevA.45.4998
https://doi.org/10.1103/PhysRevA.45.4998
https://doi.org/10.1103/PhysRevA.45.4998
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1134/S1547477114030108
https://doi.org/10.1134/S1547477114030108
https://doi.org/10.1134/S1547477114030108
https://doi.org/10.1134/S1547477114030108



