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A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around
the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show
that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of
confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a
coupling between the collective and internal motions of the complex and, as a result, differ from the transitions
of a “reference” bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions
by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the
transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective
motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel
approaches are developed to study the transitions quantitatively. Representative examples are considered and
discussed for positive and negative atomic and cluster ions.
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I. INTRODUCTION

Cyclotron radiation is a well-known phenomenon associ-
ated with the motion of a charged particle in a magnetic field.
The particle rotates around the field lines and can thereby
emit or absorb radiation of the frequency of rotation [1].
The corresponding energy is the cyclotron energy given for
a nonrelativistic particle by the relation

� = |Q|B/M, (1)

where Q and M are the particle’s charge and mass, respec-
tively, and B is the strength of the magnetic field. We assume
the field to be uniform and adopt the atomic system of units in
which the unit of magnetic field strength is 2.3554 × 105 T.

For a structureless (bare) ion, such as an atomic nucleus,
the properties of the cyclotron transitions are fully determined
by the ion’s mass and charge. A complex ion (i.e., a bound
system of particles with a nonzero net charge) can also
rotate as a whole around the field lines and absorb or emit
cyclotron photons. We will refer to the corresponding radiative
transitions as the bound-ion cyclotron transitions. In weak
magnetic fields they can be approximately considered as
cyclotron transitions of a reference bare ion with the mass and
charge equal to those of the entire system. Such a description
is applicable when the reference cyclotron energy � is much
lower than the ion binding energy, which is often the case in
various laboratory experiments or in the terrestrial and solar
magnetospheres. However, in very strong magnetic fields or
for loosely bound ions, when � is not a negligible fraction
of the binding energy, the internal structure does affect the
bound-ion cyclotron transitions. We will focus on such effects
in this paper.

A rigorous theoretical description of the bound-ion cy-
clotron transitions has to deal with the coupling of the
collective motion to the internal degrees of freedom for
many-particle systems. In the presence of a magnetic field,
this coupling is known to be rather nontrivial (e.g., Refs. [2,3])

but it is of fundamental importance for understanding the
properties of atoms and molecules in external fields.

Generally, the electronic structure and properties of atomic
and molecular systems in external magnetic fields have been
intensively studied for already a few decades (see, e.g.,
Ref. [4] and references therein). Many of these studies
have been performed assuming the nuclei to be infinitely
heavy, i.e., neglecting the collective motion and considering
the electronic configuration only. The coupling between the
internal and center-of-mass (c.m.) motions in magnetic fields
has been examined in Refs. [3,5] and shown to influence
the quantum structure for many-body systems with both zero
and nonzero net charge (see, e.g., Refs. [6,7]). For neutral
systems, the c.m. motion can be separated out by exploiting a
specific many-body integral of motion in a magnetic field,
the total pseudomomentum [3]. This procedure, called the
pseudoseparation because the resulting Hamiltonian for the
internal motions depends on the conserved pseudomomentum,
facilitates accounting for the coupling in the quantum structure
calculations. For charged systems, the nature of the coupling
does not allow a separation of the c.m. motion [3,5] and makes
the quantum structure calculations particularly tedious. To
study the interaction between the c.m. and the internal motions,
the classical dynamics approaches have been applied in a series
of studies [7–12].

Quantum calculations with account for the coupling be-
tween the collective and internal motions in magnetic fields
require a substantial theoretical effort already for two-body
charged systems. By now, the quantum states for ions moving
in a magnetic field have been comprehensively investigated
for hydrogenlike ions, in particular, He+ [13,14] and for ions
that can be considered as one-electron systems. An example
of such a system is, e.g., the magnetically induced negative
ions in which the excess electron is bound exclusively due to
the presence of the magnetic field [15–17]. The states were
rigorously computed as discrete eigenstates of the integrals
of collective motion of the ions. For hydrogenlike ions, the
impact of the motion on quantum states becomes prominent
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for field strengths above 108–109 T typical for the neutron star
environments. The motion of the magnetically induced atomic
anions affects the bound states at field strengths of the order
of tens of Tesla, accessible in terrestrial laboratories.

As far as the radiative transitions are concerned, the
majority of the performed studies conventionally focus on
the transitions between the internal states and do not address
the transitions between the states of collective motion. Many
results on the internal electronic transitions were obtained
by neglecting the coupling to c.m., in particular for the
hydrogen atom [18–21] and for the atomic helium [22,23].
With account for the coupling, the electronic transitions have
been studied for the hydrogen atom (see, e.g., Refs. [24–26] on
the bound-bound transitions and Refs. [27,28] on the bound-
free transitions). For ions the effect of coupling on radiative
transitions has not yet been analyzed so systematically. Some
results on the bound-ion cyclotron transitions have been
presented in Ref. [29] for the He+ ions and in Ref. [17] for the
magnetically induced atomic anions.

The bound-ion cyclotron transitions are primarily con-
tributed by the transitions between the states of collective
motion. We will therefore start from a general analysis of
transitions involving the c.m. and internal degrees of freedom
coupled in a magnetic field. We proceed then to a perturbation
treatment of the coupling followed by numerical studies of the
bound-ion cyclotron transitions.

The paper is organized as follows. A basic quantum
description of motion for a single charge and a system of
charges in a magnetic field is outlined, and general selection
rules for the dipole radiative transitions are provided, in Sec. II.
In Sec. III, we consider an atomic ion in a magnetic field. A
perturbation approach to the coupling between the c.m. and
internal motions is employed to identify the selection rules
for the bound-ion cyclotron transitions and to quantify the
difference of the radiation energies and oscillator strengths
from those of bare ions. An important quantity obtained in
this section is the effective mass dependent on the internal
quantum states of the ion. Section IV presents a coupled-
channel approach to the bound-ion cyclotron transitions. The
corresponding numerical results are described in Sec. V for
positive helium ions in strong astrophysical magnetic fields
and for the negative magnetically induced ions formed by
the xenon and argon atoms and clusters in a magnetic field
which can be maintained in laboratories. The properties of
the transitions are discussed and compared with the results
of the perturbation treatment. Concluding remarks are given
in Sec. VI. The relevant mathematical details are provided
in Appendix A on the quantum description of the cyclotron
transitions of a bare ion, in Appendix B on the integrals
of motion and dipole selection rules, in Appendix C on the
perturbation analysis, and in Appendix D on the coupled-
channel calculations of the bound-ion states and cyclotron
transitions.

II. BASIC RELATIONS FOR IONS IN A MAGNETIC FIELD

Quantum description of the motion in magnetic fields for
a single charge and for a system of charges can be found in
many textbooks and original papers (see, e.g., Refs. [1–4]). To
study the cyclotron transitions for complex ions, we apply the

nonrelativistic quantum approach which does not include the
particle spins as they do not affect the transition energies and
oscillator strengths.1 We choose the z axis of the coordinate
frame along the magnetic field and employ the symmetric
gauge for the vector potential A = (1/2) B × r.

A. Bare ions

It is instructive to compare the properties of the cyclotron
transitions for complex ions with those of a bare structureless
ion. The motion of the bare ion with the mass M and charge
Q in the plane R⊥ = (X,Y,0) perpendicular to the magnetic
field is described by the Hamiltonian

H1 = 1

2M

(
P⊥ − Q

2
B × R⊥

)2

, (2)

where P⊥ is the canonical momentum. The eigenvalues of the
Hamiltonian (2) are the discrete Landau energies

ELan
N (�) = (�/2)(2N + 1), (3)

where N = 0,1,2, . . . enumerates the equidistant Landau
levels separated by the cyclotron energy �. Rotation of the ion
around the magnetic filed lines exhibits two commuting inte-
grals of motion: the square of the transverse pseudomomentum
K2

⊥ and the longitudinal component of the angular momentum
Lz; see Eqs. (A2) and (A3). The respective discrete eigenvalues
are determined by the integers N0 and L [see Eqs. (A5) and
(A6)], with the sums

N0 + L = N (4)

equal to the Landau level numbers.
The radiative transitions between the Landau levels are the

ion cyclotron transitions determined by the dipole operators

D(β) = Q(X + i β Y )/
√

2, (5)

where β = +1 and −1 correspond to the right and left circular
polarizations, respectively. The dipole matrix elements differ
from zero for the transitions N → N ′ between the neighboring
levels [see Eq. (A12)]. The corresponding selection rules,
transition energies, and oscillator strengths are

N ′ = N − βσ, (6)

ω
cyc
N ′,N = −βσ �, (7)

f
cyc
N ′,N = −βσ

Q2

M
(N ′ + N + 1), (8)

where σ = ±1 is the sign of the charge Q.

1By excluding spins we do not account for, e.g., magnetic nuclear
resonance transitions, which are magnetic dipole transitions much
weaker than the electric dipole transitions considered in this paper.
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B. System of particles

We turn now to a system of particles in a magnetic field.
The Hamiltonian for the system is

H =
∑

a

1

2ma

(
pa − ea

2
B × ra

)2

+ V, (9)

where a labels the particles with the masses ma , charges ea ,
coordinates ra , and momenta pa , and the potential V is the sum
of pairwise Coulomb potentials. Already for the system of two
particles, calculations of the quantum states of the Hamiltonian
(9) require a numerical treatment. Still, the quantum states
can be determined as the eigenstates of two commuting
integrals of motion K2

⊥ and Lz, that are now the square of
the transverse component and the longitudinal component of
the total pseudomomenta and angular momenta, respectively.
These quantities specify the collective motion for the system
(see Appendix B for details). The discrete eigenvalues K2

⊥
and Lz are determined by the integers N0 = 0,1,2, . . . and
L = 0, ± 1, ± 2, . . ., respectively [see Eqs. (A5) and (B3)].
As proved below, the quantum energies are determined by the
sum of these two numbers,

N = N0 + L, (10)

and are degenerate with respect to N0.
Notice that the many-particle pseudomomentum can be

transformed to a one-particle form (see Appendix B). There-
fore, we use the notations K2

⊥ and N0 for the integral of motion
and its quantum number, same as for a bare ion. In contrast,
the angular momentum of a system of ions is essentially a
many-particle operator, and we introduce the notations Lz and
L different from lz and s used for the bare ion.

In contrast to the bare ion, a many-particle system in the
magnetic field exhibits the radiative transitions of a broader
variety than the “pure” cyclotron ones. The transitions between
the internal states and between the states of the collective
motion influence each other because the two types of motion
are coupled in the magnetic field.

To identify the bound-ion cyclotron transitions, we consider
the transitions determined by the cyclic components

D(β) = (Dx + i β Dy)/
√

2 (11)

of the dipole moment of the system

D =
∑

a

eara. (12)

The corresponding selection rules with respect to the quantum
numbers N0 and L are N ′

0 = N0 and L′ = L − βσ . They are
derived analytically (see Appendix B) and are general in the
sense that they are related to the collective motion of the
system. These two rules yield

N ′ = N − βσ, (13)

in complete analogy with the selection rules (6) for the
cyclotron transitions of the reference bare ion. Additional
selection rules are related to changes in the internal structure of
the ion. We study these rules, along with the transition energies
and oscillator strengths, in the following parts of the paper.

III. PERTURBATION APPROACH

In this section, we consider an atomic ion, for which the
analysis of the bound-ion cyclotron transitions is facilitated
by conservation of the longitudinal angular momentum for the
isolated electronic configuration. The Hamiltonian for the ion,
convenient for analysis of the interaction between the c.m.
and internal motions in a magnetic field, has been derived in
Ref. [11]. A series of the canonical and gauge transformations
allows one to present the Hamiltonian as the sum of three
terms that refer to the c.m. motion, the internal motion, and
the coupling of these motions:

H = H1 + H2 + H3. (14)

The Hamiltonian H1 is given by Eq. (2), where R⊥ and P⊥ are
now the coordinate and momentum for the c.m. motion. Thus,
this Hamiltonian describes the reference structureless ion with
the Landau energies (3).

The Hamiltonian H2 involves only the coordinates and
momenta for the motion of the electrons relative to the
nucleus. The explicit (rather cumbersome) expression for H2

can be found in Ref. [11]. The property of this Hamiltonian
important for our analysis is the axial symmetry with respect
to the direction of the magnetic field. Similar to the infinitely
heavy atomic ion, the electronic states described by the term
H2 possess the integral of motion given by the longitudinal
component lz of the electronic angular momentum

(0,0,lz) =
∑

i

r⊥i × p⊥i , (15)

where i enumerates the electrons with the transverse coor-
dinates r⊥i and momenta p⊥i . The eigenstates of H2 can
therefore be attributed to the discrete values

lz = −s, s = 0,±1,±2, . . . . (16)

We denote the corresponding electronic energies by εsν , where
ν stands for all quantum numbers other than s. Note that
the εsν values are generally different from the energies for
the infinitely heavy ion because the Hamiltonian H2 partially
accounts for the finite ion mass (in particular, by the mass-
polarization terms). However, the difference is small due to
the small ratio of the electron and nucleus masses.

The coupling term

H3 = α

M

[
B ×

(
P⊥ − Q

2
B × R⊥

)] ∑
i

r⊥i , (17)

where α = 1 + (Q/M), has a form of the Stark-type interac-
tion of the electrons with an electric field induced by the c.m.
motion.

The transformations employed to derive the Hamiltonian
(14) yield the dipole operators (11) as the sums of two terms

D(β) = D(β) + α d (β), (18)

where D(β) is the dipole moment (5) for the reference ion, and

d (β) = −
∑

i

(dxi + i β dyi)/
√

2 (19)

is the dipole moment for the electronic subsystem.
To study the impact of the coupling H3 on the bound-ion

cyclotron transitions, we consider below the cases where the
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coupling is neglected and where it is treated as a perturbation
in the Hamiltonian (14).

A. Zero-order approximation

The c.m. and internal electronic motions are independent
if the coupling H3 is neglected. The zero-order ion energies
are the sums of the eigenenergies for the c.m. term H1 and the
electronic term H2:

EN sν = ELan
N (�) + εsν . (20)

The zero-order wave functions are given by Eq. (C1) as
the products of the c.m. Landau functions |N0,N〉 and the
electronic orbitals |s,ν〉.

Since the zero-order Hamiltonian commutes with the
integrals of motion K2

⊥ and Lz, the zero-order states can
be specified by the quantum numbers N0 and L. The total
pseudomomentum, transformed in the course of the derivations
of the Hamiltonian (14), acquires the one-particle form (A2)
solely involving the c.m. coordinate and momentum. Thus, the
c.m. Landau functions in Eq. (C1) specified by the numbers
N0 ensure that the zero-order functions are the eigenfunctions
of K2

⊥. The transformed total angular momentum of the ion
is the sum of the c.m. and electronic parts. The longitudinal
component is

Lz = Lz + lz, (21)

where Lz is determined by the c.m. degrees of freedom
according to Eq. (A3), and lz is given by Eq. (15). Since the
electronic orbitals are attributed to the eigenvalues (16), the
relation

N = N − σs (22)

assigns the quantum number L to the zero-order states. As a
result, the ion energies are determined by the number N =
N0 + L, being degenerate with respect to N0.

The radiative transitions between the zero-order states split
into the independent c.m. and electronic transitions determined
by the dipole operators D(β) and d (β), respectively. The c.m.
transitions are the pure cyclotron transitions of the reference
ion. The corresponding selection rules N ′ = N − βσ are the
same as for the single ion [see Eq. (6)]. The selection rules
for the electronic transitions can be derived by considering the
dipole matrix elements 〈s ′ν ′|d (β)|sν〉. From the commutator
relation [lz,d (β)] = βd (β) it follows that

s ′ = s + β. (23)

With account for Eq. (22), the general selection rule N ′ =
N − βσ is satisfied by two pairs of conditions for the numbers
N and s. One pair,

N ′ = N − βσ, s ′ = s, (24)

corresponds to the c.m. cyclotron transitions preserving the
longitudinal angular momentum for the electronic configura-
tion. The other pair,

N ′ = N, s ′ = s + β, (25)

is related to the electronic transitions preserving the state of
the c.m. motion. If the first type of the transitions additionally
preserves the numbers ν of the electronic states, the transition

energies are equal to the differences in the c.m. cyclotron
energies. Thus, the selection rules

N ′ = N − βσ, s ′ = s, ν ′ = ν (26)

identify the cyclotron transitions for the bound ion, and the
number N = N − σs plays a role of the Landau level number
for this ion. The transition energies ωN ′,N and oscillator
strengths fN ′,N , obtained from the ion energies (20) and wave
functions (C1), are the same as for the reference ion:

ωN ′,N = ω
cyc
N ′,N , fN ′,N = f

cyc
N ′,N , (27)

where ω
cyc
N ′,N and f

cyc
N ′,N are given by Eqs. (7) and (8).

B. Perturbation corrections

With account for the coupling H3, the c.m. and electronic
states and radiative transitions are no longer independent. As a
result, in contrast to the quantum numberN , the numbers s and
ν are no longer exact ones. Still, when treating the coupling
as a perturbation, ion states can be designated by the numbers
N ,s,ν enumerating the zero-order states.

Details of the second-order perturbation analysis are given
in Appendix C. For the ion energies one obtains

EN sν = ELan
N (�sν) + εsν + 	sν. (28)

In this equation, ELan
N (�sν) is the ion Landau energy modified

by the coupling to the internal structure, εsν is the zero-order
internal energy, and 	sν is the energy shift of the internal
states resulting from the coupling to the c.m. The ion Landau
energies are determined by the effective cyclotron energies

�sν = |Q|B/Msν, (29)

where Msν is the ion effective mass dependent on the internal
states. The explicit expressions for Msν and 	sν are given by
Eqs. (C4) and (C5).

The perturbation-corrected transition energies and oscilla-
tor strengths for the bound-ion cyclotron transitions differ from
those for the reference ion according to the relations

ωN ′,N = λsν ω
cyc
N ′,N , fN ′,N = λ3

sνf
cyc
N ′,N , (30)

where λsν = �sν/� = M/Msν . This is the main analytical
result of our studies. The effect of the internal structure on
the cyclotron transitions of a complex ion is described by the
single parameter λsν . Note that in the perturbation regime
the energies of a complex ion depend linearly on the ion
Landau level number, similar to the bare ion. To extend the
analysis of the ion motion and cyclotron transitions beyond the
perturbation regime, we apply the coupled-channel approach
described below.

IV. COUPLED-CHANNEL APPROACH

Numerical multielectron quantum calculations of the states
and radiative transitions for a many-particle charged system
moving as a whole in a magnetic field are yet hardly feasible.
We develop a numerical approach applicable to ions in which
an outer electron is orbiting a “strongly bound core”, such as
the nucleus in a one-electron atomic ion or the neutral atom
(or a cluster) in a multielectron negative ion. In such ions, the
interaction between the outer electron and the core emerges
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as a dominant local long-range interaction. For positive ions,
it is a Coulomb attraction V (r) = −Zeff/r , where Zeff is an
effective charge number for the core (Zeff coincides with the
nucleus charge number Z for the hydrogenlike ions), and r is
the separation between the electron and the core. For negative
singly charged ions, the dominant long-range interaction is
V (r) = −κ/(2r4), where κ is the polarizability of the neutral
core.

The quantum states of a moving ion are calculated as two-
particle states for the motion of the outer electron and the core
in a magnetic field. The location of the electron is specified by
the coordinate r with respect to the location R of the center
of mass of the core, and the canonical pairs {R,P} and {r,p}
of the coordinates and momenta describe the motion of the
system.

The c.m. motion of the ion along the magnetic field
can be separated out. The ion states are then described by
the wave functions ψ(R⊥,r⊥,z) in five coupled degrees of
freedom. A form of the corresponding Hamiltonian, conve-
nient for the numerical treatments, is obtained making use
of a unitary gauge transformation determined by the operator
exp [(i/2)(B × r⊥)R⊥] (see, e.g., Ref. [17]). This Hamiltonian
is given by the sum of kinetic energies of the ion core and the
outer electron, and the interaction potential V ,

H = K2
0⊥

2M0
+ π2

⊥
2

+ V, (31)

where M0 is the mass of the core.
The operators K2

0⊥ = K2
0x + K2

0y and π2
⊥ = π2

x + π2
y are

the squares of transverse kinetic momenta of the ion core
and the outer electron, respectively. The electronic kinetic
momentum is

(πx,πy,0) = p⊥ + (1/2)B × r⊥, (32)

and the core kinetic momentum has the components

K0x = �x − kx, K0y = �y − ky, (33)

which couple the kinetic momentum (A1) of the reference bare
ion and the electronic pseudomomentum

(kx,ky,0) = p⊥ − (1/2)B × r⊥. (34)

Notice that K0x and K0y do not commute for positive ions
which have a positively charged core, whereas they commute
for negative singly charged anions where a core is neutral.

The integral of motion K2
⊥ for the Hamiltonian (31) is

determined by the one-particle operator (A2) for the motion
of the core. The integral of motion Lz is the sum (21) of the
longitudinal angular momenta of the core Lz and the outer
electron lz.

To compute the wave function ψ(R⊥,r⊥,z), we employ
a coupled-channel approach [30]. We introduce two-particle
basis functions, dependent on R⊥ and r⊥, as the common
eigenfunctions of K2

⊥ and Lz. The basis states and the
computed quantum states of ion are thereby attributed to the
quantum numbers N0 and L. The wave function of the ion
is expanded in the basis set (channels), with the expansion
coefficients being the functions of the remaining degree of
freedom z. These functions, along with the quantum energies,
are found by solving a set of coupled second-order differential
equations.

Mathematical details of the coupled-channel calculations
are given in Appendix D. Similar to the perturbation treatment,
the calculated ion energies depend on the sum N = N0 + L,
which enumerates the states of the quantized collective motion
degenerate with respect to N0. For each N , the calculations
yield a series of bound states with different properties of the
internal motions. It is convenient to enumerate these states
by the integer s = 0,1,2, . . . according to ascending order of
the energies EN s : EN0 < EN1 < EN2 < . . . . For each s, the
energies increase with increasing N forming “s branches” of
the levels. Computing the ion states as the eigenstates of K2

⊥
and Lz results in the following possibilities to vary the number
N for a given s branch: N = s,s + 1,s + 2, . . . for positive
ions, and N = −s,−s + 1,−s + 2, . . . for negative ions. For
an infinitely heavy ion, the energies EN s coincide with the
electronic energies and become degenerate with respect to N :

EN s → εs at M → ∞. (35)

Once the quantum states of the ion are computed, the mul-
tichannel wave functions are used to compute the bound-ion
cyclotron transitions with the selection rules (26).

V. NUMERICAL STUDIES

For numerical calculations of the bound-ion cyclotron
transitions, we have selected two particular examples of ions.
One example is He+, the lightest in the group of hydrogenlike
(one-electron) ions. We consider the lowest (tightly bound)
internal states [14] which appear in magnetic fields B 	 Z2,
where Z is the nucleus charge number, and the atomic units
are used for the magnetic field strength. For these states of
He+, the coupling to the c.m. becomes prominent in extremely
strong magnetic fields. We compute the bound-ion cyclotron
transitions for magnetic fields of 108–109 T, typical for the
neutron stars. The calculations are particularly motivated by
the expectation that the ions He+ can play an important role
in the atmospheres of neutron stars [29].

Another example is the atomic and cluster negative ions
bound exclusively due to the presence of the magnetic field,
the so-called magnetically induced anions [16,17]. Our studies
apply to magnetic fields B 
 1 for which the excess electron
is bound in a diffuse orbital extending well beyond the orbitals
of the core electrons. The coupling of this electron to the c.m.
noticeably affects the ion cyclotron transitions for magnetic
fields of 10–100 T achievable in terrestrial laboratories. Being
of general theoretical interest, these studies are relevant to
possible experiments with the magnetically bound anions.

The quantum numerical calculations for the selected exam-
ples have a lot in common and follow the above-described
coupled-channel approach. The He+ ion is a one-electron
system. The magnetically induced negative ions can also
be considered as one-electron systems in which the excess
electron is attached to the neutral counterpart.

We remark that for positive ions, the excess electron can
be bound in two different classes of states, tightly bound
and hydrogenlike ones. They are different with respect to
the quantum motion of the electron along the magnetic field:
the tightly bound states are the ground states for this motion,
whereas the hydrogenlike states are excited ones. In contrast to
positive ions, magnetically bound negative ions typically exist
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only in the ground states for the longitudinal motion of the
excess electron (see, e.g., Ref. [15]). The difference stems from
the different character of the long-range interaction between
the outer electron and the ion core (a Coulomb attraction ∝r−1

for positive ions, and a much weaker polarization attraction
∝r−4 for negative ions). Our studies do not address the
hydrogenlike states for the positive ion He+, i.e., only the
ground states for the longitudinal motion of the bound electron,
both for He+ and magnetically induced anions, are considered.
The quantum states are therefore all related to the value ν = 0
corresponding to a nodeless structure of the wave function in
the longitudinal coordinate, and we omit the unnecessary label
ν in what follows.

A. Positive ions: He+ in strong magnetic fields

The results of coupled-channel calculations of the quantum
states and bound-ion cyclotron transitions for the He+ ion
moving in a strong magnetic field are presented in Fig. 1. Since
the c.m. motion along the magnetic field can be separated
out, we exclude the corresponding (additive) kinetic energy
from the computed ion energies. We also exclude the values
of the electron and nucleus zero-point Landau energies (for
the infinitely heavy ion only the electron zero-point energy
matters). Therefore, the zero-energy value is the continuum
edge for the quantum levels EN s of the moving ion (as well as
for the levels εs of the infinitely heavy ion shown in the figures
for the reference). Notice that our coupled-channel approach
applies to arbitrary hydrogenlike ions. The energies εs for
infinitely heavy ions scale with the nucleus charge number
as εs ∝ Z2. That is why we use the units Z2 Ry (1 Ry =
13.606 eV) for the energies shown in the figures (Z = 2 for
the ion He+).

The properties of He+ for the magnetic field strength
of 4.7 × 108 T (the corresponding value in atomic units is
B = 2000) are demonstrated in the top plots of Fig. 1. The
discrete energies of the ion shown by dots group into the
s branches shown by smooth solid lines. For an infinitely
heavy ion, the branches merge to the internal electron energies
εs shown by horizontal bars and labeled by the values of
the conventional magnetic quantum number m = −s [cf.
the relation (35)]. These energies have been addressed both
analytically and numerically in many previous studies (see,
e.g., Ref. [4] and the references therein) and are reproduced in
our calculations by setting 1/M = 0.

The property important for identifying the bound-ion cy-
clotron transitions are linearlike dependencies of the energies
EN s on N . The numerically calculated energies depend on
N almost linearly for the entire s = 0 branch. At higher
s, the growth of EN s with N is close to linear only for
low-lying energies N = s,s + 1,s + 2, . . . . The linear parts
of the energy branches correspond to the perturbation regime,
considered in Sec. III B. By fitting these parts by the formula
(28), the ratios M/Ms are estimated and indicated in the plot.
The values for the ratios are lower for higher s branches:
0.96, 0.85, and 0.72 for s = 0, 1, and 2, respectively. Thus,
the ion’s effective masses increase with increasing the internal
excitations.

At N → ∞ the couplings between the channels vanish,
and the quantum states converge to the states computed within

a single-channel (adiabatic) approximation. The ion energies
approach the values that are multiples of the nucleus cyclotron
energy �0 = ZB/M0, where M0 is the nucleus mass. These
thresholds correspond to the detached electron and nucleus,
with the electron occupying the ground Landau level and the
nucleus occupying the ground as well as the excited levels.

At intermediate values of N , the neighboring branches
approach each other. To visualize the branches of the discrete
energy levels in the domains of nearest approach, the levels
can be connected by lines which either cross or avoid the
crossings. We opted to show the line s = 0 as crossing the
other lines, and the lines s = 1,2, . . . as exhibiting avoided
crossings. Thus, with increasing N , the energies EN s increase
infinitely for s = 0 and approach the thresholds (s − 1)�0 for
s = 1,2, . . . .

Notice that the states with EN s > 0 belong to the con-
tinuum. Neglecting the coupling of the c.m. to the internal
motions, the positive-energy states are computed as bound,
whereas in reality they are quasibound (autoionizing) states
because of the coupling. All the branches shown in Fig. 1
have the minimum-energy N = s states below the continuum
E = 0. The set of such branches for B = 4.7 × 108 T is
restricted to s = 0,1, . . . ,16. Higher branches comprise the
quasibound states only, and we do not include them in the
figure.

As Fig. 1 shows, the levels with N = s for the bound
moving He+ are shifted towards the continuum edge with
respect to the levels with m = −s for the infinitely heavy ion.
This implies that already the lowest states in the moving ion
are bound weaker than the states with the similar electronic
excitations in the infinitely heavy ion. The only exception
is the lowest state N = s = 0, whose binding energy is not
affected by the c.m. motion. The energy offsets increase with
increasing s resulting in the finite number of branches below
the continuum edge.

According to the general considerations presented above,
the bound-ion cyclotron transitions are the transitions between
the neighboring states within the computed branches. These
transitions satisfy the selection rules (26). The branch numbers
s can be regarded as enumerating the internal excitations. For
the nearly linear parts of the branches, the internal excitations
correspond to the same effective masses Ms deduced by fitting
the energies by the perturbation dependence (28). For the
nonlinear parts around and beyond the avoided crossings the
ion states still can be considered as states of similar “internal
nature”, based on the symmetry and “smoothness” of the lines
connecting the discrete energy values.

The transition energies and oscillator strengths for the
bound-ion cyclotron transitions are computed according to
Eqs. (D15). To quantify the deviations of the numerical results
both from the results for the reference bare ion and from the
perturbation results (30), we have calculated and plotted in
Fig. 1 the parameters

C1 = ωN ′,N /ω
cyc
N ′,N ,

C2 = (
fN ′,N /f

cyc
N ′,N

)(
ω

cyc
N ′,N/ωN ′,N

)3
. (36)

For the bare ion, we have C1 = C2 = 1. Within the perturba-
tion regime for the coupling between c.m. and internal motions,
we expect C1 = M/Ms < 1 and C2 = 1.
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FIG. 1. Energy levels and parameters of the bound-ion cyclotron transitions for He+ in the magnetic field of 4.7 × 108 T (top) and
2.35 × 109 T (bottom). In the left plots, dots show the energies of the tightly bound states for different values of the quantum number N .
Smooth solid lines connect the energies for visualization of the s branches, and the ratios M/Ms are deduced from the linear parts of the
branches. The energies for an infinitely heavy ion are shown by the horizontal bars labeled by the magnetic quantum number m. Right plots
show the parameters C1 and C2 [see Eq. (36)] for the bound-ion cyclotron absorption transitions along the computed s branches of states.

For B = 4.7 × 108 T, in close relation to the properties
of the ion energies, the parameters C1 and C2 show the
perturbation regime to hold for the bound-ion cyclotron
transitions along the entire s = 0 branch as well as for the
transitions involving the states up to N ≈ 45 along the s = 1
branch. For higher internal excitations, C1 and C2 deviate
from constant values and depend on the quantum number
N , which reflects the effects of the internal structure on the

cyclotron transitions of the entire ion. For s > 1, these effects
are already prominent starting from the lowest transition states
N = s.

Similar properties of the levels and bound-ion cyclotron
transitions are displayed by He+ in a higher magnetic field
of 2.35 × 109 T (B = 10 000 in atomic units). The results of
numerical calculations are presented in the bottom plots of
Fig. 1. We have restricted the computations to the branches
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that are below the continuum at N = s. The number of
these branches, s = 0,1, . . . ,7, is smaller than the number
of branches studied for the lower magnetic field strength. The
branches are well separated from each other, including the
domains of avoided crossings. Therefore, we have selected
the s = 0 branch as undergoing the avoided crossing and
approaching the continuum threshold E = 0 at N → ∞, in
contrast to the s = 0 branch in the top plot of the figure.
For higher magnetic fields, the perturbation treatment of
the coupling of the c.m. to the electronic motion becomes
progressively less accurate. The numerical multichannel cal-
culations show that the ion properties can be described in
terms of effective masses for only a small portion of the
quantum states: N � 15 for the s = 0 branch and a few lowest
states for the s = 1 branch. The corresponding ratios of the
mass of the ion to the effective masses are 0.86 and 0.55,
respectively. For higher s branches, the effects of the internal
structure on the bound-ion cyclotron transitions are essentially
nonperturbative.

B. Negative ions: Atomic and cluster magnetically
induced anions

As the magnetically induced anions is a rather uncon-
ventional type of ions, it is worthwhile to outline their
binding mechanism and properties before discussing the
bound-ion cyclotron transitions. The origin of the binding is a
combination of the long-range electron correlation in the anion
and the confining magnetic field. At large distances r from the
neutral core to the excess electron, the correlation results in
a local polarization potential with a “strength” determined by
the polarizability κ of the core.2

In the absence of magnetic field, the correlation and
emerging long-range potential play a primary role, with respect
to the role of nonlocal short-range interaction, in forming the
so-called correlation-bound anions [31]. An external magnetic
field adds a lot to stability of the anionic states and makes the
long-range binding possible when the polarization potential is
too weak to support a stable anion without the field. In addition,
the presence of a magnetic field enables a long-range binding in
a sequence of excited anionic states. The magnetically induced
anionic states thus emerge as the states formed exclusively in
the magnetic field.

For infinitely heavy anions, the sequence of the magnet-
ically induced anionic states was formally predicted to be
infinite [2]. The states are characterized by the quantized values
(16) of the longitudinal angular momentum of the attached
electron. The corresponding electronic energies εs have been
explicitly estimated in Ref. [15]:

ε0 = −0.31κ2B2, s = 0, (37)

εs = −0.12κ2B3λ2
s , s = 1,2, . . . , (38)

where λ1 = 1, λs = [1 − (1.5/s)]λs−1 for s � 2, and the
atomic units are used for the energies, polarizability, and the

2In general case, a polarizability is anisotropic and given by a tensor.
We restrict our analysis to the isotropic polarizabilities determined
by the single values κ .

magnetic field strength. These estimates apply to small field
strengths B 
 1. The energies εs do not include the zero-point
Landau energy for the electron, so that |εs | = −εs are the
binding energies. Different scaling of the energies with the
the field strengths for the ground s = 0 and excited s > 0
states results from different localization of the excess electron
in the plane transverse to the field. For s = 0, the electron
density is maximal at the location of neutral system, whereas
for s > 0 the maximum of the density is shifted away from
the system. As a result, ε0 is sensitive to a divergent behavior
of the polarization potential at the origin, and the numerical
prefactor in Eq. (37) is model dependent. For details, we refer
to the studies [16,17]. In contrast, the energies of excited
states are not sensitive to the core of polarization potential
in the presence of the field. It has also been recognized
[16,32] that the s = 0 state manifests itself only for systems
which do not form stable anions without magnetic field.
The sequence s = 1,2, . . . of excited states emerges therefore
on top of the ground magnetically induced s = 0 state or
of the conventional anionic state perturbed by the magnetic
field.

With account for the c.m. degrees of freedom, the energies
EN s of the magnetically induced states are specified, in
addition to s, by the quantum number N . The coupling
between the electronic and c.m. motions destroys the states
with high s, and the sequence of magnetically induced states
turns out to be finite [16]. Depending on systems and on
magnetic field strength, there can be a few s branches of the
bound states, a single branch, or even a single state or no bound
states at all.

For magnetic field strengths achievable in laboratories,
the conventional anionic states, if they exist, are not much
influenced by the field. There, the coupling between the
excess electron and c.m. motion has only a minor if not
negligible impact on the ion motion and radiative transitions.
The examples considered below display the same properties
for the ground magnetically induced states. In contrast, for the
exited states bound due to the field, the coupling significantly
affects the internal and collective motions, and the bound-ion
cyclotron transitions differ from those of the reference bare
ions.

For the numerical studies, we have selected the noble gas
atoms Xe and Ar and their small clusters at a large magnetic
field strength B = 50 T which can be approached with
resistive magnets in advanced experimental setups [33,34].
The calculations utilize the polarizability values 27.815 a.u. for
Xe and 11.07 a.u. for Ar provided in the dipole polarizability
tables [35] according to the experimental measurements.

The closed-shell Xe and Ar do not form conventional stable
anions, and thus they can display the ground magnetically
bound anionic states. The clusters of these atoms can form
anions in the absence of magnetic field, due to increasing
polarization attraction of the excess electron with increasing
number of the atoms in clusters. However, a minimum number
of cluster atoms required to attach the electron is known
reliably only for the Xe clusters studied by an ab initio Green
functions method [36] and found to form stable correlation-
bound anions starting from a size of five atoms. To address the
magnetically induced states with s = 0, we have performed
computations for Xe−

4 , which is the largest Xe cluster anion
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TABLE I. The cyclotron energies � of the bare ions, the energies εs of the infinitely heavy anions, and the parameters of magnetically
induced energy branches EN s of moving anions [see Eq. (39)] at the magnetic field strengths of 50 T. The number s numerates the branches of
bound states, EN s < 0, for the moving anions. The numbers of branches are finite and restricted to those studied in the table.

Ion � (MHz) s −εs (MHz) −E−s,s (MHz)a �s (MHz)a M/Ms
a M/Ms

b

Xe− 5.800 0 7.135 × 104 7.134 × 104 5.800 1 1
Xe−

4 1.447 0 1.142 × 106 1.142 × 106 1.447 1 1
1 94.02 91.17 1.402 0.9685 0.9796
2 5.876 2.452 0.5046 0.3486 0.4918

Xe−
13 0.4462 1 993.1 992.2 0.4458 0.9991 0.9994

2 62.07 60.74 0.4338 0.9722 0.9755
3 15.52 13.81 0.3800 0.8516 0.8618
4 6.062 4.084 0.2597 0.5820 0.6207
5 2.970 0.9017 0.09799 0.2196 0.3461

Ar− 19.06 0 1.130 × 104 1.128 × 104 19.04 0.9987 1
Ar−4 4.765 0 1.808 × 105 1.808 × 105 4.765 1 1

1 14.893 7.293 2.272 0.4767 0.7401
Ar−13 1.466 1 157.3 154.4 1.438 0.9808 0.9875

2 9.831 6.060 0.8001 0.5456 0.6331

aCoupled-channel calculations.
bPerturbation estimates.

possessing this branch of states. To study the effect of cluster
size on the energies and transitions for the s > 0 states, we
have performed computations for Xe−

13 formed by a smallest
magic number of cluster atoms.3 For Ar, we have considered
the magnetically induced anions with the same numbers of
cluster atoms, 4 and 13, as for Xe. Since the polarizability of
Ar is smaller than that of Xe, a minimum number of atoms
in a stable conventional Ar cluster anion is larger than five.
Therefore, Ar−4 is not stable in the absence of magnetic field,
and it can display the s = 0 magnetically induced states. For
Ar−13, we did not address the s = 0 states, for an analogy of the
consideration with that for Xe−

13.
To compute the magnetically induced cluster anions, we

employ the same frameworks of perturbation and coupled-
channel approaches as for the atomic ions. Since the excess
electron resides on a diffuse orbital extending far away from
the cluster cores, to a good approximation the clusters can be
considered as entities characterized by masses and polarizabil-
ities. The cluster polarizabilities are evaluated as the multiples
of atomic polarizabilities and the numbers of the cluster atoms.
To justify the latter approximation, we refer to ab initio studies
[38] of the polarizability of Xe dimer. It was found that
although the polarizability of the dimer is anisotropic and
deviates from the sum of atomic polarizabilities, this does
not influence significantly the binding energies of the anionic
states induced by a magnetic field aligned along the dimer axis.
The structures of clusters formed by 4 and 13 atoms (a regular
tetrahedron and a regular icosahedron with an extra atom at
the center, respectively) have higher symmetries, and we may
expect even a less pronounced, than for the dimer, impact of a
nonadditivity and anisotropy of the cluster polarizabilities on
the magnetically bound anionic states.

3The magic numbers correspond to the maximal binding energies
per atom in a sequence of clusters with the growing number of atoms
(see, e.g., Ref. [37] on clusters of noble gas atoms).

For the anions considered, the coupled-channel calculations
yield the energy levels which follow fairly well a linear
dependence on N :

EN s = E−s,s + �s(N + s). (39)

This allows one to deduce an effective mass Ms of the ion from
the slope �s which has a meaning of the effective cyclotron
energy of anion. In Table I, we indicate the values of the
minimum energy E−s,s , the slope �s , and the ratio M/Ms

for the s branches computed. We also include the cyclotron
energies � of the bare ions, the energies εs of the infinitely
heavy anions, and the ratios M/Ms determined according to
the perturbation formula (C4).

The atomic anions Xe− and Ar− display only the s = 0
branches of the magnetically induced states, whereas the
higher s branches are entirely destroyed by the coupling
between the motions of c.m. and excess electron. The numbers
of the bound states with different N values are equal to the
ratios −E−s,s/�s and are very large in the s = 0 branches,
about 12 300 for Xe− and about 600 for Ar−. The anions move
essentially as the bare ions (M/Ms = 1) as found from both the
coupled-channel and perturbation treatments. Consequently,
the parameters of the bound-ion cyclotron transitions are
C1 = C2 = 1, i.e., the transition energies and the oscillator
strengths are the same as for the reference bare ions.

The magnetically induced anions of Xe and Ar clusters
display higher s branches of states as well as cyclotron
transitions deviating from those of the reference bare ions.
The results are presented in Figs. 2 and 3. The left plots in the
figures show the energies for the anions bound in different
states of the quantized collective motion. The zero-point
Landau energy for the excess electron has been subtracted
from the computed energies, and the zero-energy value in the
plots corresponds to the detachment threshold. The energies
EN s for the moving anions are scaled by the binding energies
|εs | for the infinitely heavy anions and shown as functions
of (�s/|E−s,s |)(N + s), where E−s,s is the minimum energy
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FIG. 2. Energy levels and parameters of the bound-ion cyclotron transitions of the magnetically induced Xe−
4 (top) and Ar−4 (bottom) in

a magnetic field of 50 T. The left plots show the s branches of bound levels, with dots displaying the discrete levels with the numbers N as
indicated. The values M/Ms are determined by approximating the energies by linear dependencies on N . The right plots show the parameters
C1 and C2 of the bound-ion absorption cyclotron transitions N → N + 1 along the branches of the computed levels. For Xe−

4 , C2 = 1 for both
s = 0 and 1 as shown by the solid line.

value in the sequence EN s with N = −s,−s + 1, . . ., and �s

is the effective cyclotron energy determined from the linear
growth of the energies with N . The scaling is convenient
for presenting the results for anionic states with significantly
different energy values (see Table I). The right plots in Figs. 2
and 3 show the parameters C1 and C2 for the bound-ion
cyclotron transitions along the branches of levels.

Figures 2 and 3 clearly display a linear increase of quantum
energies with N increasing along the s branches. The anion’s
motion in the magnetic field is therefore described fairly well

in terms of the effective masses indicated in Table I and in
the figures. The branches terminate when approaching, with
increasing N , the detachment threshold E = 0. Above the
threshold, the branches would include the positive energies of
autodetaching states calculating which goes beyond the scope
of this paper.

With increasing number Nat of cluster atoms, the numbers
of states with differentN in a branch increase as −E−s,s/�s ∼
−εs/� ∝ N3

at since −εs ∝ κ2 ∝ N2
at and � ∝ N−1

at due to
increasing with Nat polarizabilities and masses of the clusters.
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FIG. 3. Same as in Fig. 2 but for Xe−
13 and Ar−13. For Xe−

13, C2 = 1 for both s = 1 and 2.

The s = 0 branches for the cluster anions of four atoms
comprise the numbers of states exceeding those for the atomic
anions by a factor of 64, as reflected in Fig. 2 by the numbers of
states ≈750 000 for Xe−

4 and ≈37 000 for Ar−4 . These numbers
are very large, and the discrete energies in the branches are
shown with the increments of 50 000 and 1000, respectively, in
varying N . The numerical calculations for the s = 0 branches
yield the effective masses coinciding with the masses of
anions, and the values C1 = C2 = 1 for the parameters of
the cyclotron transitions. As expected from the property of the
atomic anions, the quantum levels and cyclotron transitions of
the cluster anions for the s = 0 branches are not influenced by
the coupling between the motions of c.m. and excess electron.

In contrast to the atoms, the clusters considered in Fig. 2 do
possess higher s branches of the magnetically induced anionic
states. In addition to the s = 0 branches, the calculations reveal
bound states forming the s = 1 and 2 branches for Xe−

4 , and
the s = 1 branch for Ar−4 . The effective mass exceeds the
total mass only slightly for the s = 1 states of Xe−

4 but quite
substantially for the s = 2 states of Xe−

4 and for the s = 1 states
of Ar−4 . The values of C1 coincide fairly well with the mass
ratios M/Ms , and the values for C2 do not significantly deviate
from unity (for the transitions along the s = 1 branch of levels
of Xe−

4 , the calculations yield C2 = 1 with a high accuracy).
Thus, the effect of internal structure on the bound-ion cyclotron
transitions follows well the perturbation regime.
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The larger cluster anions addressed in Fig. 3 display more
magnetically induced states. For Xe−

13, the states group in
more branches, s = 1, . . . ,5, than for Xe−

4 . For Ar−13, we
encounter the same two branches, s = 1,2, as for Ar−4 , which
comprise more levels with different N . The effective Xe−

13
mass for s = 1 coincides with the total mass, and the anion
moves in the field essentially as a bare ion. Consequently,
the bound-ion cyclotron transitions are not affected by the
coupling between the motions of c.m. and excess electron
(C1 = C2 = 1). The branches s = 2 of Xe−

13 and s = 1 of Ar−13
correspond to the effective masses only slightly exceeding
the total masses, and the cyclotron transitions of anions in
these internal configurations are only slightly influenced by
the coupling. For the s = 2 branch of Xe−

13, C2 = 1 with a
high accuracy, implying an excellent agreement between the
perturbation and coupled-channel results. For higher s for Xe−

13
as well as for s = 2 for Ar−13, the C2 values deviate from unity
and slightly increase with increasing N . This implies that the
perturbation approach becomes progressively less accurate for
higher internal excitations.

Overall, the numerical studies demonstrate that the impact
of the internal structure on the bound-ion cyclotron transitions
is guided by the ratio of the binding energy of the infinitely
heavy ion and the cyclotron energy of the reference bare
ion. The smaller this ratio is, the more significant are the
deviations of the quantized motion of ion as a whole and the
related cyclotron transitions from those of the bare ion. For
the magnetically induced anions considered, these deviations,
when emerge, follow well a perturbation regime described in
terms of the effective masses.

VI. CONCLUSIONS

We have derived a theoretical framework for quantum
description of the motion and radiative transitions for ions
with internal structure in external magnetic fields. We have
focused on the collective motion and the related cyclotron-type
radiative transitions for the entire ions. These bound-ion cy-
clotron transitions are primarily associated with the properties
of the quantum motion of the ions as a whole in the field. The
coupling of the internal structure of the ions to the collective
motion in the field makes the transitions to differ from the
cyclotron transitions for the bare ions with the same masses
and charges. The developed theoretical description utilizes
the integrals of motion for the ions. A general perturbation
approach to the coupling for the atomic ions is facilitated by
the conservation of the longitudinal angular momentum for
the isolated electronic configuration. The bound-ion cyclotron
transitions have been identified by specific selection rules.
The perturbation approach quantifies the transition energies
and oscillator strengths for the bound-ion cyclotron transitions
in terms of the effective masses for the ions. Analytical
results have been augmented by the results of numerical
coupled-channel calculations of the ion states and radiative
transitions.

We have studied the bound-ion cyclotron transitions for
both positive and negative complex ions. Numerical results
have been obtained for the He+ ion in strong magnetic fields
typical for neutron stars, and for the negative magnetically
bound atomic and cluster ions for the field strengths typical for

laboratory experiments. The calculations reveal significant ef-
fects of the internal structure on the cyclotron transitions of the
entire ions. For the He+ ions, the presented theoretical studies
could be used for interpretations of the spectral observations
of neutron stars with strong magnetic fields. The negative
magnetically induced ions are yet to be directly probed in
an experiment on magnetically guided electron attachment. In
particular, experimental detection of the bound-ion cyclotron
transitions would signify the magnetically induced binding of
the excess electron by a neutral complex.
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APPENDIX A: LANDAU STATES

The quantum states for the Hamiltonian (2) are the common
eigenstates of the operators �2

⊥ = �2
x + �2

y , K2
⊥ = K2

x + K2
y ,

and Lz, where

(�x,�y,0) = P⊥ − (Q/2)B × R⊥, (A1)

(Kx,Ky,0) = P⊥ + (Q/2)B × R⊥, (A2)

(0,0,Lz) = R⊥ × P⊥ (A3)

are the kinetic, pseudo, and angular momenta, respectively,
for the motion of a particle with charge Q in the plane
perpendicular to the magnetic field. Their eigenvalues are
determined by the integers

�2
⊥ = |Q|B(2N + 1), N = 0,1,2, . . . (A4)

K2
⊥ = |Q|B(2N0 + 1), N0 = 0,1,2, . . . (A5)

Lz = −σL, L = 0,±1,±2, . . . (A6)

where σ is the sign of Q.
The operator �2

⊥ determines the kinetic energy of the
particle given by the Hamiltonian (2), whereas the operators
K2

⊥ and Lz are the integrals of motion for this Hamil-
tonian. In particular, K2

⊥ relates to the guiding center of
the particle’s rotation around the field lines (see, e.g., [2]).
The eigenvalues (A4) yield the energies (3) for the Landau
states, which are degenerate with respect to the numbers N0

and L.
Only two of the three numbers N, N0, and L are indepen-

dent, and the relation N = N0 + L [see Eq. (4)] holds, as a
result of the operator relation

�2
⊥ = K2

⊥ − 2QBLz. (A7)
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Thus, any pair from the set N, N0, and L can be used
to designate the eigenstates of the Hamiltonian (2). In our
considerations, we use the pair N,N0.

For a particle with charge Q occupying a Landau state with
the quantum numbers N and N0, the normalized wave function
in R⊥ = (X,Y ) is

�
(Q)
N,N0

(R⊥) = eiσ (N0−N)ϕ

√
2πλQ

FN,N0 (u), (A8)

where ϕ = tan−1(Y/X), u = (X2 + Y 2)/(2λ2
Q), and λQ =

(|Q|B)−1/2. The functions FN,N0 are equal to zero if N < 0 or
N0 < 0, while for non-negative indices they are given by the
expression

FN,N0 (u) = (−1)N−N0FN0,N (u)

=
(

N !

N0!
uN0−N e−u

)1/2

L
N0−N
N (u), (A9)

where Ls
N (u) are the Laguerre polynomials. The set of Landau

functions (A8) with N = 0,1,2, . . ., N0 = 0,1,2, . . . possesses
the standard properties of orthogonality and completeness. The
relations

(�x − i σ�y)�(Q)
N,N0

= −i pQ

√
N + 1 �

(Q)
N+1,N0

,

(�x + i σ�y)�(Q)
N,N0

= i pQ

√
N �

(Q)
N−1,N0

,

(Kx − i σKy)�(Q)
N,N0

= −i pQ

√
N0 �

(Q)
N,N0−1,

(Kx + i σKy)�(Q)
N,N0

= i pQ

√
N0 + 1 �

(Q)
N,N0+1, (A10)

where pQ = (2|Q|B)1/2 are convenient for calculating matrix
elements with the Landau functions.

The cyclotron transition amplitudes are determined by the
matrix elements D

(β)
N ′,N of the dipole operators (5) with the

Landau functions (A8). The corresponding transition energies
are ω

cyc
N ′,N = ELan

N ′ (�) − ELan
N (�), and the oscillator strengths

are

f
cyc
N ′,N = 2 ω

cyc
N ′,N

∣∣D(β)
N ′,N

∣∣2
. (A11)

Direct calculations show that the nonvanishing matrix ele-
ments are

D
(β)
N−βσ,N = 〈

�
(Q)
N−βσ,N0

∣∣D(β)
∣∣�(Q)

N,N0

〉
, (A12)

and therefore the selection rules and transition energies are
given by Eqs. (6) and (7), respectively. The matrix elements
(A12) are readily evaluated using the relations (A10). Four
cases, selected by the signs of the charge σ = ±1 and circular
polarization β = ±1, cast into the expression (8).

The matrix elements (A12) are calculated with pairs of
the Landau functions with the same quantum number N0.
Since this number does not change in the course of the
cyclotron transitions, we do not include it in the indices for the
dipole matrix elements. Notice that the dipole matrix elements
also differ from zero when being calculated with the Landau
functions with neighboring values for N0 and the same values
for N . They relate then to the zero transition energies and do
not describe physically meaningful transitions.

APPENDIX B: SYSTEM OF CHARGES IN A MAGNETIC
FIELD: INTEGRALS OF MOTION AND

SELECTION RULES

Similar to the one-particle Hamiltonian (2), the integrals of
motion for the many-particle Hamiltonian (9) are determined
by the operators K2

⊥ = K2
x + K2

y and Lz that are now the total
pseudomomenta and angular momenta for the motion of the
system of particles in the plane perpendicular to the magnetic
field:

(Kx,Ky,0) =
∑

a

(
p⊥a + ea

2
B × r⊥a

)
, (B1)

(0,0,Lz) =
∑

a

r⊥a × p⊥a. (B2)

The many-particle pseudomomentum (B1) can be transformed
to the one-particle form (A2) when expressed in terms of an
appropriate canonical pair R⊥, P⊥. This pair can be introduced
in several ways. For example, it can be related to the center
of charge for the system. Another choice is to relate R⊥, P⊥
to the c.m. motion followed by a gauge transformation of the
operators.

As the total pseudomomentum can be transformed to the
one-particle form, we keep the same notation for this operator
as introduced for the single charge. We also keep the notation
N0 for the quantum number which determines the eigenvalues
of K2

⊥. The latter eigenvalues are given by Eq. (A5) applicable
to many-particle systems. The eigenvalues of Lz are integers
which we specify by the relation [cf. Eq. (A6)]

Lz = −σL, L = 0,±1,±2, . . . . (B3)

The dipole transitions for the system are determined by the
operators (11). To derive the selection rules, we consider the
matrix elements Dq ′q for the dipole moment (12), where q

and q ′ denote the quantum states with the numbers N0, L and
N ′

0, L′, respectively.
The eigenvalues (A5) and (B3) allow one to relate Dq ′q to

the matrix elements of the commutators

p2
Q(N ′

0 − N0)Dq ′q = [K2
⊥,D]q ′q, (B4)

−σ (L′ − L)Dq ′q = [Lz,D]q ′q . (B5)

By evaluating the commutators of the Hamiltonian (9) with
the radius ra , one obtains the relation

(Eq ′ − Eq)Dq ′q = i J q ′q, (B6)

where Eq ′ and Eq are the state energies and J q ′q are the matrix
elements for the current

J =
∑

a

ea

ma

(
pa − ea

2
B × ra

)
. (B7)

To derive the selection rules for the numbers N ′
0 and N0,

we use Eq. (B6) to transform the relation (B4) as follows:

p2
Q(N ′

0 − N0)(Eq ′ − Eq)Dq ′q = i [K2
⊥,J ]q ′q . (B8)

It is straightforward to prove that the current commutes with
K2

⊥ and therefore

(N ′
0 − N0)(Eq ′ − Eq)Dq ′q = 0. (B9)
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For the physically meaningful transitions, the state energies are
different, Eq ′ �= Eq . Therefore, the transitions with Dq ′q �= 0
correspond to the selection rule

N ′
0 = N0. (B10)

Notice that this general selection rule holds for an arbitrary
polarization of radiation, i.e., for the transitions determined
not only by the cyclic components (11) but by projection of
the dipole operator on an arbitrary polarization vector. On
physical grounds, the number N0 relates to the “center of
quantization” in uniform space. Therefore, a change in N0

implies the change of the reference frame, not affecting the
properties of the quantum states.

To derive the selection rules with respect to the numbers L′
andL, we consider the relations (B5) for the cyclic components
of the dipole operator,

(L′ − L)D(β)
q ′q = −σ [Lz,D(β)]q ′q, (B11)

and use the commutator relations

[Lz,D(β)] = β D(β) (B12)

which are easily proved by direct calculations. Then,
Eqs. (B11) and (B12) yield the relation

(L′ − L + βσ )D(β)
q ′q = 0. (B13)

Therefore, the selection rules for the transitions with D(β)
q ′q �= 0

are

L′ = L − βσ. (B14)

As the quantum number N0 does not change in the course of
transitions, the same selection rule, N ′ = N − βσ [Eq. (13)]
holds for the numbers N ′ and N .

APPENDIX C: PERTURBATION TREATMENT OF THE
COUPLING BETWEEN c.m. AND ELECTRONIC MOTIONS

When employing standard perturbation techniques to treat
the coupling term H3 in the Hamiltonian (14), we implement
the integrals of motion K2

⊥ and Lz already for the zero-order
approximation (which is possible since the operators K2

⊥ and
Lz commute with the terms H1 and H2). The perturbation-
corrected ion states emerge then as the eigenstates of the
integrals of motion as well.

The zero-order approximation to the Hamiltonian (14) is
the sum H1 + H2, the corresponding wave functions are the
products

ψ
(0)
NN0sν

(R⊥,{ri}) = �
(Q)
N,N0

(R⊥)φsν({ri}) (C1)

of the eigenfunctions of the terms H1 and H2, and the ion
energies are the sums (20) of the c.m. and electronic energies.
As the canonically transformed total pseudomomentum is the
one-particle operator (A2) for the c.m. motion, the c.m. Landau
functions �

(Q)
N,N0

and hence the zero-order wave functions (C1),
are the eigenfunctions of K2

⊥. The corresponding quantum
number N0 is explicitly included in the set of the numbers that
label the zero-order states. Since the electronic wave functions
φsν({ri}) are the eigenfunctions of lz with the eigenvalues −s,
the zero-order wave functions are the eigenfunctions of Lz

with the eigenvalues −σ (N − N0) − s [cf. Eqs. (A6), (4),

and (21)]. Thus, to ascribe the conserved values −σL [see
Eq. (B3)] of the total longitudinal angular momentum to the
zero-order states, the relation N = N0 + L − σs is required,
which yields N = N − σs [cf. Eq. (22)]. Notice that the
zero-order wave functions depend on the sum N = N0 + L
[cf. Eq. (10)] providing thereby the same property for the
perturbation-corrected wave functions.

The perturbation corrections are determined by the matrix
elements

〈
ψ

(0)
NN0s ′ν ′

∣∣H3

∣∣ψ (0)
NN0sν

〉

= −α|Q|1/2B3/2

M

[√
N + 1 d

(+σ )
s ′ν ′,sν δs ′,s−σ

+
√

N d
(−σ )
s ′ν ′,sν δs ′,s+σ

]
(C2)

obtained with use of the properties (A10) for the c.m. Landau
functions, with d

(±σ )
s ′ν ′,sν = 〈φs ′ν ′ |d (±σ )|φsν〉 being the matrix el-

ements of the cyclic components of electronic dipole operator
(σ is the sign of the ion’s charge). From the commutator
relations [lz,d (±1)] = ±d (±1) it follows that nonvanishing are
the elements d

(±1)
s∓1,ν ′;sν as reflected by the Kronecker deltas in

Eq. (C2).
Since the perturbation matrix elements with s ′ = s are equal

to zero, the first-order energy corrections vanish. Standard
calculations of the second-order energy corrections yield

E
(2)
N sν = α2|Q|B3

M2
[(N + 1)G(+)

sν + NG(−)
sν ],

G(+)
sν =

∑
ν ′ �=ν

∣∣d (+σ )
s−σ,ν ′;sν

∣∣2

εsν − εs−σ,ν ′ − �
, (C3)

G(−)
sν =

∑
ν ′ �=ν

∣∣d (−σ )
s+σ,ν ′;sν

∣∣2

εsν − εs+σ,ν ′ + �
.

Similar to the zero-order energies (20), the corrections E
(2)
N sν

depend linearly on N = N − σs. Therefore, the sum of the
zero- and second-order terms results in the oscillatorlike
dependence (28) of the ion energies on N . As a result of
the coupling between c.m. and internal motions, the ion
mass M in the Landau energies is replaced by the effective
mass Msν dependent on the internal states [cf. Eqs. (29)]. In
addition, the ion energies acquire the shifts 	sν with respect to
the zero-order energies (20). The effective masses and shifts
calculated from the second-order perturbation correction are

M

Msν

= 1 + α2B2

M
[G(+)

sν + G(−)
sν ], (C4)

	sν = α2|Q|B3

M2
G(+)

sν . (C5)

It now remains to account for the perturbation corrections
for the oscillator strengths. For transparency of the derivations
we consider the bound-ion emission cyclotron transitions
with N ′ = N − 1 for the positive ion, σ = +1. The emitted
radiation is right polarized, β = +1. With accuracy up to the
first-order perturbation corrections, the initial- and final-state
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wave functions are

ψNN0sν = �
(Q)
N,N0

φsν − √
N + 1 �

(Q)
N+1,N0

φ̃s−1,ν

−
√

N �
(Q)
N−1,N0

φ̃s+1,ν ,

ψN ′N0sν = �
(Q)
N−1,N0

φsν −
√

N �
(Q)
N,N0

φ̃s−1,ν

−√
N − 1 �

(Q)
N−2,N0

φ̃s+1,ν , (C6)

where N = N − s [cf. Eq. (22)], and the functions

φ̃s±1,ν = α|Q|1/2B3/2

M

∑
ν ′ �=ν

d
(∓1)
s±1,ν ′;sν φs±1,ν ′

εsν − εs±1,ν ′ ± �
(C7)

include the electronic configurations admixed to the zero-order
states as a result of the coupling. Due to the latter admixtures,
the matrix elements of the dipole operators D(+1) = D(+1) +
d (+1) are contributed by the electronic transitions

d
(+1)
N ′,N = −α|Q|1/2B3/2

M

√
N [G(+)

sν + G(−)
sν ], (C8)

in addition to the dominant c.m. cyclotron transitions

D
(+1)
N ′,N = −

√
|Q|/B

√
N. (C9)

The sums of the contributions (C9) and (C8) yield the total
dipole elements different from the c.m. ones (C9) by exactly
the ratio of masses given by Eq. (C4):

D(+1)
N ′,N = (M/Msν) D

(+1)
N ′,N . (C10)

With account for the mass ratio factor for the transition energies
ωN ′,N = (M/Msν) ω

cyc
N ′,N , we arrive at the relation fN ′,N =

(M/Msν)3f
cyc
N ′,N for the oscillator strengths [see Eq. (30)].

APPENDIX D: COUPLED-CHANNEL FORMALISM

The equations below apply to the positive hydrogenlike ions
and negative magnetically induced ions studied numerically in
Sec. V.

1. Hydrogenlike ions

As the basis states for the Hamiltonian (31), we employ the
Landau states of separated electron and nucleus, i.e., the states
of a detached ion. The states are attributed to the quantum
numbers N0 and L for the integrals of collective motion
[39] and describe the electron and nucleus occupying the
Landau levels with the numbers ne and n, respectively. The
corresponding energies are the sums ELan

ne
(�e) + ELan

n (�0),
where �e = B and �0 = ZB/M0 are the electron and nucleus
cyclotron energies, respectively (Z is the nucleus charge
number and M0 is the nucleus mass). For given N = N0 + L,
the Landau level numbers vary as

ne = 0,1, . . . , n = 0,1, . . . ,N + ne, (D1)

and the basis functions with the numbers ne and n are given
by the linear combinations

〈R⊥,r⊥|nen〉 =
N∑

k=−ne

c
N+ne

n,ne+k�
(Z−1)
N−k,N0

(R⊥) �
(−1)
ne,ne+k(r⊥)

(D2)

of the Landau functions for the particles with charges Z − 1 of
the entire ion and −1 of the electron (in units of the elementary
charge |e|).

The coefficients c
j

nk with n = 0,1, . . . ,j, k = 0,1, . . . ,j

were introduced in Ref. [39] as generated from the recursion
and normalization relations

[(Z − 1)j − Zn − (Z − 2)k] c
j

nk

= √
Z−1

[√
(j−k+1)k c

j

n,k−1 +
√

(j−k)(k+1) c
j

n,k+1

]
,

j∑
k=0

[
c
j

nk

]2 =
j∑

n=0

[
c
j

nk

]2 = 1, (D3)

and shown to possess the orthogonality and completeness
properties

j∑
k=0

c
j

nkc
j

n′k = δnn′ ,

j∑
n=0

c
j

nkc
j

nk′ = δkk′ . (D4)

A further analysis allows to derive additional useful relations
for c

j

kn:
√

n + 1 c
j+1
n+1,k = a

√
j + 1 − k c

j

nk − b
√

k c
j

n,k−1,

√
n c

j−1
n−1,k = a

√
j − k c

j

nk − b
√

k + 1 c
j

n,k+1,√
j − n + 1 c

j+1
nk = b

√
j + 1 − k c

j

nk + a
√

k c
j

n,k−1,√
j − n c

j−1
nk = b

√
j − k c

j

nk + a
√

k + 1 c
j

n,k+1,

a = √
Z − 1/

√
Z , b = 1/

√
Z, a2 + b2 = 1. (D5)

The wave function for the ion with given N0 and L is
expanded in the basis set (D2) as

ψ(R⊥,r⊥,z) =
∞∑

ne=0

N+ne∑
n=0

〈R⊥,r⊥|nen〉 gnen(z). (D6)

For calculations of the states and cyclotron transitions of He+

at the magnetic field strengths typical for the atmospheres
of neutron stars, we employ the adiabatic approximation by
restricting the basis to the states with ne = 0. We count
the ion energy from the detachment threshold ELan

0 (�e) +
ELan

0 (�0) = �e/2 + �0/2, and the adiabatic approximation
is justified by the condition E 
 �e = B for the energies
computed. The coupled-channel equations for the energies and
functions gn(z) = g0n(z), n = 0,1, . . . ,N , are

− 1

2μ

d2gn(z)

dz2
+ [Vnn(z) + n�0 − E]gn(z)

= −
N∑

n′=0
n′ �=n

Vnn′ (z) gn′(z), (D7)

where μ = M0/(1 + M0) is the reduced mass (M0 	 1 and
μ ≈ 1 in the atomic units of mass).

The right-hand side of Eq. (D7) involves the potentials
Vnn′ (z) which are the projections of the electron-nucleus
Coulomb interaction −Z/r onto the basis states (D2)
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with ne = 0:

Vnn′ (z) = −Z

N∑
k=0

cNn′kc
N
nk

k!

∫ ∞

0

uk exp(−u)du√
(2u/B) + z2

. (D8)

Since the potentials depend on N = N0 + L but not on the
numbers N0 and L separately, the same property holds for
the energies and the channel functions found from solving
Eqs. (D7). This is a general property of the coupled-channel
formalism not restricted by the adiabatic approximation em-
ployed. The multichannel wave functions (D6) depend on both
N and N0, as the basis functions (D2) depend on both numbers.
The quantum states of the moving ion are degenerate with
respect to N0 reflecting the fact that this number relates to loca-
tions of the guiding center for the ion in a homogeneous space.

The numerical integration of the coupled-channel equations
(D7) is performed to match the boundary conditions at
z = 0 and |z| → ∞ which are determined by the parity and
the asymptotic decay of the channel functions, respectively,
and given by the equations below. As the potentials (D8) are
even functions of z, the ion states can be attributed to a given
z parity which is even for the tightly bound states:

dgn(z)/dz = 0 for z = 0. (D9)

With increasing |z|, the off-diagonal potentials decrease faster
than the diagonal ones which converge to a one-dimensional
Coulomb potential −Z/|z|. The equations (D7) decouple, and
the decay of the bound channel functions follows the relation

dgn(z)/dz

gn(z)
= −κn

2z − 1 − κn

2z + 1 − κn

(D10)

at |z| 	 max(1,κn) (the unit of distance is the Bohr radius),
where κn = √

2(n�0 − E).
The solutions of the equations (D7) are the ion energies

EN s and the multichannel wave functions

ψN s =
N∑

n=0

〈R⊥,r⊥|0n〉 gN sn(z), (D11)

where s = 0,1, . . . ,N enumerates the solutions for a given
N . We can assume that for different N the solutions with
the same s correspond to the similar internal excitations [see
the discussion before Eq. (35) in Sec. IV]. The bound-ion
cyclotron transitions are therefore the transitions between the
states represented by the sets of channel functions {gN sn(z)}Nn=0

and {gN±1,sn′ (z)}N±1
n′=0 . By using the properties (A10) of

the Landau functions, the dipole matrix elements for these
transitions are calculated as follows:

D(+1)
N−1,N = − D0

N−1∑
n′=0

N∑
n=0

〈gN−1,n′ |gNn〉
N∑

k=0

cNnk

× [
a

√
N − k cN−1

n′k + b
√

k cN−1
n′,k−1

]
, (D12)

D(−1)
N+1,N = − D0

N+1∑
n′=0

N∑
n=0

〈gN+1,n′ |gNn〉
N∑

k=0

cNnk

× [
a

√
N − k + 1 cN+1

n′k + b
√

k + 1 cN+1
n′,k+1

]
,

(D13)

where D0 = √
Z/B and the coefficients a and b are given by

Eqs. (D5). The numbers s are omitted from the notations of
the channel functions to simplify the equations. The recurrence
relations (D5) allow one to replace the expressions in square
brackets in Eqs. (D12) and (D13) by

√
n′ + 1 cNn′+1,k and√

n′ cNn′−1,k , respectively. The summations over k and n′ can
then be performed making use of the orthogonality properties
(D4) of the c coefficients. This results in the formulas

D(+1)
N−1,N = −D0

N∑
n=0

√
n 〈gN−1,n−1|gNn〉, (D14)

D(−1)
N+1,N = −D0

N∑
n=0

√
n + 1 〈gN+1,n+1|gNn〉 (D15)

convenient for the multichannel calculations of the bound-ion
cyclotron transitions.

2. Magnetically induced anions

In contrast to positive ions, the states of a detached negative
ion are not discrete because the motion of the separated neutral
system is not confined by the magnetic field. Although such
states can also be constructed as the eigenstates of K2

⊥ and Lz

[40], expanding the ion wave function in this basis involves
integration over the continuum related to the motion of the
neutral core. This yields the coupled-channel equations cou-
pled by an integral operator which complicates the numerical
treatments. As a workaround, we use a discrete basis set [17]
describing the electron occupying the Landau level ne with the
longitudinal angular momentum lz = −j, j = 0,±1,±2, . . . .
We designate the values of lz by the quantum number j instead
of s used in Eq. (16) because s is now used to enumerate the
multichannel quantum states. The basis set is also attributed to
the quantum numbers N0 and L and therefore depends on the
transverse coordinates of both electron and neutral system:

〈R⊥,r⊥|nej 〉 = �
(−1)
N+j,N0

(R⊥) �
(−1)
ne,ne+j (r⊥). (D16)

For a given N = N0 + L, the ion wave function is expanded
in the basis as

ψ(R⊥,r⊥,z) =
∞∑

ne=0

∞∑
j=jmin

〈R⊥,r⊥|nej 〉 gnej (z), (D17)

where jmin = max(−N ,−ne) (the lower boundary for j

follows from the restrictions N + j � 0 and ne + j � 0).
The ion energy is counted from the detachment threshold
ELan

0 (�e) = �e/2.
Similar to hydrogenlike ions in strong magnetic fields,

we employ the adiabatic approximation by including only
the channels with ne = 0 into the wave function expansion
(D17). This approximation is justified for magnetically bound
anions at laboratory magnetic field strengths by smallness
of the energies compared to the electron Landau energy.
The coupled-channel equations for the ion energy E and
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the functions gj (z) = g0j (z), j = jmin,jmin + 1, . . ., where
jmin = max(−N ,0), are

− 1

2μ

d2gj (z)

dz2
+ [Vj (z) + �0(N + 2j + 1) − E]gj (z)

+ �0

√
(N + j + 1)(j + 1) gj+1(z)

+ �0

√
(N + j )j gj−1(z) = 0, (D18)

where �0 = B/M0 is the cyclotron energy of a particle with
the mass M0 of the neutral core and the charge of the entire
anion. The potential Vj (z) is an average of the polarization
potential −κ/(2r4) with the probability density determined by
the basis functions (D16) with ne = 0. It can presented in the
form (see, e.g., Ref. [12])

Vj (z) = −κB2

8

∫ ∞

0
dξ

ξ exp(−vξ )

(1 + ξ )j+1
, (D19)

where v = 0.5B(z2 + a2). The parameter a, which has a
meaning of the size of neutral core, is introduced for a model
cutoff of the polarization potential at r → 0.

We remark that Eq. (D18) depend on N = N0 + L, but
not on the numbers N0 and L separately, reflecting thereby a
general property of the quantum states to be degenerate with
respect to the number N0.

According to Eq. (D18), each channel couples to the
neighboring ones due to the motion of the neutral system
across the magnetic field, and the “strength” of the couplings
is the cyclotron energy �0. The couplings remain the same at
any z, and the channels do not decouple at infinite |z|, making it
difficult to determine the asymptotic properties for the channel
functions. This complicates direct numerical integration of the
coupled-channel equations (D18). To proceed with numerical
treatments, we employ an expansion of the channel functions

gj (z) =
∞∑

ν=0

ajνϕ
(α)
ν (z), (D20)

in the complete set of functions

ϕ(α)
ν (z) = √

α exp(−α|z|) Lν(2α|z|), (D21)

where ν = 0,1,2, . . . , Lν are the Laguerre polynomials and
α is a parameter that determines spatial extensions of the
functions. In particular, for α = (−2εs)1/2 where εs is given
by Eqs. (37) and (38), the function with ν = 0 describes the
bound motion of the excess electron in the infinitely heavy
anion (see Ref. [17] for the details).

With the expansion (D20), the coupled-channel equations
(D16) can be transformed to linear equations for the expansion
coefficients ajν :

∞∑
j=jmin

∞∑
ν=0

[hj ′ν ′,jν − E δj ′j δν ′ν]ajν = 0, (D22)

where

hj ′ν ′,jν = �0 Tj ′j δν ′ν +
[

α2

2μ
tν ′ν + V

(j )
ν ′ν

]
δj ′j ,

Tj ′j = (N + 2j + 1) δj ′j +
√

(N + j )j δj ′,j−1

+
√

(N + j + 1)(j + 1) δj ′,j+1,

tν ′ν = δν ′ν + 2(1 − δν ′ν) + 4 min{ν ′,ν},

V
(j )
ν ′ν =

∫ ∞

−∞
Vj (z) ϕ

(α)
ν ′ (z) ϕ(α)

ν (z) dz. (D23)

The next step is solving the equations (D22), i.e., finding the
eigenvalues and eigenvectors of a real symmetric matrix with
the elements hj ′ν ′,jν . In calculations, we restrict this matrix
to the elements with j and j ′ varying from jmin to some
maximal number jmax, and ν and ν ′ varying from 0 to some
maximal number νmax. The maximal numbers are increased
until convergence of an eigenvalue E of interest is achieved.
For a more effective convergence, the parameter α is varied to
achieve a minimum value of E for each set of numbers jmax

and νmax, which are varied in the course of iterative procedure.
We remark that the functions (D21) form a complete set at any
α value, and that the computations converge to the energies
independent of α.

As described in the previous parts of the paper, we label
the ion energies by the number s designating the internal
excitations influenced by the coupling between the collective
and internal motions. For a given N , solving Eq. (D22) yields
a finite number of the negative eigenvalues EN s that form the
s branches of bound levels. Typically, we find a few branches
for the atomic and cluster magnetically induced anions (a
maximal set of the branches for the anions discussed in Sec. V
is the set of s = 1,2,3,4,5 branches of bound states for the
Xe−

13 anion at B = 50 T). Along with the eigenvalues, we
obtain the eigenvector components a

(N s)
jν for the Hamiltonian

matrix hj ′ν ′,jν , and can compute the multichannel wave
functions as

ψN s =
∑
j,ν

〈R⊥,r⊥|0j 〉a(N s)
jν ϕ(α)

ν (z), (D24)

where the limits of summations are determined as discussed
above.

According to the analysis presented in our studies, the
bound-ion cyclotron transitions are the transitions between
the states ψ = ψN s and ψ ′ = ψN±1,s . When the pair of states
is computed with the same values of the parameter α (as it is
done in our calculations), the transition matrix elements can
be evaluated according to the expressions

√
B D

(+1)
N+1,N =

∑
j,ν

√
j a

(N+1,s)
j−1,ν a

(N s)
jν

−
∑
j,ν

√
N + j + 1 a

(N+1,s)
jν a

(N s)
jν ,

√
B D

(−1)
N−1,N =

∑
j,ν

√
j + 1 a

(N−1,s)
j+1,ν a

(N s)
jν

−
∑
j,ν

√
N + j a

(N−1,s)
jν a

(N s)
jν . (D25)

The sums include all the terms that can be composed from the
restricted sets of coefficients a

(N s)
jν and a

(N±1,s)
jν , while these

sets are normalized to ensure 〈ψ |ψ〉 = 1 and 〈ψ ′|ψ ′〉 = 1.
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