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The parity and time-reversal violating electric dipole moment (EDM) of 171Yb is calculated accounting for
the electron-correlation effects over the Dirac-Hartree-Fock method in the relativistic Rayleigh-Schrödinger
many-body perturbation theory, with the second- [MBPT(2) method] and third-order [MBPT(3) method]
approximations, and two variants of all-order relativistic many-body approaches, in the random phase
approximation (RPA) and coupled-cluster (CC) method with singles and doubles (CCSD method) framework.
We consider electron-nucleus tensor-pseudotensor (T-PT) and nuclear Schiff moment (NSM) interactions as the
predominant sources that induce EDM in a diamagnetic atomic system. Our results from the CCSD method to
EDM (da) of 171Yb due to the T-PT and NSM interactions are found to be da = 4.85(6) × 10−20〈σ 〉CT |e| cm
and da = 2.89(4) × 10−17S/(|e| fm3), respectively, where CT is the T-PT coupling constant and S is the NSM.
These values differ significantly from the earlier calculations. The reason for the same has been attributed to
large correlation effects arising through non-RPA type of interactions among the electrons in this atom that are
observed by analyzing the differences in the RPA and CCSD results. This has been further scrutinized from the
MBPT(2) and MBPT(3) results and their roles have been demonstrated explicitly.

DOI: 10.1103/PhysRevA.95.062514

I. INTRODUCTION

The possible existence of intrinsic electric dipole moments
(EDMs) of non-degenerate quantum systems like atoms and
molecules can signify for the violations of both parity (P) and
time-reversal (T) symmetries (P,T-odd) [1–4]. In the atomic
sector, measurements have been performed on the 133Cs, 205Tl,
129Xe, 199Hg, and 225Ra atoms which only give upper bounds to
EDMs [5–11]. Owing to the open-shell structure of 133Cs and
205Tl atoms, they are suitable to probe electron EDM (de) and
electron-nucleus (e-N ) P,T-odd pseudoscalar-scalar (PS-S)
interactions. However, in recent past experiments on polar
molecules with strong internal electric field have provided
tremendous improvement on the limits on the de and e-N
coupling coefficient due to PS-S interactions over the atomic
experiments [12,13]. On the other hand, diamagnetic (closed-
shell) atoms are better suitable to infer the nuclear Schiff
moment (NSM) and the coupling coefficients associated with
the e-N tensor-pseudotensor (T-PT) and scalar-pseudoscalar
(S-PS) interactions. The NSM originates primarily due to the
distorted charge distribution inside the atomic nucleus caused
by the P,T-odd interactions among the nucleons or from the
EDMs and chromo-EDMs of the up (d̃u) and down (d̃d )
quarks [1,4]. At the tree level, magnitudes of these P,T-odd
interactions are predicted to be tiny in the well-celebrated
standard model (SM) of particle physics. However, such
P,T-odd effects are enlarged manifold in various extensions of
SM, such as multi-Higgs, supersymmetry, left-right symmetric
models that are trying to address some of the today’s very
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fundamental issues, such as observation of the finiteness of
neutrino masses, reasons for observing the matter-antimatter
asymmetry in the universe, the existence of dark matter,
etc. [14,15]. Thus, the improved limits on EDMs inferred from
the atomic experiments combined with accurate calculations
can be very useful to support the validity of these proposed
models.

Successively, a variety of progressive experimental tech-
niques have been used to improve the precision of EDM
measurements in closed-shell atoms. For example, the use
of spin-exchange pumped masers and a 3He comagnetometer
by Rosenberry and Chupp yields an upper limit to Xe EDM
as da(129Xe) = 0.7 ± 3.3(stat) ± 0.1(sys) × 10−27 e cm [8].
Currently, new proposals to measure EDM of 129Xe are being
made to take advantage of its larger spin relaxation time
[16–18]. The proposal by Inoue et al. [16] argues utilization of
the nuclear spin oscillator technique [19] to carry out measure-
ment of Larmor precession with several orders lower than the
available results. In the atoms like 223Rn, large enhancement
of the EDM signal is expected owing to its large octupole
deformed nucleus [20]. Based on this argument, an experiment
to measure the EDM of 223Rn has been under progress [21,22].
So far the most precise atomic EDM measurement has been
performed on the 199Hg atom, gradually improving its limit
in two successive experiments [9,10], among which the best
limit has recently been reported by Graner et al. [10]. In the
earlier experiment, Griffith et al. had used a stack of four cells
in such a way that electric fields were being created in opposite
directions among two middle cells and zero electric field in the
outer two cells. Thus, the signal due to EDM was observed
as a difference of the Larmor spin precession frequencies
originating from the middle two cells, and combinations of
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these four cells were used to measure the magnetic field. In
this approach the EDM of the 199Hg atom was observed as
da(199Hg) = [0.49 ± 1.29(stat) ± 0.76(sys)] × 1029 e cm [9].
However, in the recent measurement by Graner et al., fused
silica vapor cells containing 199Hg atoms were arranged in
a stack with a common magnetic field. Optical pumping
was being used to spin-polarize the 199Hg atoms, which was
orthogonal to the applied magnetic field, and the Faraday
rotation of near-resonant light was observed to determine an
electric-field-induced perturbation to the Larmor precession
frequency. The improved EDM value inferred from the above
precession frequencies was da(199Hg) = [2.20 ± 2.75(stat) ±
1.48(sys)] × 1030 e cm, which translates to an upper limit
of |da(199Hg)| < 7.4 × 1030 e cm with 95% confidence limit.
This corresponds to an improvement of at least an order of
magnitude over the previous measurement [10]. In a break-
through, Parker and co-workers have reported measurement
of the EDM of the radioactive element 225Ra atom for the first
time [11]. Similar to 223Rn, the EDM signal of 225Ra is also
enhanced extraordinarily high due to the octupole deformation
in its nucleus [20]. Owing to this fact, even if one could
measure the EDM of an 225Ra atom to a couple of orders
larger than the 199Hg EDM, it is still advantageous to use this
result to extract the required information more reliably. To
measure the EDM of the 225Ra atom, a cold-atom technique
was developed to detect the spin precession holding the atoms
in an optical dipole trap. An upper limit of |da(225Ra)| <

5.0 × 1022 e cm with a 95% confidence level was inferred
from this measurement.

A number of calculations employing variants of relativistic
atomic many-body methods have been carried out in the 129Xe,
223Rn, 199Hg, and 225Ra atoms to evaluate quantities that
in combinations with the measurements can give limits on
various quantities of fundamental interest (for more detail see
a recent review [4]). On comparing EDM results from the
latest calculations by the relativistic coupled-cluster (RCC)
method with the previously reported values from other less
sophisticated approaches, it was observed that results were
almost in agreement with each other in the 129Xe [23] and
223Rn [24] atoms. This suggested to us that there are strong
cancellations among electron-correlation effects in these atoms
from the higher-order effects. However, we had found very
large differences in the results from the RCC method with the
earlier reported calculations in the 199Hg [25,26] and 225Ra
atoms [27]. Although detailed analysis of the reasons for large
discrepancies in all those calculations were not given before,
we had mentioned briefly how the electron-correlation effects
that do not appear through the random phase approximation
(RPA) are solely responsible for bringing down the results in
the latter mentioned two atoms than the previously estimated
values. The other diamagnetic atom that is of current interest
to measure EDM is the 171Yb atom [28]. In this proposal, it is
suggested to use 171Yb as a comagnetometer and a proxy for
measuring EDM of the 225Ra atom. Earlier, the feasibility of
measuring EDMs in this atom was being discussed extensively
in Refs. [29–32], following which a number of theoretical
calculations have also already been performed [33–37]. In
view of the above-mentioned substantial discrepancies among
the results between different theoretical studies in some of
the atoms, it would be of vested interest to perform RCC

calculations in the 171Yb atom and compare the obtained
results with the previously reported values. Providing reliable
calculations for this atom can be very useful to infer limits on
various fundamental parameters by combining those values
with the measured EDMs of the 171Yb atom from the ongoing
experiment when it comes to fruition.

The rest of the paper is organized as follows: In the next
section, we briefly discuss the theory of atomic EDMs and
present the T-PT and NSM interaction Hamiltonians used
for the EDM calculations. Then, we describe our many-body
methods and procedures for obtaining atomic wave functions
at various levels of approximation. This is followed by
discussions of our results and comparison of these values
with the previously performed calculations. Unless stated
otherwise, we use atomic units (a.u.) throughout this paper.

II. THEORY

The P,T-odd Lagrangian for an electron and nucleon (e-n)
pair is given by [2]

LPT
e−n = Ce−n

T εμναβψ̄eσ
μνψeψ̄nσ

αβψn

+Ce−n
P ψ̄eψe ψ̄niγ5ψn, (1)

where εμναβ is the Levi-Civita symbol and σμν = i
2 [γμ,γν],

with γ being the Dirac matrices. The constants Ce−n
T and

Ce−n
P represent couplings associated with the respective T-PT

and S-PS e-n interactions. Here, ψn and ψe are the Dirac
wave functions of a nucleon and an electron, respectively. In
the nonrelativistic limit, the e-n T-PT interaction Hamiltonian
from the above Lagrangian yields [38,39]

He−n
T −PT = GF√

2
Ce−n

T ψ̄eγ5σμνψe ψ̄nιγ5σμνψn, (2)

where GF reads as the Fermi constant. In the atomic scale,
the above equation can be further simplified to get the
corresponding e-N T-PT interaction Hamiltonian as

HT −PT
EDM = i

√
2GF CT

∑
e

σN · γeρN (re), (3)

with CT being the e-N T-PT coupling constant, σN = 〈σN 〉 I
I

is the Pauli spinor of the nucleus for the nuclear spin I, ρN (r)
is the nuclear density, and the subscripts N and e represent the
respective nucleon and electronic coordinates.

Similarly, the Lagrangian for the P,T-odd pion-nucleon-
nucleon (π -n-n) interactions that contribute significantly to
the EDMs of the diamagnetic atoms is given by [2]

Lπnn
e−n = ḡ0ψ̄nτ

iψnπ
i + ḡ1ψ̄nψnπ

0

+ ḡ2(ψ̄nτ
iψnπ

i − 3ψ̄nτ
3ψnπ

0), (4)

where the couplings ḡi with the superscript i = 1, 2, 3 represent
the isospin components. The corresponding e-N interaction
Hamiltonian is given by [3,40]

HNSM
EDM = 3S · r

B4
ρN (r), (5)

where S = S I
I

is the NSM and B4 = ∫ ∞
0 drr4ρN (r). The

magnitude of NSM S is given by [41–43]

S = gπnn × (
a0ḡ

(0)
πnn + a1ḡ

(1)
πnn + a2ḡ

(2)
πnn

)
, (6)
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where gπnn � 13.5 is the CP-even π -n-n coupling constant, ai

are the polarization parameters of the nuclear charge distribu-
tion, which can be computed to a reasonable accuracy using the
Skyrme effective interactions in the Hartree-Fock-Bogoliubov
mean-field method [44], and ḡ(i)

πnns with i = 1, 2, 3 repre-
sents the isospin components of the CP-odd π -n-n coupling
constants. These couplings are related to the chromo-EDMs
of up-quark (d̃u) and down-quark (d̃d ) as ḡ(1)

πnn ≈ 2 × 10−12

× (d̃u − d̃d ) [2,45] and ḡ(0)
πnn/ḡ

(1)
πnn ≈ 0.2 × (d̃u + d̃d )/(d̃u −

d̃d ) [2,46], where d̃u and d̃d are scaled to 10−26 e cm. Also,
it yields a relation with the quantum chromodynamics (QCD)
parameter (θ̄) by |ḡ(1)

πnn| = 0.018(7)θ̄ [46]. From the nuclear
calculations, one can obtain S � (1.9dn + 0.2dp) fm2 [47].
Thus, it is necessary to obtain accurate values of CT and
S by combining atomic calculations with the experimental
EDM results to infer magnitudes of the above fundamental
parameters reliably.

III. METHOD OF CALCULATIONS

The EDM of an atomic system in its ground state is given
by

da = 〈�0|D|�0〉
〈�0|�0〉 , (7)

where D is the electric dipole (E1) operator and (|�0〉) is
the ground-state wave function corresponding to the atomic
Hamiltonian containing both the electromagnetic and P,T-odd
weak interactions. Since atoms are spherically symmetric,
we use the spherical polar coordinate system to determine
atomic wave functions. In this case, operators are expressed
in the form of multiple expansion and parity is treated as
a good quantum number. Thus, mixture of parities in the
wave functions due to both the electromagnetic and weak
interactions are done explicitly when required. For this reason,
we evaluate the atomic wave functions first by considering
only the electromagnetic interactions where parities of the
atomic orbitals are still preserved. Then these wave functions
are perturbed to the first order due to the P,T-odd operators,
because of which parity mixing among the atomic orbitals is
carried out explicitly. This is done by expressing the atomic
Hamiltonian as

H = Hat + λH PT, (8)

where Hat represents the Hamiltonian part that accounts only
for the electromagnetic interactions, and λH PT corresponds
to one of the considered P,T-odd Hamiltonians, with λ

representing either S or CT depending upon the undertaken
P,T-odd Hamiltonian. In this framework, the atomic wave
function |�0〉 can be expressed as

|�0〉 ≈ ∣∣�(0)
0

〉 + λ
∣∣�(1)

0

〉
, (9)

where |�(0)
0 〉 and |�(1)

0 〉 are the wave functions due to Hat and
its first-order correction due to λH PT, respectively. Following
this Eq. (7) can be approximated to

da � λR = 2λ

〈
�

(0)
0

∣∣D∣∣�(1)
0

〉
〈
�

(0)
0

∣∣�(0)
0

〉 . (10)

It is worth mentioning here that one can obtain ground-
state E1 polarizability (αd ) of the atomic system by using
λ|�(1)

0 〉 as the first-order perturbed wave function due to the
operator D in Eq. (10). Conventionally, the robustness of a
many-body method can be judged by its potential to reproduce
experimental results. Though a precise experimental value of
αd for Yb is not available, we still carry out calculations of αd

of the 171Yb atom by employing the considered many-body
methods and compare our result with the previously available
results from other theoretical studies to get some assurance on
the accuracies of our calculated R values.

In fact, calculating atomic wave functions accurately due
to the electromagnetic interactions by allowing only one
photon exchange, even in the noncovariant form approxima-
tion, is also strenuous owing to the two-body form of the
electron-electron interaction potential. We consider the Dirac-
Coulomb (DC) Hamiltonian as Hat in our calculations. Here,
we employ relativistic second-order many-body perturbation
theory [MBPT(2)] and third-order many-body perturbation
theory [MBPT(3)] in the Rayleigh-Schrödinger approach, and
RPA and RCC methods for calculating αd and R values.
To demonstrate relations among these methods, we discuss
the formulation of these methods briefly by starting with the
common reference wave function |�0〉, which is obtained here
using the Dirac-Hartree-Fock (DHF) method, by expressing it
as

∣∣�(0)
0

〉 = �(0)|�0〉 (11)

and
∣∣�(1)

0

〉 = �(1)|�0〉, (12)

where �(0) and �(1) are known as wave operators that account
for the neglected residual electromagnetic interactions (Ves) in
the DHF method and Ves with the considered weak interactions
to first order, respectively.

In the MBPT(n) method, we expand the wave operators as

∣∣�(0)
0

〉 =
n∑
k

�(k,0)|�0〉, (13)

where �(k,0) is the wave operator with k and zero orders of Ves

and H PT perturbations, respectively. The first-order correction
to |�(0)

0 〉 due to H PT in the MBPT(n) method is then expressed
as

∣∣�(1)
0

〉 =
n−1∑
k

�(k,1)|�0〉. (14)

Here the first index in the superscript of �(k,1) means k

orders of Ves and superscript 1 means one order of H PT.
Amplitudes determining equations for these operators are
given elsewhere [4]. This follows the expression to evaluate R
values in the MBPT(2) method as

R ≈ 2〈�0|[�(0,0) + �(1,0)]†D[�(0,1) + �(1,1)]|�0〉
≈ 2〈�0|D�(0,1) + D�(1,1) + �(1,0)†D�(0,1)

+�(1,0)†D�(1,1)|�0〉, (15)
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and in the MBPT(3) method as

R ≈ 2〈�0|[�(0,0) + �(1,0) + �(2,0)]†D

× [�(0,1) + �(1,1) + �(2,1)]|�0〉
≈ 2〈�0|D�(0,1) + D�(1,1) + D�(2,1) + �(1,0)†D�(0,1)

+�(1,0)†D�(1,1) + �(2,0)†D�(0,1)|�0〉. (16)

Though these approaches are convenient to implement, the
number of diagrams increase rapidly from the MBPT(2)
to MBPT(3) method (seven to more than 200 diagrams).
Thus, it is challenging to go beyond the MBPT(3) method.
However, the behavior of various correlation effects can be
investigated explicitly through these approximations. Here,
we have applied these methods to explain the reasons for the
discrepancies between the results obtained using the RPA and
RCC methods.

In the RPA, R values are calculated as

R = 2〈�0|�(0,0)†D�
(1)
RPA|�0〉

= 2〈�0|D�
(1)
RPA|�0〉, (17)

where the first-order perturbed wave operator is given by

�(1) ≈
∞∑
k

∑
p,a

�(k,1)
p,a

=
∞∑

k=1

∑
pq,ab

⎛
⎝

[〈pb| 1
rij

|aq〉 − 〈pb| 1
rij

|qa〉]�(k−1,1)
b,q

εp − εa

+
�

(k,1)†

b,q

[〈pq| 1
rij

|ab〉 − 〈pq| 1
rij

|ba〉]

εp − εa

⎞
⎠, (18)

where the sums over a and p represent replacement of an
occupied orbital a by a virtual orbital p in |�0〉, corresponding
to a class of single excitations. Formulation of the wave
operator in this approach encapsulates the core-polarization
effects to all orders, which plays dominant roles in determining
the investigated properties in this work. In can be noted that
it is straightforward to implement RPA and requires much
less computational time to obtain the R values than the
MBPT(3) method. Since it is able to capture the electron
core-polarization effects to all orders, one would expect to
get reasonably accurate values using RPA than the MBPT(2)
and MBPT(3) methods.

In the RCC method, we express the unperturbed wave
operator as

�(0) = eT (0)
(19)

and the first-order perturbed wave operator as

�(1) = eT (0)
T (1), (20)

where T (0) and T (1) are referred to as the excitation operators
that produce excited-state configurations after operating upon
|�0〉 due to Ves and due to Ves along with the perturbed H PT

operator, respectively. We have allowed only the the single and
double excitations in the RCC method [coupled-cluster (CC)
with singles and doubles (CCSD) method approximation] by

defining

T (0) = T
(0)

1 + T
(0)

2 and T (1) = T
(1)

1 + T
(1)

2 , (21)

where the subscripts 1 and 2 represent the singly and doubly ex-
cited configurations, respectively. The amplitudes determining
equations of these RCC excitation operators are described in
our previous works [23–25,27]. The CCSD method should give
the most accurate results for R than all the employed methods,
as it subsumes contributions arising through the RPA method
as well as accounts for other types of correlation effects, such
as the electron pair-correlation effects, to all orders which are
arising in the MBPT(3) method as the lowest order non-RPA
type of contributions. Importantly, all these correlation effects
are coupled through the RCC amplitude solving equations as
in the natural situation. In this approach,

R = 2
〈�0|eT †(0)

DeT (0)
T (1)|�0〉

〈�0|eT †(0)
eT (0) |�0〉

= 2〈�0|(D(0)
T (1))con|�0〉, (22)

where D
(0) = eT †(0)

DeT (0)
is a nonterminating series. In order

to account for most of the contributions from D
(0)

term, we
adopt a self-consistent procedure to compute it as explained in
our earlier works [25–27,48].

IV. RESULTS AND DISCUSSION

In Table I, we present αd and R values due to both
the T-PT and NSM interactions in 171Yb by means of the
earlier discussed many-body methods and compare them with
the previously reported results [33–37]. For convenience, we
denote R values due to the T-PT and NSM interactions as RT

and RS , respectively. As can be seen, the DHF value of αd and
the CCSD result differ marginally, giving an impression that
the roles of the electron-correlation effects in the evaluation of
atomic wave functions in this atom are not very strong. How-
ever, analyzing results for this quantity from the MBPT(2),
MBPT(3), and RPA methods indicates a different scenario.
The MBPT(2) method gives a larger value, while the MBPT(3)
method gives a lower value of αd from the DHF method. The
all-order RPA method gives a very large value than all these
methods, and the all-order CCSD method brings down this
value drastically. It can be noted that the MBPT(2) method
possesses all the lowest order core-polarization effects, and
the MBPT(3) method accounts for the lowest order correlation
effects that do not belong to the core-polarization effects,
which are discussed elaborately below. Significant differences
between the αd values from the MBPT(2) and MBPT(3)
methods suggest substantial contributions from these other
than the core-polarization effects and with the opposite sign
than the core-polarization contributions. In the all-order level,
differences between the RPA and CCSD results imply net
contributions from other than core-polarization effects. A
number of calculations on these quantities are also carried
out [49–52] employing variants of many-body methods that are
mentioned in Table I. Most of these calculations differ notice-
ably owing to the large electron-correlation effects associated
with this atom. We had also obtained this value earlier using the
CCSD method, and it was reported as 144.59(5.64) a.u. [50],
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TABLE I. Results of αd,RT , and RS , in units of ea3
0 ,

(×10−20〈σ 〉|e|cm) and (×10−17[1/|e|fm3]|e|cm) respectively, for the
ground state of 171Yb from the employed many-body methods and
comparison with the other studies.

Method αd RT RS Reference

DHF 124.51 −0.71 −0.42 This work
MBPT(2) 141.25 −2.49 −1.42 This work
MBPT(3) 115.70 −2.34 −1.34 This work
RPA 179.76 −3.39 −1.91 This work
CCSD 135.50 −2.04 −1.51 This work

From other works

DHF −0.70 −0.42 [34]
RPA 179 −3.4 −1.91 [33,34]
CI + MBPT −3.70 −2.12 [34]
CI + MBPT + RPA −3.7 −2.1 [34]
RPA 176.16 −1.903 [35]
MCDF −2.15 [36]
DHF −2.51a [37]
PCI −3.22a [37]
CI + MBPT 111.3(5) [49]
CCSDc 144.59(5.64) [50]
CCSD(T) 143.1b [51]
CI + all order 141(3) [52]
Experiment 142(36) [53]

aThis is a variational approach. Sign has been changed as per the
convention of this work.
bDouglas-Kroll-Hess Hamiltonian and effective core-polarization
approximation.
cOnly linear terms of Eq. (22) were considered.

considering only the linear terms of D
(0)

in Eq. (22). We find
inclusion of contributions from the nonlinear terms reduces
this value, because of which we give a slightly smaller
value here. Another calculation in the CCSD method with
partial triples effects [CCSD(T) method] is also carried out
but considering the Douglas-Kroll-Hess Hamiltonian with
effective core-polarization approximation [51]. A preliminary
experimental result on αd of the ground state of Yb has been
reported with large uncertainty as 142(36) a.u. [53], and all
the calculations are within the error bars of the experimental
value. Nevertheless, the present result is in close agreement
with most of the theoretical values, and also with the central
value of the reported experimental result. From this, we can
hope that our CCSD method can also estimate the R values
with reasonable accuracy.

Though both the rank and parity of the E1 operator are same
as with the considered P,T-odd interaction operators, it can be
clearly seen from Table I that the trends of electron-correlation
effects in the evaluation of the αd and R values are completely
different in these properties. The CCSD results for R are
almost 3 times larger than their corresponding DHF values.
However, the values obtained in the MBPT(2) method are
larger than the CCSD results, and the MBPT(3) values are
smaller than the MBPT(2) results. The RPA method in these
cases also gives very large values as compared to the CCSD
results. One can notice that the electron-correlation effects in
the evaluation of RT and RS are also somewhat different. The

FIG. 1. Comparison of electron-correlation contributions to
αd,RT , and RS in 171Yb at different levels of approximations in
the many-body methods with respect to the DHF results. No scaling
has been maintained in the x axis, while results plotted in the y axis
are unitless.

CCSD value for RT is smaller than the MBPT values, while
it is larger in case of the NSM interaction. In Fig. 1, we plot
the (O − ODF )/ODF contributions to αd and R values, with
O representing values from different many-body methods,
which highlights the amount of electron effects that are being
accounted for in the evaluation of these quantities through
the respective methods. This clearly demonstrates that the
electron-correlation effects play vital roles in determining the
R values, more than the αd result. A few earlier calculations on
R are available using the perturbed configuration interaction
(PCI) method [37], RPA [33–35], multiconfiguration Dirac-
Fock (MCDF) method [36], and a combined configuration
interaction and MBPT (CI + MBPT) method, along with
corrections from RPA (CI + MBPT + RPA method) [34]. Our
RPA values agree with the RPA results of Dzuba et al. [33]
but differ slightly from the RPA values reported by Latha
and Amjith [35]. The PCI, RPA, and MCDF methods appear
to overestimate the R values more than the CCSD method.
Similar trends of the correlation effects were also observed
earlier in 199Hg [25,26] and in 225Ra [27]. This clearly demands
employing a potential many-body method to evaluate the R
values with reasonable accuracy so that they can be combined
with the future experimental result of the 171Yb atom to infer
more reliable limits on the CT and S values.

After presenting the final results from various many-body
methods, we now intend to analyze the roles of the electron-
correlation effects in the evaluation of the αd and R values
through various Goldstone diagrams of the MBPT, RPA, and
CCSD methods. In Fig. 2, we show some of the important
diagrams belonging to the MBPT(3) method. There are more
than 200 diagrams which appear in the MBPT(3) method, but
we present here contributions only from the selective diagrams
that contribute substantially. The first diagram of Fig. 2
represents the DHF method and diagrams up to Fig. 2(vii)
correspond to the MBPT(2) method. Individual contributions
from these diagrams to αd and R are given in Table II. Some of
the nonquoted diagrams also contribute in the similar orders
with slightly smaller values, but their contributions are not
mentioned explicitly here to avoid a very long table. As can be
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FIG. 2. Important Goldstone diagrams belonging to the MBPT(3)
method. Diagram (i) and diagrams up to (vii) correspond to the
DHF and MBPT(2) methods, respectively. Operators appearing from
right to left in Eqs. (15) and (16) are shown from bottom to top.
Lines with arrows up and down represent the virtual and core
orbitals, respectively. Symbols for different operators are shown at
the end, and the horizontal dashed line corresponds to Coulomb
operator.

TABLE II. Explicit contributions to αd,RT , and RS in units
of ea3

0 , × 10−20〈σ 〉|e|cm and ×10−17[1/|e|fm3]|e|cm, respectively,
from some of the important Goldstone diagrams of the MBPT(3)
method. The first one and along this the next six give DHF and
MBPT(2) contributions, respectively.

Diagrams αd RT RS

Fig. 2(i) 124.50 −0.71 −0.42
Fig. 2(ii) −46.95 −0.02 −0.01
Fig. 2(iii) 92.82 −1.29 −0.72
Fig. 2(iv) −23.47 −0.41 −0.23
Fig. 2(v) 8.91 −0.29 −0.18
Fig. 2(vi) −23.47 0.39 0.22
Fig. 2(vii) 8.91 −0.15 −0.08
Fig. 2(viii) 25.03 0.16 0.09
Fig. 2(ix) −35.26 0.51 0.28
Fig. 2(x) −35.26 0.03 0.02
Fig. 2(xi) −31.05 0.42 0.23
Fig. 2(xii) 9.07 −0.11 −0.06
Fig. 2(xiii) 5.11 0.13 0.07
Fig. 2(xiv) 7.69 0.26 0.14
Fig. 2(xv) −9.09 0.04 0.03
Fig. 2(xvi) −2.25 0.10 0.06
Fig. 2(xvii) 6.49 −0.12 −0.07
Fig. 2(xviii) −8.15 0.13 0.07
Fig. 2(xix) 10.85 0.03 0.02
Fig. 2(xx) −18.02 0.33 0.18
Fig. 2(xxi) 6.49 −0.12 −0.07
Fig. 2(xxii) −8.15 0.12 0.07
Fig. 2(xxiii) −2.22 0.10 0.06
Fig. 2(xxiv) 7.69 −0.15 −0.08
Fig. 2(xxv) −9.09 0.16 0.08
Fig. 2(xxvi) −8.06 0.14 0.07
Fig. 2(xxvii) −8.00 0.12 0.06
Fig. 2(xxviii) −8.09 0.14 0.08
Fig. 2(xxix) −8.12 0.13 0.07
Fig. 2(xxx) −8.15 0.12 0.07
Fig. 2(xxxi) −9.09 0.04 0.03
Fig. 2(xxxii) 3.59 −0.11 −0.07
Fig. 2(xxxiii) −9.09 0.16 0.08
Fig. 2(xxxiv) −8.18 0.13 0.07
Fig. 2(xxxv) 70.93 −1.24 −0.67
Fig. 2(xxxvi) 15.72 −0.43 −0.23
Fig. 2(xxxvii) −3.84 0.10 0.06
Fig. 2(xxxviii) 11.83 −0.17 −0.10
Fig. 2(xxxix) 5.38 −0.11 −0.07
Fig. 2(xxxx) 11.83 −0.20 −0.11
Fig. 2(xxxxi) 5.38 −0.09 −0.05
Fig. 2(xxxxii) −11.67 −0.25 −0.14
Fig. 2(xxxxiii) −11.67 −0.04 −0.02
Fig. 2(xxxxiv) 8.91 −0.11 −0.06
Fig. 2(xxxxv) 8.91 −0.14 −0.07
Fig. 2(xxxxvi) −0.19 −0.10 −0.06

seen from this table, magnitudes and signs of the contributions
from various diagrams to αd and R with respect to their
respective final values exhibit different trends. Contributions
from some diagrams to αd are large, while they contribute less
to R. It is also found that some of the individual diagrams
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TABLE III. Contributions to αd,RT , and RS in units of ea3
0 , ×

10−20〈σ 〉|e|cm and ×10−17[1/|e|fm3]|e|cm, respectively, from vari-
ous CCSD terms (Hermitian conjugate terms are included).

CCSD term αd RT RS

DT
(1)

1 160.55 −2.70 −1.87

T
(0)†

1 DT
(1)

1 −11.58 −0.04 −0.01

T
(0)†

2 DT
(1)

1 −19.62 0.68 0.41

T
(0)†

1 DT
(1)

2 1.06 −0.03 0.02

T
(0)†

2 DT
(1)

2 9.05 −0.01 −0.10

Higher −3.96 0.06 0.04

contribute as large as three-fourths of the total value to αd .
Certain third-order perturbative diagrams also contribute more
than the second-order diagrams to this property. Diagrams
shown as Fig. 2(xi), 2(xii), 2(xxvi), 2(xxvii), 2(xxix), 2(xxxvi),
2(xxxxii), 2(xxxxiii), 2(xxxxiv), 2(xxxxv), 2(xxxxvi) etc. are
some of the dominantly contributing MBPT(3) diagrams
that represent results other than the core-polarization effects.
These diagrams are solely responsible for bringing down the
MBPT(3) values from the results obtained using the MBPT(2)
method. They do not appear through the all-order RPA method
but appear in the CCSD method to all orders. This is the main
reason why the CCSD results are found to be much smaller than
the RPA values, as quoted in Table I. Comparing contributions
to the R values from the T-PT and NSM interactions, we find
they maintain a scaling among the contributions from each
diagram. Contributions to the T-PT result are about 2 times
larger than the NSM contributions for the individual diagram.
In fact, some of the correlation contributions to αd are found
to have an opposite sign to its DHF value, hence canceling out
a large part of the correlation contributions to give the smaller
net value. On the contrary, the dominant contributions from
the MBPT method to R have the same sign with their DHF
values from the respective P,T-odd interactions. This is why
enhancement in the R values from their DHF values are found
to be much larger than the αd result. It is also found that other
than the core polarization, contributions are proportionally
larger in the determination of the R values than the αd result.

In Table III, we present contributions from the individual
CCSD terms. This shows the dominant contributions come
from the DT

(1)
1 term followed by T

(0)†
2 DT

(1)
1 . Contribution

from T
(0)†

1 DT
(1)

1 to αd is also quite large; however its
contributions to R are very small. It can be noticed from
Fig. 1 that contributions from most of these diagrams from
the MBPT(3) method are accounted for in the DT

(1)
1 term

through the RCC formulation and the rest arise through the
T

(0)†
2 DT

(1)
1 term. This is the reason why DT

(1)
1 and T

(0)†
2 DT

(1)
1

terms have major shares to the CCSD results, as demonstrated
in Table III. In addition to the above, contributions coming
through T

(0)†
1 DT

(1)
1 are also from the single excitations in the

configuration space and contribute significantly to the final
results. It can be noticed from the above table that a substantial
amount of contributions also come through the T

(0)†
2 DT

(1)
2

term. Breakdowns of one of its diagrams into some of the
MBPT(3) diagrams are shown in Fig. 3. As seen from this

FIG. 3. Breakdown of one of the all-order diagrams representing
the T

(0)†
2 DT

(1)
2 term is shown explicitly for the comprehensive under-

standing of how, other correlation effects than the core-polarization
correlations are accounted for in the CCSD method for the evaluation
of the αd and R values.

figure, all the contributions arising through the T
(0)†

2 DT
(1)

2
term are due to other than the core-polarization effects, and
they are important in determining the αd value, while they
contribute relatively less in the evaluation of the R values.
These MBPT(3) diagrams were not shown explicitly in Fig. 1,
as each of these diagrams contribute little, but they add up to
a sizable amount in the CCSD method. In the above table, we
also quote contributions from the remaining terms of the CCSD
method as “higher,” because they correspond to higher-order
correlation effects and arise through the nonlinear terms such
as the T

(0)†
1 DT

(0)
1 T

(1)
1 , T

(0)†
2 DT

(0)
2 T

(1)
1 , etc. terms. Most of

these contributions are due to other than the core-polarization
effects.

FIG. 4. The Goldstone diagram depicting single excitation contri-
butions to αd and R by exciting a core orbital “a” to a virtual orbital
“p” through the �(1) operator. Here �(1) represents the first-order
perturbed operator in the DHF, MBPT(2), and RPA methods and the
T

(1)
1 operator of the CCSD method.
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TABLE IV. Contribution from various atomic orbitals to αd,RT , and RS in units of ea3
0 , × 10−20〈σ 〉|e|cm and ×10−17[1/|e|fm3]|e|cm,

respectively, through dominantly contributing single excitations represented by Fig. 4. Values that are smaller in magnitude are approximated to
zero (mentioned as ∼0.0), and those marked in bold fonts highlight changes in the trends of the results from the DHF method after incorporating
electron-correlation effects through different many-body methods. Contributions from the 6s and p3/2 orbitals are quoted within two lines to
demonstrate how they behave differently in the evaluation of the αd and R values using the considered methods.

Occupied Virtual αd RT RS

a p DHF MBPT(2) RPA DT
(1)

1 DHF MBPT(2) RPA DT
(1)

1 DHF MBPT(2) RPA DT
(1)

1

4s 11p1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.02 −0.07 0.03 0.03 0.01 −0.02 0.01 0.01
3s 12p1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.02 −0.04 0.02 0.02 0.01 −0.01 0.01 0.01
4s 12p1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.05 −0.14 0.05 0.05 0.01 −0.03 0.01 0.01
5s 10p1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.04 0.09 0.05 0.05 0.01 0.02 0.01 0.01
5s 11p1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.07 0.01 0.08 0.08 0.02 ∼0.0 0.02 0.02
5s 12p1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.02 −0.06 0.02 0.02 ∼0.0 −0.01 0.01 0.01
6s 6p1/2 9.38 12.39 15.97 11.84 −0.22 −0.29 −0.78 −0.76 −0.05 −0.07 −0.18 −0.16
6s 7p1/2 22.54 28.94 37.35 29.90 −0.69 −0.88 −2.32 −2.29 −0.17 −0.21 −0.54 −0.49
6s 8p1/2 7.95 8.80 11.37 12.09 −0.52 −0.57 −1.53 −1.59 −0.12 −0.14 −0.37 −0.35
6s 9p1/2 0.20 0.20 0.04 0.36 −0.12 0.05 −0.27 −0.29 −0.03 0.01 −0.07 −0.07
6s 10p1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.02 0.11 0.03 0.03 ∼0.0 0.03 0.01 0.01

6s 6p3/2 14.01 18.57 23.44 17.54 ∼0.0 ∼0.0 0.05 0.19 −0.05 −0.07 −0.16 −0.13
6s 7p3/2 43.44 55.96 70.39 57.35 ∼0.0 ∼0.0 0.17 0.71 −0.21 −0.27 −0.63 −0.53
6s 8p3/2 18.73 20.99 25.86 28.03 ∼0.0 ∼0.0 0.06 0.48 −0.21 −0.21 −0.52 −0.48

5p1/2 8s ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.02 ∼0.0 0.02 0.02 ∼0.0 ∼0.0 0.01 ∼0.0
5p1/2 9s 0.03 ∼0.0 −0.03 ∼0.0 0.09 −0.02 0.13 0.11 0.02 ∼0.0 0.03 0.03
4p1/2 10s ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.01 −0.02 0.01 0.01 ∼0.0 −0.01 ∼0.0 ∼0.0
5p1/2 10s 0.03 −0.01 −0.04 ∼0.0 0.19 −0.09 0.26 0.24 0.05 −0.02 0.07 0.06
4p1/2 11s ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.04 −0.12 0.04 0.04 0.01 −0.03 0.01 0.01
5p1/2 11s ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.09 −0.12 0.10 0.10 0.02 −0.03 0.03 0.02
3p1/2 12s ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.01 −0.02 0.02 0.02 ∼0.0 −0.01 ∼0.0 ∼0.0
4p1/2 12s ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.03 −0.08 0.03 0.03 0.01 −0.02 0.01 0.01
5p3/2 8s 0.03 ∼0.0 −0.03 0.01 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.01 ∼0.0 0.01 0.01
5p3/2 9s 0.11 −0.03 −0.13 0.02 ∼0.0 ∼0.0 0.02 0.01 0.04 −0.01 0.07 0.06
4p3/2 10s ∼0.0 ∼0.0 ∼D0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.01 −0.01 0.01 0.01
5p3/2 10s 0.10 −0.06 −0.13 ∼0.0 ∼0.0 ∼0.0 0.03 0.02 0.08 −0.05 0.12 0.11
4p3/2 11s ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.02 −0.05 0.01 0.02
5p3/2 11s ∼0.0 −0.01 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.03 −0.05 0.03 0.04
3p3/2 12s ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.01 −0.01 ∼0.0 0.01
4p3/2 12s ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.01 −0.03 0.01 0.01
5p3/2 12s ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 −0.01 ∼0.0 ∼0.0

The Goldstone diagram depicting the D�(1) term with the
approximation for �(1) as the first-order perturbed operator in
the DHF, MBPT(2), and RPA methods and the T

(1)
1 operator

of the CCSD method is shown in Fig. 4. This represents the
dominantly contributing singly excited configurations, which
we have represented by replacing a core orbital (a), denoted
with a line pointing down arrow, by a virtual orbital (p),
denoted with a line with upward arrow, at various levels of
approximations. Contributions from this diagram at the DHF,
MBPT(2), RPA, and CCSD level are listed in Table IV only
from the large contributing orbitals. As can be seen from
this table, contributions from various orbitals to αd and R
values are different. In the determination of αd , only the 6s

and p1/2,3/2 orbitals play all the roles. This trend also shows
why and how the RPA result for αd becomes very large,
particularly through the 6s − 7p3/2 orbitals. It exhibits that
the core-polarization effects are changing contributions from
these orbitals very strongly at the MBPT(2) and RPA level

of approximations, while other types of correlation effects
coming through the DT

(1)
1 RCC term revamp these orbitals

further to bring these values down. It can also be seen that
the 6s − p3/2 orbitals contribute more than the 6s − p1/2

orbitals to this quantity. Comparing with the αd results, the
correlation effects affect the atomic orbitals more strongly in
the evaluation of the R values. Again, the 6s − p1/2 orbitals
contribute more predominantly in the evaluation of R than the
6s − p3/2 orbitals. In fact, contributions from the 6s − p3/2 to
these quantities at the DHF values are negligibly small, and
other than the core-polarization effects through the DT

(1)
1 RCC

term modified these orbitals drastically to give quite significant
contributions to the final results. To highlight the same, results
only from the 6s − p3/2 orbitals are put in between two lines of
the table. It can also be noticed that the 6s and p1/2,3/2 orbitals
contribute differently to theRT andRS values at various levels
of approximations in the many-body methods. In contrast to
the αd value, some of the high-lying orbitals also contribute
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substantially to these quantities, as these continuums have
large overlap over the nuclear region. We have marked in bold
fonts some of the quoted contributions from a few specific
orbitals to bring into notice how the electron-correlation effects
modify these orbitals unusually large in 171Yb for studying
atomic properties. This implies that it is important to consider
a potential many-body method to determine the R values in
this atom. It also suggests that testing accuracies of the αd

value cannot justify accuracies of the R values absolutely,
but it can only assure the validity of the calculations to some
extent.

V. CONCLUSION

The roles of electron-correlation effects in the determina-
tion of dipole polarizability and electric dipole moments due
to parity and time-reversal symmetry violations considering
the tensor-pseudotensor interactions between the electrons
with the nucleus and electrons with the nuclear Schiff
moment in the 171Yb atom are analyzed. For this purpose,
relativistic many-body methods over the Dirac-Hartree-Fock
wave function at the approximations of the second- and
third-order many-body perturbation theories, random phase
approximation, and coupled-cluster method with single and
double excitations are employed. Contributions from the core-
polarization effects and other possible correlation interactions

are investigated categorically from the differences of the
random phase approximation and coupled-cluster calculations.
To fathom the origin of these differences, contributions in
terms of the important Goldstone diagrams appearing through
the second-order and third-order perturbative methods are
given. Moreover, contributions from different orbitals at
various levels of approximations in the many-body methods
are listed for the comprehensive understanding of propagation
of the electron-correlation effects in the above atom through
these orbitals to the considered properties that have distinct
radial behaviors. This suggests that accuracies in the calculated
electric dipole moments in atoms cannot really be determined
from the dipole polarizability calculations. On the grounds of
physical effects that are being embodied in the calculations, the
values obtained employing our coupled-cluster method can be
treated as more accurate, and they can be used to infer reliable
limits on the tensor-pseudotensor coupling constant between
the electrons and nucleus and nuclear Schiff moment of the
171Yb atom when its experiment comes to fruition.
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