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Ionization energies and electron affinities from a random-phase-approximation many-body
Green’s-function method including exchange interactions
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A many-body Green’s-function method employing an infinite order summation of ring and exchange-ring
contributions to the self-energy is presented. The individual correlation and relaxation contributions to the
quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-
hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of
this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples
energy difference results than those obtained with second-order Green’s-function approaches. An analysis of the
correlation and relaxation terms of the self-energy for the direct- and exchange–random-phase-approximation
(RPA) Green’s-function methods shows that the inclusion of exchange interactions leads to a reduction of the two
contributions in magnitude. These differences, however, strongly cancel each other when summing the individual
terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the
description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs,
if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in
very good agreement with experimental measurements.
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I. INTRODUCTION

Molecular ionization energies (IPs) and electron affini-
ties (EAs) can be determined with a high accuracy using
experimental measurements, e.g., photoelectron spectroscopy
[1–3] or electron impact experiments [4,5]. Because of this,
these properties serve well as reference data for testing
the accuracy of quantum chemistry electron correlation
methods. In the case of the latter, principally two main
approaches exist to determine IPs and EAs. In the first
one the IPs or EAs are calculated from the energy differ-
ences between the charged and neutral molecules according
to

�EIP = Ecation − Eneutral, (1)

�EEA = Eneutral − Eanion. (2)

The advantage of this approach is that it can principally be
used in conjunction with any quantum chemical method which
provides energies for the closed- and open-shell systems and,
by construction, takes relaxation and correlation effects for the
N - and (N + 1)/(N − 1)-electronic systems fully into account
through all orders of a many-body expansion of the energy
difference. A disadvantage of the energy difference method of
Eqs. (1) and (2) is, however, that separate energy calculations
are required to compute single, double, triple, etc., ioniza-
tions or electron attachment energies, so that this approach
becomes very expensive if the full quasiparticle spectrum is
desired.

This can be resolved by a direct determination of the
IPs and EAs using many-body Green’s-function methods
[6–18]. In these methods, in contrast to standard wave-function
approaches, the electronic Schrödinger equation is solved
by a transformation into an integral equation containing
the resolvent to the Hamiltonian. A knowledge of this
quantity, denoted as the Green’s function of the many-body

system, could then be used to directly determine a range of
molecular properties, including ground-state energies [19–21],
transition matrix elements [22], absorption coefficients [23],
dynamic polarizabilities [14,24], phonon spectra [25], as well
as elastic and inelastic cross sections [26]. Furthermore,
ionization energies and electron affinities of the N -particle
system, that are the quantities of interest in this work,
can be obtained by determining the poles of the Green’s
function [27].

Since the Green’s function (GF) in general is an unknown
quantity, it has to be approximated in practice. This usu-
ally is done by solving the Dyson integral equation which
relates the Green’s function of a noninteracting many-body
system to a fully interacting system by taking into account
screened interactions through an energy-dependent potential
termed as self-energy. As described in Ref. [28], the name
self-energy originates from the mutual interactions of a
single particle with the many-body system and describes
the difference between the energy of the bare particle and
the energy of the particle plus a surrounding cloud of
agitated particles screening the interactions in the system.
The sum of the particle with its cloud is also denoted as a
quasiparticle.

The simplest quasiparticle approach is obtained by taking
into account first-order electron-electron interactions, leading
to the Hartree-Fock (HF) approximation. In this approximation
(and any other effective one-particle theories) the Green’s
function can explicitly be expressed in terms of the HF orbitals
(φr ) and orbital energies (εr ):

G0(r1,r2,ω) =
∑

r

φr (r1)φ†
r (r2)

ω − εr

. (3)

As can be seen in Eq. (3), the HF Green’s function
possesses poles at the HF orbital energies. These are re-
lated to the IPs and EAs of the N -particle system due
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to Koopman’s theorem. Accordingly, as noted above, the
exact one-particle many-body Green’s function has poles
at the exact (vertical) IPs and EAs of the many-body
system.

Like in standard wave function theories, the unknown
self-energy potential can be approximated using perturba-
tion theory approaches, starting from the HF approxima-
tion as the zeroth order self-energy contribution [27,29].
With this the (energy independent) Coulomb and first-order
exchange interactions are separated from the self-energy
potential and the latter then solely describes the remaining
correlation and relaxation contributions to the quasiparticle
energies.

Perturbation theory approaches to the many-body Green’s
function method have been developed by a number of groups
using a second- [12,30–33], third- [8,9,13,16,18,34], or even
fourth-order [35] expansion of the self-energy with respect
to the electron-electron interaction. It has been found that
third-order methods usually provide IPs and EAs which
are in reasonable agreement with experimental reference
results [13,17,18,36]. Even higher accuracies are obtained
by infinite order approaches like the coupled-cluster Green’s-
function method by Nooijen and Snijders [37,38]. Note also
that many-body Green’s-function methods can be related to
equation-of-motion coupled-cluster methods [39] and Fock-
space coupled-cluster methods [39,40]. In the case of the
latter, the quasiparticle energies can be calculated from an
effective one-particle electron correlation method employing
an energy-independent correlation potential which transforms
the orbitals to Brueckner orbitals [39]. The close relation
between many-body perturbation theory methods based on
an effective one-particle Brueckner model space and Green’s-
function methods has also been discussed by Lindgren [41]
and Ortiz [42].

Another approach to calculate the self-energy potential
is the Hedin GW method which aims at determining an
approximate solution to Hedin’s equations [43–45]. These
form a set of four coupled equations which relate the self-
energy, the screened interaction, the polarization function,
and the vertex function [43,44,46]. While the derivation of
an exact solution to these equations, in combination with the
Dyson equation, would yield the exact one-particle propagator,
in practice this would be a quite demanding task from a
computational point of view. Because of this, in the GW
method the vertex function is approximated to be diagonal
in space and time coordinates. With this it is described by
the product of the Green’s function and the dynamically
screened Coulomb interaction [43,46]. It should be noted,
however, that still the GW method constitutes a many-body
self-consistent problem which has to be solved. Typical further
approximations to the GW method are the non-self-consistent
G0W0 method in which the Green’s function is modeled by
the noninteracting G0 and the screened interaction is kept at
the RPA level, and the GW0 self-consistent approach on G
[20,47].

In a non-self-consistent GW method also the zeroth-order
approximation to the Green’s function can have a significant
influence on the accuracy of the method. Above it has been
argued that the Hartree-Fock method is a good starting point
for deriving corrections to the self-energy due to the fact

that the HF orbital energies are already related to ionization
energies and electron affinities of the N -particle system
due to Koopman’s theorem. In the case of the Kohn-Sham
pseudoparticle system a related theorem can also be derived
for the occupied orbitals [48] while, however, the eigenvalues
of unoccupied Kohn-Sham orbitals are not associated with
electron affinities but to the ionization energies of the anionic
systems [49]. In spite of this, GW calculations are convention-
ally carried out in conjunction with Kohn-Sham references,
in particular for calculating the quasiparticle spectrum of bulk
semiconductors and insulators [44,50,51]. Kohn-Sham GW
calculations for molecular systems have been implemented
and tested by Shigeta et al. [52] and more recently by van
Setten and co-workers [53–56]. Fully self-consistent GW
methods for molecules have been developed by Rostgaard
et al. [57] and Koval et al. [58]. In the work by Rostgaard
et al. a comparison between HF-based and KS-based GW
methods is made [57]. It was found that at the G0W0 level
HF GW methods are more accurate than KS GW methods.
At full self-consistency, however, the results for quasiparticle
energies are almost independent on the starting reference
[57,58].

In this work a diagrammatic method is presented which
enables the computation of the self-energy potential through
infinite order within the random-phase approximation (RPA)
including all particle-hole exchange interactions. This method,
termed as the RPAX2 method in Ref. [59], has recently
been implemented for obtaining the ground-state correlation
energies of molecules using a Kohn-Sham reference state.
Thermokinetic molecular properties, including ionization
energies and electron affinities, were shown to be very
accurate with the Kohn-Sham based RPAX2 method [60].
Here, however, a Hartree-Fock reference will be used as
the zeroth-order approximation to the many-body Green’s
function. This has the advantage that the correlation con-
tributions to the IPs and EAs obtained by the RPA or
RPAX2 approaches can directly be interpreted as corrections
to Koopman’s theorem. While a corresponding theorem also
exists for the occupied energy levels of the “exact” KS
method, as noted above, in general the exact KS potential is
unknown and has to be approximated. Exchange-correlation
potentials from standard generalized-gradient approximation
functionals, however, yield orbital energies which strongly
underestimate the negative ionization energies of the N -
particle system due to an incorrect asymptotic behavior of the
exchange-correlation potential [52,61]. This is only partially
resolved by using hybrid functionals and therefore either an
asymptotic correction method [61–65], or a more sophisticated
orbital-dependent KS functional using the optimized-effective
potential method [66–71] would have to be used to ob-
tain a reasonable description of the zeroth-order Green’s
function.

The methods considered in this work will be tested for a
recently developed set of 27 benchmark systems for studying
the performance of GW methods [53]. Geometries as well
as reference IPs and EAs for this GW27 database have
been revised in this work using the MP2 method for the
structure optimizations and complete basis set extrapolated
CCSD(T) energies for obtaining accurate IPs and EAs. It
is shown that these results, if corrected to the adiabatic

062513-2



IONIZATION ENERGIES AND ELECTRON AFFINITIES . . . PHYSICAL REVIEW A 95, 062513 (2017)

energy differences between the charged and neutral sys-
tems, are in a very good agreement with experimental
measurements. They may therefore serve well as reference
data for testing other quantum chemistry (Green’s-function)
methods.

Correlation and relaxation effects to the self-energy poten-
tial are treated separately in the approach of this work. This will
enable us to analyze the influence of these two contributions
on the quasiparticle energies and may generally be useful for
characterizing the electronic structure of the molecule.

This work is organized as follows: Section II describes the
methods of this work using a diagrammatic approach that is
outlined in Sec. II B 1. Section III summarizes the computa-
tional details for the calculations done. In Sec. IV the results
are presented. Here it is first shown that the CCSD(T) reference
values compare well with experimental IPs and EAs in
Sec. IV A. In Sec. IV B differences between the quasiparticle
energy levels of some Green’s-function methods are inves-
tigated for a selection of molecules of the GW27 database,
discussing also the influence of correlation, relaxation, and
static self-energy contributions to the magnitudes of the energy
levels. In the final subsection of the results section, Sec. IV C,
the IPs and EAs from the approaches of this work as well as
other standard wave-function methods are compared against
the coupled-cluster reference results. Section V summarizes
the results.

II. METHOD

A. Poles of the many-body Green’s function

The Green’s function G(ω) of an interacting many-body
system can be calculated by solving the Dyson integral
equation, which, in a matrix representation, reads [27]

G(ω) = G0(ω) + G0(ω)�(ω)G(ω), (4)

where ω is the quasiparticle energy, G0(ω) is the Hartree-Fock
(HF) Green’s function, and �(ω) is the exact self-energy in the
basis of the HF orbitals. It can be shown that G0(ω) has poles
at the HF orbital energies which are related to the ionization
potentials (IPs) and electron affinities (EAs) of the N -particle
system through Koopman’s theorem [27]. Correspondingly,
the many-body Green’s function G(ω) possesses poles at the
exact energy differences between the N particle and (N − 1)
particle respectively (N + 1)-particle system, i.e., the exact
IPs and EAs.

In this work only the poles of G(ω) shall be considered. For
this, note that Eq. (4) can be recast into [27]

G(ω) = 1
ω1 − ε − �(ω)

, (5)

where ε is a diagonal matrix containing the occupied and
virtual HF orbital energies. This form of the Green’s function
now clearly shows that G(ω) reduces to G0(ω) if �(ω) = 0.
If many-body interactions beyond first order are taken into
account, it follows from Eq. (5) that generalized single-particle
equations of the form

[f̂ + �̂(ω)]φDyson
i (r,ω) = ωφ

Dyson
i (r,ω) (6)

have to be solved. In Eq. (6) f̂ denotes the Fock operator
and φ

Dyson
i corresponds to the Dyson orbital of the ith state.

While having a form almost identical to the HF single-
particle equations, note that the self-energy operator �̂(ω)
is energy dependent and thus the above equation represents
a non-Hermitian eigenvalue problem. Accordingly, the Dyson
orbitals form in general a nonorthonormal set of single-particle
states.

In order to arrive at a computational tractable form, two
approximations are now introduced. First, the off-diagonal
elements of the matrix ε + �(ω) shall be neglected, so
that the poles of G(ω) can directly be obtained from the
equation

ω = εi + �ii(ω). (7)

The impact of this approximation on quasiparticle energy
levels has, e.g., been studied in Refs. [72,73]. Kaplan et al. have
shown in Ref. [72] that, as compared to a self-consistent update
of the poles, the inclusion of the off-diagonal terms in G0W0

calculations has only a small effect on the ionization energies
for a range of small molecules. In Ref. [73] Beste and Bartlett
have used the diagonal approximation within a second-order
Brueckner correlation method. The ionization energies and
electron affinities (estimated by the occupied and unoccupied
orbital energies) obtained by this approach were shown to be
almost identical to those obtained from a diagonalization of the
occupied-occupied and virtual-virtual blocks of the Brueckner
Hamiltonian. Due to this, it can be assumed that Eq. (7) is a
reasonable approximation to determine the quasiparticle poles
within a given orbital space.

As can be seen in Eq. (7), the poles of the Green’s
function can now easily be obtained by iterating the above
equation using ω0 = εi as an initial guess [27]. Via this,
while Eq. (7) can have many solutions, the pole of the
Green’s function that is retained by this starting guess should
be the one which possesses the largest strength (provided
that the initial Hartree-Fock orbital energies are close to
the exact quasiparticle energies). It was found in this work
that within the diagonal approximation the converged solu-
tions to Eq. (7) differed only slightly from the first-order
solution,

ω = εi + �ii(εi), (8)

and thus Eq. (8) will be used in this work to approximate the
poles of G(ω).

B. Self-energy matrix within the random-phase approximation

1. Diagrammatic approach

In this work, the method to compute the diagonal self-
energy matrix elements is derived by using a diagram-
matic approach. The corresponding algebraic expressions to
the diagrams displayed in the equations below are given
in the Supplemental Material [74]. The main building blocks
of the Goldstone-type diagrams used herein are the three
diagram fragments shown in Fig. 1. The green lines in the
diagrams in the figure denote particle (upwards pointing) and
hole (downwards pointing) lines, respectively. The red wiggly
lines in the diagrams represent a virtual photon line describing
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hole-hole interaction

√
2

Q
(ij|Q) S−1/2

QP
=
√

2(ij|P)

particle-hole interaction

√
2

Q
(ia|Q) S−1/2

QP
=
√

2(ia|P)

particle-particle interaction

√
2

Q
(ab|Q) S−1/2

QP
=
√

2(ab|P)

FIG. 1. Relation between diagram fragments and algebraic ex-
pressions. Top: hole-hole integral; middle: particle-particle integral;
bottom: particle-hole integral.

the interaction of the particle or hole with an unspecified
perturbation, as marked by the grey boxes in the diagrams.
In the corresponding algebraic expressions (ia|P ) denotes a
three-index Coulomb repulsion integral between the density
of the orbital product φi(r)φa(r) (i: occupied; a: virtual) and
an auxiliary function gP (r). The operation of the inverse of the
square-root Coulomb metric of the auxiliary function space
transforms the functions into an orthonormal function set
within the Coulomb norm; see, e.g., Refs. [75,76]. Due to this,
any diagram containing the general auxiliary function space
vertex can be contracted with another diagram containing this
vertex to obtain the final self-energy contributions. As an
example, the two-electron Coulomb-repulsion integral (ia|jb)
(chemist’s notation) can be obtained by the contraction of the
particle-hole (ph) diagrams of Fig. 1:

(9)

Finally, the factor of
√

2 appearing in the algebraic expressions
in Fig. 1 is a spin factor since only closed-shell systems shall
be considered.

The zeroth- and first-order contributions to the self-energy
[i.e., the Hartree-Fock orbital energies in Eq. (8)] are given by

the three diagrams [28,77]

(10)

Here the blue vertex in the first diagram denotes the
external potential of the nuclei, the second diagram represents
a Coulomb interaction to first order, and the third diagram is
an exchange diagram to first order and originates from the
antisymmetry condition on the wave function. Note that from
now on only the hole-hole part to �(ω) will be considered. The
corresponding particle-particle contributions can be obtained
in a completely analogous way by swapping the directions of
the outer fermion lines.

Regarding the rules to translate the (Goldstone-type) dia-
gram expressions back into algebraic expressions, including
sign and prefactor rules, refer to Refs. [6,16,27,77–80].

2. Correlation contribution to the self-energy

The first correlation correction to Koopman’s theorem is
given by the term [27]

Σcorr
pq (ω) = −2

i,a,b

(pa|jb)(jb|aq)

ω + εj − εa − εb

(11)

where the blue dotted line is added in order to indicate that
an energy denominator with energy levels corresponding to
the intersections with the fermion lines has to be added in
the algebraic term, see, e.g., Ref. [77]. This contribution
can be interpreted as a correlation term because the electron
entering in a hole state is excited into an unoccupied state
when interacting with the many-body system, producing a
particle-hole pair. In the second interaction in the diagram
in Eq. (11) the electron interacts again with the ph pair and
scatters back into a hole state.

Note that in the case of the insertion of ω = εi into the
diagram in Eq. (11), according to a first iteration of Eq. (7),
the bottom fragment of the diagram may be rewritten as

2(ia|jb)

εi + εj − εa − εb

(12)

which actually corresponds to the direct part to the double
amplitudes within second-order Møller-Plesset perturbation
(MP2) theory. The second-order correlation contribution to
the self-energy can therefore be transformed to the RPA one
by replacing the MP2 amplitudes by the RPA amplitudes in
Eq. (11). These can be obtained by iterating the Riccati-type
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equation [77,81,82]:

(13)

In Eq. (13), the initial amplitudes have to be inserted into
the three diagrams in the middle and bottom on the right-hand
side. The sum of these plus the first-order doubles contribution
then yield a new approximation to the amplitudes. The repeated
iteration of the equation leads, after a contraction with two-
electron integrals, to all direct ring diagrams and thus defines
the RPA doubles amplitudes.

It was shown in Ref. [59] that a computational efficient
algorithm to compute the RPA amplitudes can be derived if
not iterating the full amplitudes themselves, but by iterating
the contraction of the amplitudes with the ph-diagram of Fig. 1
instead. The first iteration of this method reads

(14)

The construction of the second term in Eq. (14) can be
decomposed into two steps: In the first step the doubles
amplitudes are calculated from the two ph diagrams of Fig. 1.
In the second step the amplitudes are then contracted again
with the ph fragment of the figure so that a screened interaction
correction to the bare ph diagrams is obtained. With this the
iterative method of Ref. [59] can be written as

(15)

where the ph fragment containing the solid red line now is the
actual quantity that is iterated.

It was shown in Refs. [70,83,84] that the direct RPA (used
in conjunction with a Kohn-Sham reference determinant) is
not very accurate in describing electron correlation energies
of molecules. The reason for this mainly originates from
the fact that the RPA contains many exclusion-principle
violating (EPV) diagrams in each order of perturbation theory
which are not canceled by corresponding exchange-diagram
counterparts, leading to a large overestimation of electron
correlation energies [77]. This deviation of the RPA correlation
energies from accurate correlation energies is also termed as a
self-correlation error and can be viewed as a generalization
of the self-interaction error of the Hartree method in first
order.

In order to correct this error of the RPA, the doubles
amplitudes have to be antisymmetrized according to

(16)

If this antisymmetrization step is applied to the converged
RPA amplitudes of the iterative method described above,
then the contraction of the amplitudes with the two-electron
integrals yield the correlation energy within the so-called
SOSEX (second-order screened exchange) method by Kresse
et al. [85]. While with this the EPV diagrams appearing in the
perturbation series expansion of the RPA correlation energy are
canceled in each order, the resulting SOSEX correlation energy
is incomplete with respect to ph-interaction terms already
in third order. In Ref. [59] therefore an alternative method
has been derived which yields all ph-interaction diagrams
in a perturbation expansion. This is achieved by applying
the antisymmetrization of the doubles amplitudes in each
iteration of the amplitude update step. Using the auxiliary
basis set representation of the general interaction vertex, the
recursion relation for the ph interaction in the RPAX2 method
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reads

(17)

An insertion of the converged RPAX2 doubles amplitudes into the self-energy diagram

(18)

yields correlation energy corrections to the occupied single-particle states on the RPAX2 level. Note that the sum of these
corrections over all occupied states yields the RPAX2 correlation energy of the N -particle system. It can thus be followed that
the correlation contribution to �(ω) leads to a stabilization of the N -particle system relative to the (N − 1)-particle system
and therefore is always a positive contribution to the ionization energy [27,31]. In the case of electron affinities an analoguous
behavior exists that leads to a positive self-energy shift (reduction of the EA) since again the N -particle system is favored
compared to the (N + 1) system due to the correlation contribution.

3. Relaxation contribution to the self-energy

The first relaxation correction to Koopman’s theorem again occurs in second order and is given by the term

Σrelax
pq (ω) = −2

i,j,b

(pi|jb)(jb|iq)

εi + εj − ω − εb (19)

In contrast to the correlation contribution, the electron entering in a hole state is scattered into another hole state upon
interaction with the many-body system. Again this process is accompanied with the excitation of an electron in an occupied state
into an unoccupied state (leading to a particle-hole pair). The whole interaction therefore defines a double excitation of the form

i → j,

k → a,

which occurs in the second-order energy of the (N − 1) system. Such excitations are absent in the N -particle system because j

is an occupied state [27]. Because of this, the relaxation contribution always lowers the energy of the (N − 1) system [(N + 1)
system] as compared to the N -particle system and is thus a negative (positive) contribution to the ionization energy (electron
affinity). Note that the relaxation contribution can be further split into an orbital-relaxation term and a pair-relaxation term by
separating the self-energy expression into a single- and double-excitation part [27,31]. In this work no such differentiation will
be made.
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The question is now how the self-energy diagram of Eq. (19) can be expanded within the RPA? Making use of the techniques
derived in Sec. II B 2, the following recursive procedure can be applied to obtain all time-forward ring-diagram contributions:

(20)

with the dashed vertex line now denoting the interaction of the hole-hole pair with the many-body system. The repeated iteration
of the above equation produces (omitting the horizontal energy denominator lines)

(21)

A contraction with the hole-hole (hh) diagram of Fig. 1 then yields the self-energy terms

(22)

Note, however, that this series misses ring diagram contributions containing energy independent fragments. These are those
diagrams which possess factorized energy denominator terms that exclude the energy ω; see also the Supplemental Material [74].
The first such contribution occurs in third order and is given by

(23)
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To take these missing ring diagrams into account, the iterative equation above is slightly modified to

(24)

i.e., the hh-interaction fragment is now contracted with the solutions to the RPA doubles amplitude equation (15) instead of the
bare ph interaction [as is indicated by the solid red line in Eq. (24)]. As an example, the insertion of the first-order solution to
Eq. (15), i.e., Eq. (14), into Eq. (24) gives

(25)

Finally, exchange interaction contributions to the relaxation part of the self-energy can be obtained in an analogous way as
described for the correlation part; see Sec. II B 2. The modified recursion relation for the RPAX2 hh interaction then reads

(26)

Note that here the solutions to the RPA ph-interaction diagrams are replaced with the corresponding solutions to the RPAX2 ph
interactions. Analogous to the RPAX2 amplitude equation (17) it can be verified that the iterative procedure defined by Eq. (26)
requires at most contractions which scale as N 5 with respect to the molecular size N . Due to this, the combined approach for
calculating self-energy contributions described in Sec. II B 2 and in this section is not much more computationally demanding
than computational schemes for second-order methods.

4. Static self-energy contributions

In third and higher orders of the perturbation theory expansion of the self-energy also terms which are independent of the
energy occur. The leading-order terms of the static part of the self-energy are given by [6,13,86]

(27)

Note that a fourth diagram exists which can be obtained by a 180◦ rotation of the third one around either of the two denominator
lines and a swapping of all directions of the fermion lines. This contribution, however, is identical to the third one if only the
diagonal part to �(ω) is considered and can be taken into account by a prefactor of 2 added to the diagram. As one may
observe from the forms of the static self-energy diagrams in Eq. (27), they describe the interactions of an extra electron with the
occupied-occupied (first term), virtual-virtual (second term), and occupied-virtual (third term) part of an effective single-particle
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correlation potential of the many-body system. In fact, the correlation potential corrections to the HF potential appearing in the
diagrams above will also have to be considered if off-diagonal elements of �(ω) are taken into account, leading to single-particle
equations which define Brueckner orbitals if ω is replaced by the corresponding orbital energies; see also Refs. [39,41,73,87–89].

The third-order terms of the static self-energy in Eq. (27) can easily be generalized to the RPA upon an insertion of the RPA
amplitudes for all second-order doubles amplitude fragments, leading to

(28)

Again, the corresponding static self-energy contributions of the RPAX2 method can be obtained by replacing the RPA double
amplitudes by the RPAX2 amplitudes as described in Sec. II B 2.

III. COMPUTATIONAL DETAILS

The Green’s-function methods employing RPA and RPAX2
self-energy contributions as described in Secs. II B 2, II B 3,
and II B 4 have been used to compute the occupied and lowest
unoccupied energy levels of the molecules from the GW27
database [53]. The original structures of the molecules of
this database have been taken from the Turbomole database
[90] which was generated by using geometry optimizations
employing the Becke-Perdew Kohn-Sham energy functional
[91,92] and using small basis sets. Because of this, all the
structures of the GW27 set have been reomptimized with
MP2 using the cc-pVTZ basis set by Dunning and co-workers
[93–96] (except Cs2, Au2, and Au4: def2-TZVP basis set
with additional effective core potential functions [97,98]).
It was then verified that total CCSD(T) (coupled-cluster
singles and doubles with perturbative triples) energies are
lower throughout if using the reoptimized structures instead
of the original ones. It should be noted that the geometric
alternation also leads to partially significant changes in the
CCSD(T) ionization energies, most notably for H2 (∼ +
0.2 eV) and F2(∼ + 0.3 eV). Since not all molecules of the
GW27 database build a stabilized anion (relative to the neutral
system), only those molecules for which the vertical CCSD(T)
EAs are positive are used for benchmarking the propagator
methods.

To enable a comparison with experimental measurements,
which often [99] provide only estimates for the adiabatic
ionization potentials and electron affinities, also the cations
and anions for the molecules from the GW27 database have
been optimized on the MP2 level using the cc-pVTZ basis
sets. For all optimized structures the zero-point vibrational
energies have then been calculated with MP2. The only
exception to this were the neutral and charged anthracene and
naphthacene molecules. Here the vibrational frequencies were
calculated with the B3LYP KS energy functional [91,100,101]
using the geometries optimized with this method (employing
the cc-pVTZ basis set by Dunning [93–96]). The structure
optimizations and frequency calculations have been performed
using the GAUSSIAN09 program [102]. All structures and

adiabatic energy corrections to the ionization potentials and
electron affinities are compiled in the Supplemental Material
to this work [74].

For comparison, the IPs and EAs have also been computed
with the standard ab initio methods HF, MP2, CCSD, and
CCSD(T) using the MOLPRO program [103,104]. Here always
a spin-restricted open-shell configuration of the reference state
was used in the correlation energy calculations. In addition,
RPA and RPAX2 total-energy calculations were performed
using the approach described in Ref. [59]. In the case of the
charged molecules, in these calculations a spin-unrestricted
approach was used. Note that in contrast to previous works
[59,60,105] here the Hartree-Fock determinant has always
been chosen as reference determinant in the RPA and RPAX2
calculations.

In order to investigate the approximations used in the
calculations of the self-energy contributions described in
Sec. II A, the second- and third-order outer-valence Green’s
function (OVGF) method by Ortiz has been used to compute
the IPs and EAs, too [13,15,17,18,35]. For this, in the case of
the third-order calculations the P3 approximation by Ortiz has
been utilized; see Ref. [36]. These calculations were done with
the GAUSSIAN09 program [102].

In all energy difference and propagator calculations the
aug-cc-pVTZ and aug-cc-pVQZ basis sets by Dunning et al.
[93–96] have been utilized, except for Cs2, Au2, and Au4

where the def2-TZVP and def2-QZVP basis sets [97,98,106]
were employed. In the case of the energy difference methods
the resulting correlation energies have then been extrapolated
to the complete basis set limit (cbs) using the two-point
extrapolation scheme by Bak et al. [107]. The only exceptions
to this were the CCSD and CCSD(T) correlation energies of the
anthracene and naphthacene molecule. Here the complete basis
set limit was estimated by adding the �CCSD(T) correction
to the extrapolated MP2 correlation energy [108,109]. For
the anthracene molecule this correction has been calculated
with the aug-cc-pVTZ basis set and for the naphthacene
molecule the aug-cc-pVDZ basis set was used for calculating
the �CCSD(T) term. The cbs results for the reference energy
contributions were not obtained by corresponding basis set
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TABLE I. Basis set dependence of the correlation, relaxation,
and static self-energy contribution to the ionization energy of the
RPAX2-GF method for the H2O molecule (in eV).

Basis set �RPAX2
corr �RPAX2

relx �RPAX2
static

aVDZ −1.251 2.754 −0.443
aVTZ −1.580 2.831 −0.129
aVQZ −1.705 2.841 −0.009
aV5Z −1.756 2.843 0.043
aV6Z −1.779 2.843 0.065

extrapolation techniques but were estimated using the largest
basis set (aug-cc-pVQZ) used.

In the case of the Green’s-function methods of this work
a basis set extrapolation was only applied to the correlation
contribution to the self-energy while the relaxation and static
contributions were estimated by the results obtained with
the aug-cc-pVQZ basis set to estimate the complete basis
set limit of the IPs and EAs. In the case of the relaxation
energy contribution to the IP it was found that this quantity is
almost converged with this basis set; see Table I which shows
the basis set convergence of the different contributions to the
self-energy for the water molecule. In contrast to this, as can
be seen in Table I, the static self-energy contribution changes

significantly and even switches its sign upon an increase of
the basis set. However, for most of the molecules studied in
this work the static self-energy contribution is fairly small in
magnitude, see Table I and the Supplemental Material [74],
and therefore it can be expected that a basis set extrapolation
would not alter the cbs estimates significantly.

In order to accelerate the convergence behavior of the
iterative equations (17) and (26) for the amplitudes, the
damping method described in Ref. [59] has been utilized. Note
also that in the case of low-lying occupied and higher virtual
energy states a convergence of Eq. (26) for the amplitudes of
the relaxation contribution is often hampered due to an intruder
state problem (see also Refs. [32,73] where this problem is
discussed). In such cases a damping shift of 0.1 hartree was
added to the energy denominators to enable a convergence
of the iterative solution method. The results presented in
this work, however, were all obtained without requiring this
damping approach.

For the auxiliary function space used in the RPA-GF
calculations (see Fig. 1) the corresponding aug-cc-pVTZ/QZ-
MP2Fit density-fitting basis sets by Weigend [110] have been
utilized (except Cs2, Au2, and Au4: def2-TZVP-MP2Fit fitting
basis set [111]).

Core electrons were kept frozen in all correlation energy
calculations.

TABLE II. Ionization energies: comparison between adiabatically corrected CCSD(T) energies to experimental results (eV). Experimental
methods: PE: photoelectron spectroscopy; S: optical spectroscopy; PI: photoionization mass spectrometry; TE: threshold electron detection;
LS: laser spectroscopy; EI: electron impact.

CCSD(T) CCSD(T) Experiment

Molecule Vertical �Edeform �ZPE Adiabatic Method Reference

H2 16.479 −0.921 −0.135 15.423 15.425927 PE [112]
Li2 5.188 −0.082 −0.021 5.085 5.1127 ±0.0003 S [113]
Na2 4.815 −0.109 −0.010 4.696 4.8951 ±0.0002 PI [114]
Cs2 3.411 −0.195 −0.001 3.215 3.7 ± 0.1 PI [114]
F2 15.922 −0.005 −0.009 15.908 15.697 ±0.003 PE [115]
N2 15.613 −0.046 −0.006 15.561 15.581 ±0.008 S [116]
BF 11.200 −0.081 0.018 11.137 11.12 ±0.01 PE [117]
LiH 8.006 −0.297 −0.019 7.690 7.9±0.3 EI [144]
CO2 13.914 −0.002 −0.154 13.758 13.778 ±0.002 PE [118]
H2O 12.793 −0.108 −0.068 12.617 12.6188 ±0.0009 PI [119]
NH3 11.036 −0.807 −0.042 10.187 10.186 TE [120]
SiH4 12.870 −1.363 −0.161 11.346 11.2 ±0.1 PI [121]
SF4 12.990 −0.994 0.039 12.035 12.08 ±0.10 EI [122]
Au2 9.412 −0.119 −0.003 9.290 9.5 ±0.3 EI [123]
Au4 7.894 −0.017 −0.002 7.875
CH4 14.561 −1.529 −0.285 12.747 12.75 ±0.02 PE [124]
C2H6 12.789 −1.053 −0.175 11.561 11.56 ±0.02 EI [125]
C3H8 12.205 −0.936 −0.237 11.032 11.01 ±0.07 EI [126]
C4H10 11.942 −0.665 0.092 11.369 10.87 ±0.05 EI [127]
iso-C4H10 11.835 −0.858 −0.339 10.638 10.74 ±0.05 EI [127]
C2H4 10.741 −0.175 −0.058 10.508 10.5138 ±0.0006 LS [128]
acetone 9.904 −0.103 −0.045 9.756 9.694 ±0.006 PI [129]
acrolein 10.304 0.074 0.004 10.382 10.11 PE [130]
C6H6 9.471 −0.132 −0.059 9.280 9.24384 ±0.00006 TE [131]
naphthalene 8.258 −0.069 0.342 8.531 8.1442 ±0.0009 TE [132]
anthracene 7.482 −0.046 0.016 7.452 7.439 ±0.006 LS [133]
naphthacene 6.964 −0.042 0.028 6.950 6.97 EI [134]
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TABLE III. Electron affinities: comparison between adiabatically corrected CCSD(T) energies to experimental results (eV). Experimental
methods: LPES: laser photoelectron spectroscopy; CIDC: kinetic method; NBIE: neutral beam ionization potentials; IMRB: ion or molecule
reaction bracketing.

CCSD(T) CCSD(T) Experiment

Molecule Vertical �Edeform �ZPE Adiabatic Method Reference

Na2 0.387 0.058 0.004 0.449 0.430 ± 0.015 LPES [135]
Cs2 0.358 0.084 0.001 0.443 0.469 ± 0.015 LPES [135]
F2 0.187 2.958 0.033 3.178 3.120 ± 0.070 CIDC [136]
LiH 0.296 0.015 0.017 0.328 0.342 ± 0.012 LPES [137]
CO2 −0.820 0.161 0.078 −0.581 −0.60 ± 0.20 NBIE [145]
SF4 −0.253 1.451 0.082 1.280 1.50 ± 0.20 IMRB [138]
Au2 1.677 0.083 0.003 1.763 1.940 ± 0.020 LPES [139]
Au4 2.246 −0.074 −0.012 2.160 2.692 ± 0.030 LPES [140]
naphthalene −0.443 0.107 0.012 −0.324 −0.200 ± 0.050 LPES [141]
anthracene 0.359 0.077 0.144 0.580 0.530 ± 0.020 LPES [142]
naphthacene 0.928 0.069 0.126 1.123 1.0580 ± 0.0050 LPES [142]

IV. RESULTS

A. Reference values

Ionization potentials (IPs) and electron affinities (EAs) can
be obtained with high accuracy from experimental measure-
ments, e.g., photoelectron spectroscopy, electron impact ex-
periments, or photoionization mass spectrometry. In addition,
the measured values usually correspond to the adiabatic IPs
and EAs rather than the vertical ones. Because of this, a direct
comparison between the results from the electron propagator
calculations and the experimental values is not possible since
the deformation energies, stemming from the relaxation of the
molecular structures after ionization or electron attachment, as
well as the differences in the zero-point vibrational energies
of the neutral and charged systems, can be quite large; see
Tables II and III.

Because of this, in this work the results for the RPA Green’s-
function (GF) methods will be compared to vertical CCSD(T)
IPs and EAs. These values are compiled in the corresponding
second columns in Tables II and III. Note that corresponding
coupled-cluster results for the ionization energies of the GW27
molecules have also recently been presented by Klopper
et al. [143]. Here, however, the geometries of the original
GW27 database were used in the calculations (see discussion
in Sec. III) and the results have not been extrapolated to
the complete basis set limit but were calculated using the
def2-TZVP basis set.

In order to assess the accuracy of the CCSD(T) reference
values, they have been corrected by the deformation and
zero-point vibrational energy contributions calculated using
the MP2 method with triple-ζ quality basis sets; see Tables II
and III. We believe that this is a consistent approach, since
the MP2 method was also used to optimize the struc-
tures of the neutral and charged molecules. Moreover, note
that vibrational frequency calculations using the CCSD(T)
method are not feasible anymore for all but the smallest
systems of the GW27 database. The corresponding corrected
IPs and EAs are listed in the fifth columns in Tables II
and III.

For comparison, the sixth columns in Tables II and III
show experimental results for the IPs and EAs that have been

collected from the web book of chemistry [144]. In the case
of the ionization energies, Table II, it can be observed that
the adiabatic coupled-cluster estimates are in a very good
agreement with the experimental results. In most cases the
differences between the CCSD(T) values and the experimental
IPs are not larger than ±0.1 eV. The only notable exceptions
to this are the butane molecule and the naphthalene molecule
where deviations of +0.5 and +0.35 eV are observed,
respectively. Note also that in a few cases, e.g., LiH or Au2, the
deviations are of the order of 0.2 eV which lies, however, in
the range of the experimental uncertainty of the experimental
measurement (±0.3 eV both, in the case of LiH and Au2 using
electron impact experiments).

Table III shows, where available, also a comparison
between the adiabatic CCSD(T) EAs to experimental values.
With only two exceptions, CO2 and naphthalene, the exper-
imental affinity values are positive, indicating a stable anion
relative to the neutral molecule. In most cases a fairly good
agreement between the CCSD(T) results and the experiment
is found; see Table III. One of the most striking example that
shows the importance of the inclusion of the deformation
energies in the theoretical estimates is found for the SF4

molecule. Here the EA changes from −0.25 eV for the vertical
case to +1.28 eV due to the relaxation of the anion. The latter
value compares quite well with the experimental number of
1.50 ± 0.20 eV; see Table III. The largest deviation between
the CCSD(T) estimates and the experiment is found for the
gold tetramer where the experimental number differs by more
than 0.5 eV from the theoretical result. In all other cases
the differences between theory and experiment are within a
range of ±0.2 eV (note in this context that the web book
website [144] lists a value of −1.6 ± 0.1 eV for the EA
of CO2 for the corresponding reference by Compton et al.
[145]; this apparently is an error, since the original source
gives an estimate of −0.6 ± 0.2 eV for this molecule; an error
report has been sent to the National Institute of Standards and
Technology).

In summary, it has been proven that the adiabatically cor-
rected CCSD(T) IPs and EAs are in fairly good agreement with
experimental measurements. Accordingly, the corresponding
vertical CCSD(T) values will serve well as a reference for
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FIG. 2. Comparison of the highest occupied energy levels of H2O
(top) and benzene (bottom) for the different propagator methods (aug-
cc-pVQZ basis set).

assessing the accuracy of the more approximate Green’s-
function methods considered in this work.

B. Quasiparticle energy levels

The influence of the different approximations to the self-
energy corrections to Koopman’s theorem is shown in Fig. 2
for the highest occupied energy levels of the H2O (top) and
benzene molecule (bottom), respectively. As can be seen in
the diagrams in the figure, for all Green’s-function (GF)
methods the largest corrections to Koopman’s theorem are
obtained for the lower energy levels in both cases, while for
the highest occupied molecular orbital (HOMO) energies the
Koopman’s theorem results agree better with the OVGF and
RPA results. The reason for this can be attributed to the much
larger relaxation contribution if an electron is removed from
a low-lying state as compared to the removal from the outer
valence energy levels. It can also be seen that the relaxation
contribution usually dominates the correlation contribution
to the self-energy, since most of the energy levels from the
Green’s-function methods are shifted upwards compared to
Koopman’s theorem; see also below.

A comparison between the levels for the two second-order
methods MBPT2 and OVGF(2) highlights the influence of the
diagonal and non-self-consistent approximations on the energy
levels (see Sec. II A) applied in the MBPT2 calculations. One
can observe that the effect of this approximation is nonuniform
for the two molecules considered in the figure. In the case of
the H2O molecule it leads to a downward shift of the highest
quasiparticle energies compared to the OVGF(2) method while
in the case of the benzene molecule a reverse trend is observed.
Note, however, that in this case both the highest level of the
MBPT2 method and the OVGF(2) method are almost identical
to the Koopman’s theorem value, i.e., here a strong cancellation
of the correlation and relaxation self-energy contributions
occurs; see also Supplemental Material [74].

The energy levels from the RPA and RPAX2 methods are
very similar for the highest levels while in the case of the lower-
lying energy levels the RPAX2 energies are slightly lower than
the RPA ones; see Fig. 2. It can be seen in the diagrams in the
figure that both the RPA and RPAX2 quasiparticle energies are
closer to the third-order OVGF(3) energies than the energies
from both second-order approaches. This indicates that the
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FIG. 3. CO2 molecule: influence of the correlation, relaxation,
and static contributions to the self-energy on the energy levels
(RPAX2, aug-cc-pVQZ basis set). Top: lowest unoccupied levels;
bottom: occupied levels.
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FIG. 4. Ionization energies for the GW27 molecules. The
molecules are ordered according to the magnitude of the CCSD(T)
energies. See Table IV for labeling of the molecules.

common third-order contributions to the self-energy of the
three methods are mainly responsible for the differences to the
second-order self-energy levels. Furthermore, it may be that
the diagonal and non-self-consistent approximations applied
in the RPA and RPAX2 approaches have a smaller influence
on the poles of the Green’s function than at a second-order
level. This has to be studied in a future work.

TABLE IV. Labeling of molecules of the GW27 database.

Molecule Label
H2 1
Li2 2
Na2 3
Cs2 4
F2 5
N2 6
BF 7
LiH 8
CO2 9
H2O 10
NH3 11
SiH4 12
SF4 13
Au2 14
Au4 15
CH4 16
C2H6 17
C3H8 18
C4H10 19
iso-C4H10 20
C2H4 21
acetone 22
acrolein 23
C6H6 24
naphthalene 25
anthracene 26
naphthacene 27
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FIG. 5. Correlation and relaxation energy contributions to the
ionization energies of the GW27 molecules. The molecules are
ordered according to the magnitude of the CCSD(T) energies. See
Table IV for labeling of the molecules.

In Fig. 3 the influence of the correlation, relaxation, and
static contributions on the quasiparticle energies is shown
for the occupied (bottom diagram) and lowest virtual (top
diagram) energy levels of the CO2 molecule. As has been
explained in Sec. II B 2, the correlation contribution leads
to an increase of the ionization energies (i.e., a downward
shift of the occupied levels) and to a decrease of the electron
affinities (corresponding to an upward shift of the energy
levels). It can be seen in Fig. 3, however, that in the case
of the occupied energy levels the correlation effect is much
stronger than in the case of the lowest virtual energy levels
for which only a very small correction to the Koopman’s
levels is found. In contrast to this, the relaxation contribution
has a significant effect on the energy levels both for the
occupied and virtual levels. Since it has an opposite effect
on the magnitudes of the quasiparticle energies compared to
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FIG. 6. Electron affinities for the GW27 molecules. The
molecules are ordered according to the magnitude of the CCSD(T)
energies. See Table IV for labeling of the molecules.
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FIG. 7. Correlation and relaxation energy contributions to the
electron affinities of the GW27 molecules. The molecules are ordered
according to the magnitude of the CCSD(T) energies. See Table IV
for labeling of the molecules.

the correlation contribution, the correlation and relaxation
contributions strongly cancel each other for the occupied
levels, but in the case of the unoccupied energy levels this
cancellation is much smaller. A corresponding behavior was
also found for all other systems of the GW27 benchmark set;
see Supplemental Material to this work [74]. Finally, as can be
seen in Fig. 3, the static contributions are very small compared
to the correlation and relaxation counterparts. This, too, was
found to be a common trend for all molecules considered in
this work.

C. Comparison to reference values

The ionization energies and electron affinities for the GW27
sytems obtained with the different Green’s-function methods
are presented in Figs. 4 and 6 along with the vertical CCSD(T)
values of Tables II and III. The ordering of the molecules
plotted on the abscissa axis in the two diagrams has been done
according to the magnitudes of the CCSD(T) IPs and EAs,
respectively. The corresponding labels for the molecules used
in the diagrams are given in Table IV.
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FIG. 8. Ionization energies: mean absolute errors (mae), mean errors (me), maximum errors (max), and relative errors (�) of the methods
considered in this work to the CCSD(T) reference energies. Blue bars: energy difference approaches; red bars: Green’s-function approaches.
The notation [s] to the RPA and RPAX2 methods denotes additional static self-energy contributions taken into account.
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FIG. 9. Electron affinities: mean absolute errors (mae), mean errors (me), maximum errors (max), and relative errors (�) of the methods
considered in this work to the CCSD(T) reference energies. Blue bars: energy difference approaches; red bars: Green’s-function approaches.
The notation [s] to the RPA and RPAX2 methods denotes additional static self-energy contributions taken into account.

In the case of the IPs, Fig. 4 shows that the MBPT2 values
usually underestimate the CCSD(T) reference results for the
systems where the magnitude of the ionization energy is large.
A comparably large underestimation is observed for the F2

(structure 5) and H2O (structure 10) molecules. From the
diagram in Fig. 5, which shows the correlation and relaxation
contributions to the IPs, it can be seen that for these two
molecules the correlation contribution to the self-energy, as
obtained from the MBPT2 method, is quite large, explaining
the deviations of the MBPT2 IPs from the reference values.
In contrast to this, a significant improvement compared to
the IPs at the second-order level is obtained by the RPA
and RPAX2 methods; see Fig. 4. In Fig. 5 it can be seen
that the differences observed between the MBPT2 IPs on
the one hand and the RPA and RPAX2 IPs on the other
hand mainly stem from a reduced correlation contribution,
while the relaxation contributions are more similar for the
different methods. A comparison between the RPA and RPAX2
correlation and relaxation contributions displayed in Fig. 5
shows that the RPA method yields larger values for these two in
magnitude. These differences, however, strongly quench each

other, leading to close IPs of the RPA and RPAX2 methods; see
Fig. 4.

The electron affinities for the different methods are dis-
played in Fig. 6, again ordered according to the CCSD(T)
reference values. One can observe that only a subset of the
molecules from the GW27 database have a positive electron
affinity, indicating a stabilization of the molecule upon an
attachment of an electron. Molecules which belong to this
class of systems are, e.g., the larger acene molecules, the
F2 molecule, and the gold dimer and tetramer. As is shown
in Fig. 6, Koopman’s theorem is unable to describe this
stabilization effect. The reason for this is given by comparing
again the correlation and relaxation contributions to the EAs
shown in Fig. 7. Here one can see that throughout the
relaxation contribution strongly dominates over the correlation
contribution; see also Sec. IV B. Both the MBPT2 and the
RPA and RPAX2 Green’s-function methods are able to correct
the deficiencies of Koopman’s theorem in the description of
bound anions as one can see in Fig. 6. Also, it can be seen
in the figure that the relative deviations between the MBPT2
values and the RPA or RPAX2 values are less strong than
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for the IPs. Significant deviations of 0.4–0.7 eV of the EAs
of the Green’s-function methods to the CCSD(T) references
values are observed for the fluorine molecule (structure 5).
Here all propagator methods predict a wrong sign for the EA,
i.e., describe an unbound electron in the negatively charged
system. Since with Koopman’s theorem one obtains a quite
strong negative EA for F2, see Fig. 6, one can conclude that
the relaxation contributions obtained by the RPA and RPAX2
propagator methods are too low in magnitude to shift the EA
to a positive value and match the CCSD(T) reference result.
It was found that similar deviations are also obtained with the
second- and third-order OVGF methods; see Supplemental
Material [74].

Error statistical values for the different methods considered
in this work with respect to the CCSD(T) reference IPs and
EAs for the GW27 molecules are shown in Figs. 8 and 9. In
the case of the IPs, Fig. 8, one can observe that the RPA and
RPAX2 Green’s-function approaches yield ionization energies
which are closer to the reference results than the corresponding
values obtained with the RPA and RPAX2 energy difference
methods. The only exception to this is found for the RPA GF
method which excludes the static self-energy contributions
described in Sec. II B 4. Overall the errors for the IPs yielded
by the RPA and also OVGF(3) Green’s-function methods are
comparable to the MP2 errors while a clear deterioration in the
performance is found for the second-order methods MBPT2
and OVGF(2). The analysis above in this section indicates that
this behavior mainly stems from an improper description of
the correlation part to the self-energy by these methods.

For the EAs almost identical error statistics for the different
Green’s-function methods are observed, see Table III. This
again may be explained by the fact that the corrections to
Koopman’s theorem mainly originate from the relaxation
rather than the correlation contributions; see also Fig. 7.
The former appear to be less dependent on the third- and
higher-order corrections to the self-energy. A comparison to
the different energy difference methods shows that both the
MP2 and CCSD methods deliver a higher accuracy for the
EAs than the different propagator methods.

V. SUMMARY

A many-body Green’s-function method using an infinite-
order expansion of ring-type diagram contributions to the
self-energy has been presented in this work. The computational
approach used herein relates to the density-fitting method
for solving the random-phase approximation (RPA) Riccati-
type amplitude equation of Ref. [59]. Exchange particle-hole
interactions were accounted for by an antisymmetrization of
the amplitudes in each iteration of the amplitude update,
leading to self-energy contributions that are compatible with
the RPAX2 method of Ref. [59].

The methods derived in this work have been used for
describing the ionization energies and electron affinities of
the molecules from the GW27 database. A comparison to
accurate coupled-cluster singles and doubles with perturbative
triples [CCSD(T)] reference results has revealed a fairly
good performance of the RPA Green’s-function (GF) method,
comparable to the third-order OVGF method and significantly
better than second-order approximations to the many-body GF.

An analysis of the different contributions to the self-energy,
namely correlation, relaxation, and static contributions, has
shown that a strong cancellation of correlation and relaxation
effects occurs for the occupied energy levels, while in the
case of the low-lying virtual levels it was found that electron
correlation effects to the self-energy are small and that here
usually the relaxation energy component dominates. For
the molecules considered in this work, in a few cases the
relaxation energy contribution to the quasiparticle energies
even lead to a sign change of the electron affinity compared
to Koopman’s theorem, describing a stabilization of the
(N + 1)-electron system relative to the neutral one. This was
observed, e.g., for the anthracene molecule and the gold
tetramer. The static self-energy contributions were shown to be
relatively small in comparison to the correlation and relaxation
component.

The comparison between the decompositions of the self-
energy into its contributions for the RPA and RPAX2 method
has shown that the RPA method overestimates both contribu-
tions in magnitude relative to the RPAX2 method. Since the
two contributions are opposite in sign, the deviation between
the RPA and RPAX2 energy levels is strongly quenched and
the total quasiparticle energies are very similar for the two
methods.

The vertical coupled-cluster ionization energies and elec-
tron affinities derived in this work have been corrected by
adding deformation energies of the cations or anions as well
as the corresponding energy differences for the zero-point
vibrational energies of the neutral and the charged systems.
The adiabatic CCSD(T) values obtained in this way were
shown to be in a very good agreement with experimental
results. They may therefore serve well as a reference to
test other electron correlation methods and Green’s-function
approaches not considered in this work.

The methods derived in this work are based on a di-
agonal and non-self-consistent approximation to the self-
energy matrix. In the future it seems worthwhile to in-
vestigate the performance of the approaches without these
two constraints. In the case of the former, the diagonal
approximation, an inclusion of the occupied-virtual blocks
of the self-energy matrix would lead to orbital rotations
fulfilling the Brillouin-Brueckner condition and the solutions
to the resulting one-particle eigenvalue equations would be
Brueckner orbitals compatible with the RPA and RPAX2 wave
functions [41,78,79,87,89,146]. A corresponding one-particle
Brueckner correlation method has been developed by Beste
and Bartlett using a second-order Hamiltonian [39,73]. This
method was shown to yield reasonable results for ionization
energies, electron affinities, and electric molecular properties
[39]. It can therefore be anticipated that the imposition of the
Brueckner condition would augment the accuracy also of the
RPA methods of this work.
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