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We investigate electron-correlation effects in the g factor of the ground state of Li-like ions. Our calculations
are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading orders
in the fine-structure constant &, a2, and >. The dependence of the NRQED results on the nuclear charge number
Z is studied and the individual 1/Z-expansion contributions are identified. Combining the obtained data with the
results of the all-order (in Z«) calculations performed within the 1/Z expansion, we derive unified theoretical

predictions for the g factor of light Li-like ions.
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I. INTRODUCTION

Measurements of the bound-electron g factor in light H-like
ions [1-3] provide one of the best tests of the bound-state
QED theory as well as the most accurate determination of the
electron mass [4]. Similar experiments on Li-like ions [5,6]
probe the QED theory of the electron-correlation effects. In
the future, a combination of g-factor experiments on Li-like
and H-like ions can be used as a new way to determine the
fine-structure constant « [7].

The QED effects in the g factors of few-electron atoms
can be systematically treated within the two methods. The
first method starts with the Dirac equation for the valence
electron in a Coulomb field of the nucleus and accounts
for the radiative and electron-electron interaction effects by
perturbation theory. The expansion parameter for the electron-
electron interaction is 1/Z (where Z is the nuclear charge
number). This method accounts for all orders in the nuclear
binding strength parameter Z« and thus is most effective for
high-Z atoms. Extensive QED calculations of the g factors of
Li-like ions within the 1/Z expansion method were performed
by Shabaev and coworkers [8—12].

The starting point of the second method is the Schrédinger
equation that includes both the electron-nucleus and the
electron-electron Coulomb interactions. The radiative and
relativistic effects are accounted for by perturbation theory,
with the expansion parameters « and Zo, respectively. This
method is often denoted as the nonrelativistic quantum
electrodynamics (NRQED) approach, since the coefficients
of the perturbation expansion can be derived systematically
within NRQED. In contrast to the first method, the NRQED
treatment accounts for all orders in 1/Z but expands in Zo
and thus is most effective for low-Z atoms. Calculations of g
factors by this method were carried out by Hegstrom [13] and,
more recently, by Yan [14,15].

The experiments on the g factor of Li-like atoms have been
so far performed in the intermediate region of Z, where the
two methods are complementary to each other. The optimal
theoretical treatment in this region of Z can be achieved by
combining them together. To this end, one would need to
identify (i) the individual 1/Z-expansion terms in the NRQED
calculations and (ii) the individual Z«-expansion terms in
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the 1/Z-expansion results. A combination of these results
would then provide a unified theory. The goal of the present
investigation is to make the first steps along this path.

In this work, we perform the NRQED calculation of
the leading relativistic (~a?) and the leading QED (~a?)
corrections to the g factor of the ground state of Li-like ions,
extending previous calculations by Yan to a larger region
of Z and improving the numerical accuracy. We identify
the individual 1/Z-expansion terms of these corrections. In
particular, we obtain the higher-order electron-correlation
contribution of the relative order 1/Z® and higher, thus
removing one of the dominant sources of the uncertainty of
theoretical predictions [12].

II. NRQED APPROACH

Within the NRQED approach, the bound-electron g factor
of a light atom is represented as an expansion in powers of the
fine-structure constant «,

g=g s+’ gV tat g ()

where g, is the free-electron g factor and g™ are the binding
corrections. The expansion coefficients g™ can be further
expanded in powers of the electron-to-proton mass ratio m /M,

m
g(”>=g§?+ﬁgﬁ'})+~'- )

The interaction of a free nonrelativistic electron with
a constant external magnetic field B is described by the
Hamiltonian

H=pz(1+x)5-B
= up(1+4)25-B=pupg5-B, 3)

where up = —e/(2m) is the Bohr magneton, ¢ is the vector
of Pauli matrices, s is the electron spin operator, and « is the
anomalous magnetic moment of the free electron, which is
connected to the free-electron g factor by g, =2(1 4+ «) =
24a/m+---.

Many years ago, Hegstrom [13] derived the Hamiltonian
describing the interaction of an atom with the magnetic field,
which accounts for the leading relativistic, QED, and nuclear
recoil effects. The resulting Hamiltonian is complete through
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orders of ?, o, o> m/M, and a® m/M. The corresponding

numerical calculations for Li-like atoms were performed by
Yan [14,15].

In the present work, we address the leading relativistic
and QED corrections to the g factor of of Li-like atoms.
These corrections are induced by the effective Hamiltonian
6 H, which, for the case of the S states, can be simplified to
take a very compact form,

8H =) 1pQuda-B. @)
0. =09 +x 0V, 5)
1 V4 1
I R 3 F
Q= 3( Ta ;rab ©)
1
3 _ = - _
05 —3< Zra) (7)

where the indices ¢ and b = (1,2,3) numerate the electrons in
the atom.

Expectation values of the operators Q, are evaluated with
the nonrelativistic wave function . This function is the
antisymmetrized product (A) of the spacial function ¢ and
the spin function y,

v = Alg(F,72.73) x1, 3
x = la()B2) = B ()] a(3), )
where o, @(.) = a(.)and o, B(.) = —B(.). Matrix elements of a

spin-independent operator H, after eliminating spin variables,
can be expressed as

(V| H|Y) = (@' (r1, r2, r)|H2¢(r1,12,73) + 2 ¢p(r2,71,73)
— ¢(ra,r3,r1) — ¢(r3,r2,1r1)
— @(r3,r1,72) — @(r1,73,12)) . (10)

Matrix elements of the spin-dependent operators are expressed
as

=Y (@1Qd¢)F2S. (D)

a

W1 Qubalt)

where § = > . Sa and

> (@' 1Qale)

= (¢'(r1, r2, 13)12 Q3 [@(r1,r2,73) + d(r2.11,73)]
— (01— 02+ 03) [¢(r2,13,11) + §(r3,12,71)]
— (02— 01+ 03) [¢(r1,73,12) + d(r3,7r1,72)]) . (12)

The corresponding corrections to the g factor are

(2) -2 Z Q(2) (13)

3 _ 3)
gd = n;@ ) (14)

We calculated the matrix elements (13) and (14) by using
accurate variational wave functions in the Hyleraas basis. The
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TABLE L The leading relativistic contribution g2 to the g factor
of the ground state of Li-like atoms and the corresponding higher-
order remainder function H>~ defined by Eq. (15).

VA gg) HZ-D
3 —0.343332404 (3) —0.01370 (3)
—0.343 33242 (7)*
4 —1.074 312 532 (7) 0.005 23 (4)
5 —2.143 265913 (2) 0.012 71 (5)
6 —3.546 553 940 (2) 0.016 65 (5)
7 —5.283 459 746 (4) 0.019 06 (6)
8 —7.353784 626 (1) 0.020 69 (7)
9 —9.757 463 309 (3) 0.021 85 (8)
10 —12.494 472 721 (5) 0.022 73 (9)
11 —15.564 804 889 (4) 0.0234 (1)
12 —18.968 457 638 (1) 0.024 0 (1)
—18.968 460 5 (2)*
13 —22.705 431 064 (2) 0.0244 (1)
14 —26.775 726 109 (1) 0.024 8 (1)

2Reference [15].

method is described in our previous investigations [16—18].
Our numerical results for g(z) and gf,? are presented in Tables I
and II, respectively. The values listed in the tables were
obtained by using the basis with the expansion parameter
Q =ny +ny +n3 + ng + ns + ng = 12. The specified uncer-
tainties were obtained by taking the differences of the results
with 2 = 12 and 11. For lithium, we find good agreement with
the previous calculations by Yan [14,15], our results being
several digits more accurate. For lithium-like ions, we observe
small deviations outside of the Yan’s error bars.

A. Relativistic correction g?

The leading relativistic correction of order o can be
expanded in 1/Z as follows:
Z* 940 H@=Y(Z)
P =-" 4 =740 15
@)=t Zt T ———— (19

TABLE II. The leading QED contribution g& to the g factor of
the ground state of Li-like atoms and the corresponding higher-order
remainder function H®* defined by Eq. (17).

VA gg) HGO
3 0.023 071 092 3 (7) 0.023 344
0.023 071 11 (2)*
4 0.075 560 527 2 (1) 0.022 873
5 0.154 876 8752 (2) 0.022 703
6 0.260 805 5519 (3) 0.022 619
7 0.393 2952301 (5) 0.022 570
8 0.552 328 059 8 (1) 0.022 539
9 0.737 896 374 9 (2) 0.022 518
10 0.949996 389 1 (4) 0.022 502
11 1.188 626 037 9 (1) 0.022 490
12 1.453 784 1103 (1) 0.022 481
1.453 784 66 (4)*
13 1.745 469 851 3 (1) 0.022 474
14 2.063 682768 1 (1) 0.022 468

2Reference [15].
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where H®~1(Z) is the remainder function that incorporates
all higher orders in 1/Z, H?>")(Z) - ¢®~V as Z — .
The leading coefficient of the expansion (15) follows from
the hydrogenic limit summarized in Appendix A, whereas the
second coefficient is derived in the present work. The higher-
order coefficients were obtained by fitting the numerical results
for gg)), as described in Appendix B.

Our fitting results for the first higher-order expansion
coefficients are

0 =—-0.128204(9), >V =0.02878(46). (16)

We would like to stress that in order to achieve such precision of
the fitted coefficients, it was important to have highly accurate
numerical results for g,f,? for a sufficiently wide range of Z.
In particular, if we apply the same fitting procedure to the
analogous results of Yan [14,15], we get results consistent
with Eq. (16) but much less accurate.

Using the result for ¢>? from Eq. (16), we can extract
the remainder function H®~Y(Z) from our numerical data
for gé%). The corresponding results are presented in the last
column of Table I. The errors of the listed values of H~V
come from the uncertainty of ¢??. In the case of silicon,
we obtain H>~D(14) = 0.024 77 (13) , which agrees with but
is more precise than the corresponding result of 0.024 4 (15)
obtained by the configuration-interaction Dirac-Fock (CI-DF)
method in Ref. [12]. We note that H?~D previously yielded
one of the two main errors of the total theoretical g-factor
predictions.

B. QED correction g&¥

The leading QED correction of order o> can be expanded
in 1/Z as follows:

Oz L g 2T
S8 = ar 21877

Z+ H®Y(2Z), (17)

where H*9(Z) is the remainder that incorporates the higher
orders in 1/Z, H®® — ¢30 a3 Z — oco. The leading
coefficient of the expansion (17) comes from the hydrogenic
limit, Eq. (A2), whereas the second term was derived in
Ref. [9].

Using the known results for the first two terms of the
expansion (17), we identify values of the remainder function
H®0(Z) from our numerical results for g%, with the
corresponding results presented in the last column of Table II.
In particular, for silicon we obtain H G.0(14) = 0.0224679,
which agrees with the corresponding value of 0.0224 (10),
obtained in Ref. [9] by fitting the results of Yan [14,15].

Our fitting results for the first expansion coefficients of
H®9(Z) are

0 =0.022412(2), 7P =0.00053(7).  (18)

These results can be used for estimating the H®?(Z) function
for higher values of Z.

We note that gfo) is induced by the one-loop part of the
anomalous magnetic moment (AMM), «/m. According to
Eq. (5), analogous corrections due to the n-loop part of the
AMM differ from gé? only by a prefactor. In particular, the
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two-loop part of g((,? is

2A
weloop = 8 (19)

twoloop — T 00
where Aj is the two-loop contribution to the AMM defined in
Eq. (A6).

C. Recoil correction gﬁ)

The leading recoil correction of order a®>m/M can be
expanded in 1/Z as follows:

=122+ 7H;"(2), (20)

where the leading coefficient follows from the hydrogenic
limit, Eq. (A8), and H 5‘1)(2) is the higher-order remainder

function, H}j’l) — c%l) as Z — 00.

In the present work, we obtain the remainder function and
the coefficient cﬁé’l) by fitting the results of Yan [14,15]. Our

value for the coefficient
B = —0.8603 (8) Q1)

disagrees with the corresponding result of —0.825(5) from
Ref. [9] obtained by fitting the same results of Yan. We do not
know the reason for this disagreement. Our fitting procedure
was the same as used for the géﬁ) and gg)) corrections and it
reproduces well the analytical value of the leading coefficient
in Eq. (20). We also obtain the remainder function for
silicon as

HV(14) = -0.8329(1). (22)

D. Radiative recoil correction gﬁ)

The radiative recoil correction of order «®m/M can be
expanded in 1/Z as follows:

1
g(Z) = T 22+ ZHEV(2), (23)

where the leading coefficient follows from the hydrogenic
limit, Eq. (A8), and H S’”(Z) is the higher-order remainder,
gGD 3.1)
v > Cy asZ — oo.
In the present work, we obtain the remainder function and
the coefficient cﬁ‘l) by fitting the results of Yan [14,15]. Our
values for the coefficient and the remainder are

O =0.040234), HV(14) =0.040337(6). (24)

III. RESULTS AND DISCUSSION

The summary of individual binding corrections to the g
factors of Li-like silicon, oxygen, and carbon ions is presented
in Tables III, IV, and V, respectively. The sum of all binding
corrections gives the difference between the g factor of the
atom and the free-electron g factor, g — g., which may be
compared to the experimental data and to other theoretical
predictions by using the experimental value of the free-electron
g factor [19],

g =2.002319304361(6). (25)
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TABLE III. Binding corrections to the g factor of the ground state of 28Si!!*. “LO” denotes the lowest-order (in Za) contribution of the
corresponding correction, to be multiplied by the prefactor specified in the second column. “HO” denotes the higher-order (in Z«) contribution,
to be multiplied by the prefactor specified in the second column. 8g denotes the contribution to the g factor, obtained as the sum of the
lowest-order and the higher-order contributions, multiplied by the prefactor. Ry, = \/%R, where R is the root-mean-square nuclear charge
radius. Nuclear parameters used in the calculation are M /m = 50984.83273 and R = 3.1224 (24) fm.

Order Prefactor LO HO 8g x 10°
Electron-electron interaction:

1/2° a’Z? —0.166 666 667 —0.000 546 606 —1745.249 323
1/Z! a?Z 0.429 812 529 0.001 552 492 321.590 803
1/7? o? —0.128 204 (9) —0.000 92 (1) —6.876 0 (5)
1/Z2%* a?Z7! 0.024 8 (1) 0.000 0 (3) 0.094 (1)
One-loop QED:

1/2° A 0.013 262912 0.002 813 49 (4) 1.224 449 (3)
1/Z! a3z —0.039 879 702 —0.0051(9) —0.245 (5)
1/z%+ o’ 0.022 467 862 0.000 (4) 0.009 (2)
Recoil:

1/2° a?(m/M) Z? 0.250 000 000 0.001 (8) 0.051 (2)
1/z a’(m/M)Z —0.8329 (1) 0.00 (4) —0.0122(6)
Two-loop QED:

1/2° at 7?2 —0.002 773 485 —0.000 6 (6) —0.0019 (3)
1/z atZ 0.008 339 479 0.000 (3) 0.000 3 (1)
Finite nuclear size:

1/2° (Zostplﬂ.)zVozZZ2 0.200 000 000 0.001 90 (7) 0.002 574 (4)
1/Z! (ZaRsph)zVocZZ —0.5702 (2) —0.008 0 (3) —0.000 527 (1)
1/2> (ZozRSph)zyoz2 0.214 (5) 0.002 (3) 0.000 014
Radiative recoil:

1/2° o’ (m/M) Z? —0.026 525 824 0.000 (1) —0.000 040 (2)
1/Z'* o> (m/M)Z 0.040 337 (6) 0.000 (2) 0.000 004
Second-order recoil:

1/2° a’(m/M)? Z? —3.750 000 000 0.0 (2) —0.000 015 (1)
>3-loop QED:

1/2° o’ Z? 0.0031 629 03 0.000 0 (7) 0.000 013 (3)
Total g — g.:

Theory, this work
Theory [12]
Experiment [5]

—1429.412 (6)
—1429.412 (8)
—1429.414 5 (21)

In the tables, the columns labeled “LO” present results
for the lowest-order (in Zw«) parts of the corresponding
corrections. The columns labeled “HO” contain results for
the higher-order remainders, which are suppressed by a factor
of (Za)? as compared to the corresponding LO part.

The largest contribution to g — g, comes from the electron-
electron interaction. The corresponding LO part is discussed
in Sec. ITA. The 1/Z° HO term comes from the hydrogenic
limit, Eq. (A1). The 1/Z' HO term originates from the one-
photon exchange diagrams, first calculated in Ref. [8] and
reevaluated in this work to a higher precision. The 1/Z% HO
term comes from the two-photon exchange diagrams, which
were calculated to all orders in Z« in Ref. [12]. For silicon, we
identify the 1/Z2 HO term from the all-order numerical result
of Ref. [12]. For oxygen and carbon, there were no results
reported in there, so we estimate the 1/Z2 HO term by scaling
the silicon result. For example, for oxygen we obtain

8g = —0.00092 % (8/14)> = —0.0003ca>.  (26)

We ascribe the uncertainty of 50% to this estimation. The
1/Z3 HO term is unknown; the corresponding uncertainty was

estimated as the 1/Z% LO term multiplied by the ratio of the
1/ Z2 HO-to-LO terms, and by a conservative factor of 1.5.

The LO part of the one-loop QED correction is discussed
in Sec. Il B. The corresponding 1/Z° HO term comes from
the hydrogenic limit, Eq. (A2). The 1/Z' HO term is induced
by the screened QED diagrams, calculated to all orders in Z«
in Refs. [11,12]. For silicon, we take the result presented in
Table II of Ref. [12] and identify the 1/Z' contribution by
subtracting the 1/Z>* part taken from Table V of Ref. [9]. For
carbon and oxygen, we scale the silicon result and ascribe a
100% uncertainty to this estimate. The 1/Z% HO term has not
been evaluated yet. We estimated its uncertainty as the 1/Z>
LO term multiplied by the ratio of the 1/Z' HO and LO terms
and by an additional conservative factor of 1.5.

The LO part of the recoil correction is discussed in Sec. I C.
The only HO recoil contribution available today for oxygen
and silicon is the (Za)*m /M correction obtained in Ref. [11]in
the hydrogenic limit [see Eq. (A8)]. We note that a calculation
complete to all orders in Zo was reported in Ref. [6], but only
for calcium. In the absence of such calculations for other ions,
we estimate the uncertainty due to higher orders in Z« on the
basis of the results available for the 1s state [20].
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TABLE IV. Individual binding correction to the g factor of the ground state of '®O°*. Notations are the same as in Table III. Nuclear
parameters used in the calculation are M /m = 29 148.94975 and R = 2.6991 (52) fm.

Order Prefactor LO HO 8g x 10°
Electron-electron interaction:

1/2° a?Z? —0.166 666 667 —0.000 177 823 —568.620 484
1/Z! a’Z 0.429 812 529 0.000 505 635 183.320 201
1/7? o? —0.128 204 (9) —0.0003 (2) —6.843 (8)
1/Z%* oa?Z7! 0.020 69 (7) 0.000 00 (7) 0.1377(7)
One-loop QED:

1/2° o’ Z? 0.013 262912 0.001 33041 (3) 0.362 936 (1)
12! o>z —0.039 879 702 —0.002 (2) —0.129 (5)
1/z%+ o 0.022 539 315 0.000 (1) 0.008 8 (5)
Recoil:

1/2° a’(m/M)Z? 0.250 000 000 0.000 (2) 0.0293 (2)
1/z% a’(m/M)Z —0.811 399 (3) 0.000 (9) —0.0119(1)
Two-loop QED:

1/2° a*tZ? —0.002 773 485 —0.000 05 (6) —0.000 51 (1)
1/z% otz 0.008 339 479 0.000 0 (2) 0.000 189 (5)
Finite nuclear size:

1/2° (ZaRgn)*" a*Z* 0.200 000 000 0.000 42 (6) 0.000 194 (1)
1/Z! (ZoeRsph)ZVozZZ —0.5702 (2) —0.002 4 (3) —0.000 069
1/7? (ZozRSph)zyoz2 0.214 (5) 0.001 (1) 0.000 003
Radiative recoil:

1/2° o (m/M)Z? —0.026 525 824 0.000 0 (3) —0.000 023
1/Z* ad(m/M)Z 0.040 504 18 (6) 0.000 0 (5) 0.000 004
Second-order recoil:

1/2° a’(m/M)* Z? —2.250 000 000 0.00 (3) —0.000 009
>3-loop QED:

1/2° o’ Z? 0.003 162 903 0.000 00 (4) 0.000 004
Total g — g.:

Theory, this work —391.745 9 (96)
Theory [9] —391.700 (32)

The 1/Z° part of the two-loop QED correction is given by
Eq. (A6), whereas the 1/Z'* part is described in Sec. II B.
The finite nuclear-size correction is taken from our previous
investigation [21].

In Tables I1I1, IV and V, we summarize all known theoretical
contributions to g — g, for Li-like silicon, oxygen, and
carbon and compare the results with previous theoretical
and experimental data. For silicon, we observe a very good
agreement with the theoretical prediction by Volotka et al. [12]
and with the experimental result [5]. Our prediction is slightly
more accurate than that by Volotka et al., mainly because of
the improvement in the 1/Z3* electron-correlation correction.
For oxygen and carbon, we find a marginal agreement with
the previous theoretical calculations of Glazov et al. [9] but
improve their accuracy by a factor of 3 (oxygen) or 4 (carbon).
The main difference between the results comes from the 1/Z+
electron-correlation correction, which was evaluated by the
CI-DF method in Ref. [9] and by the NRQED method in the
present work.

The largest uncertainty of our theoretical prediction for sili-
con stems from the 1/Z" part of the one-loop QED effect, also
known as the screened QED correction. The corresponding
uncertainty is the estimated error of the numerical evaluation
[12], which can be improved by dedicated calculations. For
oxygen and carbon, the largest theoretical error comes from the

1/Z? part of the electron-electron interaction correction. This
error can be eliminated by extending the all-order calculation
of the two-photon exchange diagrams by Volotka et al. [12]
to lower-Z ions, or by performing the NRQED calculations of
the next-order a* effect.

Summing up, we have performed NRQED calculations of
the electron-correlation effects to the g factor of the ground
state of Li-like atoms. By fitting the Z dependence of the
NRQED results for the «? and «® effects and the corresponding
recoil corrections, we have identified their individual 1/Z-
expansion contributions. Combining the obtained data with
the results of the all-order (in Z«) calculations performed
within the 1/Z expansion, we have derived unified theoretical
predictions for the g factor of light Li-like ions and improved
the theoretical precision.
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TABLE V. Individual binding correction to the g factor of the ground state of '>C3*. Notations are the same as in Table III. Nuclear
parameters used in the calculation are M /m = 21 868.663 86 and R = 2.4702 (24) fm.

Order Prefactor LO HO 8g x 10°
Electron-electron interaction:

1/2° a’Z? —0.166 666 667 —0.000 099 947 —319.699 730
1/Z! a’Z 0.429 812 529 0.000 284 265 137.419 421
1/2> o? —0.128 204 (9) —0.000 17 (8) —6.836 (4)
1/Z% a?Z7! 0.016 65 (5) 0.000 00 (3) 0.147 8 (6)
One-loop QED:

1/2° A 0.013262912 0.000 879 11 (3) 0.197 838
1/Z! Az —0.039 879 702 —0.0009 (9) —0.095 (2)
1/Z2% o’ 0.022 618 936 0.000 0 (8) 0.008 8 (3)
Recoil:

1/2° a?(m/M) Z? 0.250 000 000 0.000 1 (9) 0.021 93 (8)
1/Z'* a’(m/M)Z —0.793 800 (1) 0.000 (4) —0.011 60 (6)
Two-loop QED:

1/2° at 7? —0.002 773 485 0.000 02 (2) —0.000 281(2)
1/Z'* atZ 0.008 339 479 0.000 00 (8) 0.000 142 (1)
Finite nuclear size:

1/2° (ZofRSplﬂ.)zVazzZ2 0.200 000 000 0.000 18 (9) 0.000 051
1/Z! (ZaRsph)ZVotZZ —0.5702 (2) —0.001 4 (7) —0.000 024
172> (Zost,,h)ZVoz2 0.214 (5) 0.000 4 (8) 0.000 002
Radiative recoil:

1/2° a’(m/M) Z? —0.026 525 824 0.000 0 (1) —0.000 017
1/Z'* ad(m/M)Z 0.040 698 000 0.000 0 (2) 0.000 004
Second-order recoil:

1/2° a’(m/M)? Z? —1.750000000 0.00 (1) —0.000007
>3-loop QED:

1/2° o’ Z? 0.003 162 903 0.000 0 (1) 0.000 002
Total g — g.:

Theory, this work —188.847 (5)
Theory [9] —188.819 (19)

APPENDIX A: HYDROGENIC LIMIT

The g factor of the ground state of a Li-like atom in
the hydrogenic limit (i.e., neglecting the electron-electron
interaction) coincides with the g factor of the 2s state of the
corresponding H-like ion. In this section, we summarize the
theory of the g factor of the hydrogenic 2s state.

The relativistic value of the 2s g factor is obtained from the
Dirac equation, with the (point-nucleus) result

2
g=§[l+\/2+2\/1—(Zo¢)2]

(Zay
- + ...

=2

(AL)

The one-loop QED correction (for the point nucleus) is
[22-24]

2 4
) o {1 4 (Za) 4 (Za) |:32

QED = 24 8 |9

In[(Ze) "] + bf&;]

5
+ % H“><Za>} , (A2)

where by = —11.77438227 [23,24] and H(Za) is the re-
mainder function that incorporates all higher orders in Za.
The self-energy part of the remainder function was obtained

numerically in Ref. [25] to be
HD(6a) =22.48(1), H{YSa) =22.221(4),
H{)(14a) =21.486 (1) . (A3)

The vacuum-polarization part of the remainder function
consists of the so-called electric-loop and magnetic-loop parts.
The electric-loop part is relatively simple and was evaluated
numerically by many authors, e.g., by us,

Hyp 4(60) =146, Hyp ,(8e) = 1.388,
Hyp o(14) = 1.1996, (Ad)

whereas the magnetic-loop part is given by [26,27]

T 8 5
Hyp mi(Ze) = 7 = (z(x)ﬁ[ln(zm +2.6+ g} .

(A5)

The two-loop QED correction is

2 2 4
@ _« (Za) (Za)* [ 28 )
8QED = 22 {2142 + 24, 24 + 3 ? In[(Za)™"]
16 — 1972
PP+ — 7 |1, A6
+ by + 108 (A6)
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where A, = —0.32847844400... is the two-loop contribu-
tion to the electron anomalous magnetic moment and bﬁ)) =
—17.157236 58 [23,24]. The last term O[(Za)*] in Eq. (A6)
is the light-by-light scattering contribution recently calculated
in Ref. [28].
The three and higher-loop QED corrections can be summa-
rized as
L a" Za)?
=Y 2l 2a 20, 20,

n=3

(AT)

where [29,30]
As; =1.181234017...,
As =7.79(34).

Ay =—1.912245765. ..,

The recoil correction, including the second-order re-
coil 0[(m/M)2] and the radiative recoil O(am/M), is
[9,22,31,32]

m (Za)?
M 4

The finite nuclear-size correction including the correspond-

ing QED contribution is

= L+ ozar - Za+z- 2] (as)
Bree = 8°Y "M 3

2 (Za)?
on = 5 (ZaRgn)” == [1 + (Za) HY"]

« [1 v GNQED} , (A9)

where y = /1 — (Za)? and Ry, = /5/3 R is the radius of
the nuclear sphere with the root-mean-square radius R, and

the remainder functions HIEIO’ZH and Gnqep were evaluated in
Refs. [7,21,33].

APPENDIX B: FITTING OF THE 1/Z
EXPANSION COEFFICIENTS

In this section, we describe the fitting procedure used for
the identification of the coefficients of the 1/Z expansion.

The general task is to fit a data set of n points (Z;, F;),
i =1,...,n,tothe following model function with N (N < n)

PHYSICAL REVIEW A 95, 062511 (2017)

parameters:

N—-1
WZ)y=) azr, (B1)
k=0

where a is the exponent of the leading term of the 1/Z
expansion.

In order to find the optimal values of the fitting parameters
ck, we use the weighted least-squares regression. Specifically,
we minimize the functional

Sy =

n . 12

i=1 8Fl.2 + O'I%I(Zi) ’
where 8 F; are the numerical errors of F; and oy(Z) is the
estimate of the error due to the truncation of the 1/Z expansion

in the fitting function, taken as the last term of the fitting ansatz
divided by Z,

on(Z)=cy_1 Z°7V. (B3)

In practice, we make our fit in two steps. First, we perform the
least-square regression without weights. The obtained value
of the cy_; coefficient is then used for the estimation of
the truncation error in the weighted least-square regression
performed on the second step.

In the cases relevant for the present work, one or two
first coefficients of the 1/Z expansion are known analytically.
We use this fact in order to access the errors of our fitting
procedure. First, we treat one of the known coefficients as a
free fitting parameter and select three different fitting functions
that give the best approximation to the known result. After that,
we set the known coefficients to their exact values, perform the
fit with the three fitting functions, and finally take the average
of the three results and the maximal deviation between them
as the final value and its error, respectively.

Fitting the results for the o? and o corrections (whose
numerical accuracy is very high), we used fitting functions with
8—10 parameters. For the recoil corrections (whose accuracy
is much lower), we used 5 or 6 fitting parameters.
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