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In our previous work S. Bubin et al., Chem. Phys. Lett. 647, 122 (2016), it was established that complex
explicitly correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for very
accurate nonrelativistic molecular non-Born-Oppenheimer calculations. In this work, we advance the molecular
CECGs approach further by deriving and implementing algorithms for calculating the leading relativistic
corrections within this approach. The algorithms are tested in the calculations of the corrections for all 23

bound pure vibrational states of the HD™ ion.
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I. INTRODUCTION

Accurate quantum mechanical calculations of bound
states of molecular systems without assuming the Born-
Oppenheimer (BO) approximation provide a unique way
of describing these systems without any approximations
concerning the separability of the motions of the nuclei
and electrons. Besides the conceptual aspect of non-BO
calculations, which provides an interesting view on molecular
properties, these types of calculations are also capable of
generating very accurate results concerning the molecular
spectra. Examples of such calculations can be found in
the works of Bhatia [1], Bhatia and Drachman [2,3], and
Cassar and Drake [4], where Hylleraas functions were used to
determine energies and other properties (polarizabilities, Stark
effect, relativistic corrections, etc.) of the hydrogen molecular
ion and its isotopologues.

There are significant differences between BO and non-BO
calculations for a molecular system. The former involve
separate calculations of the electronic wave function and the
corresponding energy performed at some selected configura-
tions of the nuclei placed in different fixed positions in space.
These calculations provide the so-called potential energy
surface (PES), which is used in the subsequent calculation of
bound states corresponding to the rovibrational motion of the
molecule. In non-BO calculations, the nuclei and the electrons
forming the molecule are treated on equal footing. The
calculations provide total energies and the corresponding total
wave functions, which explicitly depend on the coordinates of
both the nuclei and the electrons. As the electrons, particularly
the core electrons, follow the nuclei in their motion in space,
they have to be described using basis functions which explicitly
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depend on the electron-nucleus distances. The use of an orbital
expansion approach in representing this motion, as well as the
relative motion of the nuclei, is usually very ineffective. In our
works [5,6] on the development of non-BO molecular methods,
the major issue has been the selection of an appropriate
basis set which is capable of describing the highly correlated
motion of the electron and the nuclei in ground and excited
bound states. A number of different basis sets have been
implemented. All of them are different forms of explicitly
correlated Gaussian (ECG) functions.

The starting point of an approach for calculating molecular
bound states without assuming the BO approximation is the
nonrelativistic Hamiltonian dependent on laboratory-frame
coordinates of all particles forming the system. In our
approach, it is a laboratory Cartesian coordinate system. As
the Hamiltonian includes the internal relative motion of the
particles around the center of mass of the system, as well as
the motion of the center of mass in space, the two motions have
to be separated so the calculation only focuses on the “internal”
bound states of the system. These bound states are eigenstates
of the Hamiltonian (called the internal Hamiltonian) which is
obtained by separating the operator representing the motion
of the center of mass from the laboratory Hamiltonian. The
internal Hamiltonian used in our non-BO approach is described
in the next section. As there is no preferred direction for the
system to orient itself in the laboratory coordinate space, the
internal Hamiltonian is isotropic (i.e., rotationally invariant).
It resembles an atomic BO Hamiltonian. However, as in the
atomic Hamiltonian all moving particles are electrons with
—1 charges and unit masses (in atomic units), in the internal
Hamiltonian some moving particles can be heavier and have
positive charges. Like for an atom, the internal Hamiltonian
commutes with the operator representing the square of the total
angular momentum and its z coordinate, N 2 and N;. In order
to calculate excited molecular states, it is desirable to use,
in the calculation, basis functions which are eigenfunctions
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of the two operators. Thus, besides having to be explicitly
dependent on the interparticle distances, the basis functions
have to possess the right symmetry associated with the total
rotational motion of the system.

One of the central issues in the electronic BO calculation is
how well it describes the electron-electron (e-e) correlation
effects. The electron correlation can be separated into the
dynamic and nondynamic correlations. The dynamic correla-
tion is directly related to the Coulombic repulsion between
the electrons, which keeps them apart. The nondynamic
correlation is due to the electron staying apart due to an
electronic excitation of the system or a chemical bond (e.g.,
a single covalent bond formed by two electrons) between
two atoms in the system dissociating and each of the two
electrons forming the bond following a different atom. If nuclei
and electrons in the calculation are treated on equal footing,
nucleus-nucleus (n-n) correlation and nucleus-electron (n-e)
correlation need to be represented in the wave function.
The e-e, n-e, and n-n correlations are different despite all
of them resulting from electrostatic interactions. Due to
significantly larger masses of the nuclei, these particles “avoid”
each other more than the much lighter electrons. Thus,
while the e-e correlations are quite adequately described by
ECGs only dependent on the e-e distances in the Gaussian
exponent, the n-n correlations, as we have demonstrated
with the non-BO calculations of bound states of some small
diatomic molecules [6], require preexponential multipliers in
the form of non-negative powers of the internuclear distance
(the intermolecular distances for molecules with more than
two nuclei). We call ECGs with such multipliers “power
Gaussians” in this work. The larger the power, the more the
nuclei are separated from each other. Inclusion of the zero
power assures that the probability of finding the nuclei in a
single point in space may not be exactly zero. The multipliers
also enable one to describe radial nodes in the wave functions
of vibrationally excited states. It is important to note that ECGs
used in molecular calculations are single-center Gaussians as
only such functions transform according to the irreducible
representations of the SO(3) rotation group and can be used to
expand wave functions of bound states of the atomlike internal
Hamiltonian.

In order to use power ECGs in non-BO calculations of
triatomic molecules, the preexponential factor needs to include
all three internuclear distances raised to some non-negative
powers. Formulas for the Hamiltonian matrix elements for
such functions were derived [7], but their computational
implementation failed due to the oscillatory nature of these
algorithms that caused numerical instabilities in the calcula-
tion. After not being able to resolve the problem with the
oscillations, we continued searching for an alternative basis
which can be used for high-accuracy non-BO calculations of
molecules with more than two nuclei. Two such bases have
been recently tested in our laboratory. The first one consists
of ECGs multiplied by products of sin and cos functions
dependent on squares of the interparticle distances [8]. Such
functions can correctly describe the decreasing probability
of finding two nuclei close to each other. They are also
capable of representing radial oscillations of wave functions
of vibrationally excited states. The second basis consists of
ECGs with complex exponential parameters [9,10]. Based
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on the initial tests, the latter basis seems to be the most
promising.

Before embarking on large-scale non-BO calculations of
some triatomic systems—the most interesting being H, Hs,
and HeHJ due to their astrophysical relevance—algorithms
for the leading relativistic corrections need to be developed
and implemented. Only when these corrections are included
in the energy can high-accuracy results be generated for the
rovibrational spectra of the mentioned systems. In this work,
we derive and test algorithms for calculating the mass-velocity
(MYV), Darwin (D), and orbit-orbit (OO) interaction corrections
to the energy of pure (i.e., rotationless) vibrational states whose
wave functions are expanded in terms of complex all-particle
ECGs (CECGs). Testing of the algorithms is performed by
calculating the relativistic corrections of all 23 bound pure
vibrational states of the HD* ion and comparing the results
with the values obtained before using power ECGs [11].
HD™ has been used as a model system for comparing high-
resolution spectral measurements with high-level theoretical
calculations [12,13]. The relativistic corrections taken from
Ref. [11] and used in the present testing agree very well
with the corrections obtained in the calculations using other
methods [12,13].

The algorithms derived in this work are applicable to
systems with an arbitrary number of particles. They can be
used in non-BO calculations for diatomics, triatomics, as well
as systems with more than three nuclei.

II. HAMILTONIAN

We consider an N-particle isolated system with masses
{M;} and charges {Q;} in a laboratory Cartesian coordinate
system. The laboratory coordinates and the linear momenta of
the particles are

X1 le
R, Y, Py Py
R = Rz =|Z| p= P2 = | Pa|. (1)
Ry : Py :
Zy PzN

The nonrelativistic laboratory-frame Hamiltonian of the sys-
tem is

N

00
Hy(R) = Z Z Z T 1; @

i=1 i=1 j>

Next, the 3N-dimensional problem represented by the above
Hamiltonian is reduced to a (3N — 3)-dimensional problem by
eliminating from the laboratory-frame Hamiltonian the oper-
ator representing the center-of-mass motion. This elimination
is rigorous and achieved by transforming Hamiltonian (2) to a
new coordinate system, whose first three coordinates ry are the
coordinates of the center of mass in the laboratory coordinate
frame and the remaining 3N — 3 coordinates are internal
coordinates. The internal coordinates, r;,i =1,...,N — 1,
are coordinates in a Cartesian coordinate system whose center
is placed at a selected reference particle (usually the heaviest
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one). Letn = N — 1. In the new coordinate system (2) is

11
)+ (-

H,'(ro,r) = <—

where T denotes the transpose, g; = Q;y1, i = m”(’)ffl‘n are the
reduced masses, My is the total mass of the system, m is the
mass of the reference particle, m; = M;y, V,, is the gradient
vector expressed in terms of the x;, y;, and z; coordinates of
vector 1y, 1i; = |Ir; — x|l = [Riy1 = Rjyqll ,and ro; =1 =
IIr; |l = IIR;+1 — Ry|l. One can call the particles described
by the above Hamiltonian “pseudoparticles” because, even
though they have the same charges as the original particles,
their masses are not the original masses but the reduced
masses. As one can see from (3), the separation of the total
nonrelativistic laboratory-frame Hamiltonian into the operator
representing the kinetic energy of the center-of-mass motion,
H{M(rp), and the internal Hamiltonian, H, mt(r) is rigorous:

H"(ry,r) = H™(ro) + H"(r). (4)

The sum of H™(ro) and H™(r) provides a complete non-
relativistic description of the system. As in this work we
are only concerned with the internal bound states of the
system, the eigenvalues and eigenfunctions of the internal
Hamiltonian are calculated. The internal Hamiltonian can
be viewed as describing a system of n pseudoparticles with
the masses equal to reduced masses u; and charges g;
(i =1,...,n) moving in the central field of the charge of
the reference particle, go. The pseudoparticles interact with
each other by the Coulombic potential and additionally their
motions are coupled through the mass-polarization terms,
—l l" £i me VTVFI As mentioned in Sec. I, the internal
Hamlltoman (3) is a generalized atomic Hamiltonian due to its
spherical symmetry.

III. COMPLEX EXPLICITLY CORRELATED
GAUSSIAN FUNCTIONS

The basis functions used in this work are explicitly
correlated Gaussian functions with complex parameters. The
general form of such functions is

#r(r) = exp[—r" C; r] = exp[—1r" Ay +iBp)rl, (5)

where A, and B, are real symmetric matrices of the variational
exponential parameters. A; and B; can be written as A; =
A¢ @ I5,B; = B, ® I, where I is the 3 x3 unit matrix and ®
denotes the Kronecker product. To ensure square integrability
of ¢ (r), matrix Ay must be positive definite. To achieve this,
A, isrepresented in the Cholesky factored formas Ay = L;L/],
where L; is an n xn, rank n, lower triangular matrix. ¢ (r) is
square integrable for the L; matrix elements being any real
numbers.

Relativistic operators

We consider relativistic corrections of the order of o?.
The operators representing the mass-velocity (MV), Darwin
(D), and orbit-orbit (OO) interactions in HD" are [11,14] as
follows (n = 2).
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1. Mass-velocity term

4

A 1|1 2 _

(il By |61 = =2 | — (] (Zw) )
My i=1

2

+y ﬁ (¢l Vi 1) |- 6)

i=1

2. Darwin term

There are three pair interactions in HD™, i.e., deuteron
proton, deuteron electron, and proton electron. In the Dirac-
Breit-Pauli relativistic Hamiltonian, which is used in the
present work, the Darwin correction describing the interaction
of the particle with charge Q, spin I, and mass M with a
particle with charge ¢, spin S, and mass m has the following
form [15,16]:

3 Qg

o=t

2 M?

where the g factor is the gyromagnetic ratio and parameter

& is equal to zero for an integer spin and 1/4 for a half-

integer spin. HD™ consists of a deuteron (mg,qg,lo = 1), a

proton (my,q;,I;1 = 1/2), and an electron (m,,q,,1» = 1/2).

Neglecting the g factor (as was done by Korobov [17]), the
Darwin operator for HD is

(¢ — DU +8) 8, )

. T (41 1 ,
Hp(r) = = Z 3m2 +-3) 04 8°(r;)
i=1 !
JT
+5 ZZ quq, 83 (rij). ®)
i=1 j;él

3. Orbit-orbit term

The kI matrix element for the orbit-orbit interaction
operator Hoo is

(x| Hoo(r) |¢)

Al r,)vr,|¢,>] 9)
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IV. MATRIX ELEMENTS

In general, the system considered in the calculations may
include some groups of identical particles. In the calculation
of the wave function expanded in terms of ECGs (5),
each Gaussian is transformed with the appropriate permuta-
tional symmetry operator. This operator is a product of the
permutational symmetry operators each corresponding to a
different group of identical particles. For example, for H,, the
permutational symmetry operator is a product of the symmetry
operator for the electrons and the symmetry operators for other
types of identical particles. Each permutational symmetry
operator is a sum of operators permuting the labels of identical
particles multiplied by appropriate linear coefficients. The
procedure for generating the permutational symmetry operator
was described earlier [18]. Each labels-permuting operator is
represented by a 3nx3n permutation matrix. Let us denote
by P the permutation matrix representing a particular P
permutation operator. Then, acting with P on ¢;, we get

Pexp[—(r—s)" C,(r — 5]
(Pr —s)]
[—(Pr — PP's)" C,(Pr — PP 's))]
= exp[—(r — P~ 's)" P C,P(r — P 's))]
[ C -3l (10)

where g =Pp7 CP and §, = P 's;. The following notation
will help keep the expressions more compact:

= exp[—(Pr — )" C,

- -8)"

1) = Plg), (11)

i,=P’L,, A, =PT'A,P, B =P'BP, (12)
Au=Ar+ A, Xkl = Ay +X1, (13)

By, = —B, + B, ﬁkl = —B; +§1, (14)

J
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and
= — = = =
Cu=C,+C =Ay+iBy. (15)
Here, P represents the permutation matrix corresponding to
some permutation operator P. As for HD", there are no
identical particles and the permutational operator is equal to
unity.

A. The MV operator

The matrix elements that need to be calculated are

N - 1( 1 - - .
(bl Hv16r) = —2 (—AV? IV |V IVehl)
my

2

1
+Z ?(v le r‘i)k|V le r¢l>> (16)

i=1
where we use matrix J (with no indices), whose elements are
all equal to one. Matrix J;; is defined as

(B it i=j

where E;; is a matrix with one in the 7, jth position and zero
elsewhere.

Only one type of 1ntegral appears in the expression for the
HMV matrix elements: (V. DV,¢i|V, DV,¢>Z) where D is
either J or J;;. To compute it, we express it using the following
elementary integrals:

(Vi DVigpi |V DV, )
= 36 Tr [C;D] Tr [C;D]{¢x 1)
— 24 Tr [C}D1(¢xIr” C;DCrldh)
— 24 Tr [CD] (¢ Ir" C,DC, )
+16(¢r’CDCr ' CDCirl).  (18)

B. The orbit-orbit interaction operator

The matrix notation of the orbit-orbit interaction operator is (for details, see [19])

2 B
. 1 ; - _ 1N 3
(#el oo} = =3 3 Ll (g —VTE,,V — (T Ey)” (VTE,,-—) (i V) (Bt V)al i) (19)

iz oMt ri ri

—-ZZ LI g, l—VTEuV—(fTE”)a<VTEu ) (B, V)p(EiV)ald) 20)

mom; 1

i=1 j#i

+3 ZZ 09 Vg v, B (VE L) BB vd). @)
i=1 j>i m;mi i rij Y Y o ']lr,'j " BRI ¢ ’

To simplify the expression for the H,,(r) expectation value, we use the following general integrals for the three terms that appear

in it:

1 e
(]| —V" B VIgy) —
Tg

(BT K (vfﬁ

8

1\° _ _ 3
—) (F V)g(G V)u|¢r)
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for term (19) g = i E = Eii K = Eii ﬁ = Eii F = Eii G = Eii’
for term (20) g = i E = E,‘j K = _” ﬁ = E,‘j F = Ejj G = Eii’ (22)
for term (21) 8 = l] E = E,‘j K = (Eij — Ejj) ﬁ = Ej,‘ F = Eii E = Ejja
where
1 _ - 1 ~ = . - 1 .
(@l — VI BV Id) = +4| —@" C B C 1) 1)) — 6 Tr [CBIg| — 1),
g g g
T % ro | b = =
(o] (r' K)* <V D r—) (F V)p(G V)a|dr)
g
1 === =t == . l r=t=== =T =T . -
= +8<¢k|r_ @ KGC ) C,DFC ) ) — 4(¢klr—(r C,DFC G K r)¢)
8 8
1 = 7 T — =~ - - 1 . 1 = =
—4(¢u— " CG K DFCin) () +6Tr (€ 6" K™ DFJ(g|—|d) —4(¢ —[(" KGC, DFCir)
g g g

—_ — = T —T = ~ ~ 1 —_ = ~ 1 R = = ~
+a"KGGF D Colig)— 12T [DF Cl](¢k|r_(rTK G Cn)lé) + 8(¢k|r—(rT K G Cr)x"C, DF Cr)|dh).
8 8

C. The integral

The following well-known Gaussian integral is used in the derivation:

00 |C|!/2 4

The integration in (23) is over n variables and x is an n-component vector of these variables. y is a constant vector, n xn matrix
C is assumed to be symmetric, and its real part is positive definite. Also, here and everywhere below, by the square root one
should understand its principal value (i.e., the root whose real part is greater than zero).

+00 n,n/2 1
/ d"x exp[—x'Cx + y'x] = —— exp |:—y’C_]y:|. (23)

1. Overlap integral
For the derivation of this integral, see [9]. The integral is

(Bldr) = (¢el Pley) = 73"/2|Cry| =32, (24)

(Dx 1) (CuP2ICu P2, <||Lk||||Ll||)3/2
= = = =2n/2 —_— . 25
T (el e) (D)) |Cu 32 Cul *)

2. Elementary integrals

Now we present formulas for the elementary integrals used in the equations for the above-described matrix elements. For
more details concerning the derivation of the integrals, see [20,21].

(| c"X D)) = S 3 Tr[C'X ], (26)
(@l "X ) ('Y 1) |d) = S {5 Tr [C'X] Tr [C' Y] + 3 Tr [C'X C'Y]). 27)
Using the designation g = ii (or, more precisely, g = i when it appears in r, and g = ii when it appears in J,) or ij, we get
| 2 ~—1 . 1-1/2
(x| Z 1) = Su NG Tr [Cy Jo] . (28)
sl A1
=1 - | B | o Tr [J,C,, X C
(Gl (TXe) — 1§ = (el — I = |3 Tr [XCL'] - . L ] (29)
Te Te 2 Tr [J,Cy ]
1 = = .~ 1 .. 1 ~ - JU
(el — @’ Xr)x'Yr) |§) = (¢x] — 1) {9 Tr [XC,,'] Tr[YC,']+6 Tr [XC,, ' YC,,'] (30)
8 8
1 ~—1 =1, 1 ~—1 JO R
- ———— (T [XC, | Tr [J,C,, YC,, | +3 Tr [YC,, | Tr [J,C,; XC,, ]
Tr [J,Cy |
+4 Tr [J,C,'XC,, ' YC,,' ) 31)
1 1, m— SO T
+ —p 3 Ir [chkllx Ckzl] Tr [chkllY Ckll]}' (32)
Tr [chkl ]
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TABLE I. The convergence of the total nonrelativistic non-BO energies of the pure vibrational states of HD*. The results marked with *

are taken from Ref. [11]. All energy values are given in a.u. (hartrees).

v Basis Energy v Basis Energy v Basis Energy v Basis Energy
0 900 —0.5978979683912 1 900 —0.5891818289282 2 900 —0.5809036983037 3 900 —0.5730505414248
1100 —0.5978979685138 1100 —0.5891818293204 1100 —0.5809036995907 1100 —0.5730505449747
1300 —0.5978979685585 1300 —0.5891818294385 1300 —0.5809036999147 1300 —0.5730505458830
*4000 —0.5978979685771 *5000 —0.5891818295415 *4000 —0.5809037002014 *4000 —0.5730505464509
4 900 —0.5656110283385 5 900 —0.5585754944135 6 900 —0.5519358963488 7 900 —0.5456858304071
1100 —0.5656110377595 1100 —0.5585755123631 1100 —0.5519359315109 1100 —0.5456858832782
1300 —0.5656110404136 1300 —0.5585755179626 1300 —0.5519359435920 1300 —0.5456859064213
*4000 —0.5656110420151 *4000 —0.5585755206666 *4000 —0.5519359486245 *4000 —0.5456859149958
8 900 —0.5398204968565 9 900 —0.5343367888427 10 900 —0.5292332938131 11 900 —0.5245104708403
1100 —0.5398205841104 1100 —0.5343369274054 1100 —0.5292335367206 1100 —0.5245107785210
1300 —0.5398206258429 1300 —0.5343369896236 1300 —0.5292335976010 1300 —0.5245108605721
*4000 —0.5398206405530 *4000 —0.5343370131078 *4000 —0.5292336347464 *4000 —0.5245109096420
12 900 —0.5201704915092 13 900 —0.5162177565392 14 900 —0.5126589689627 15 900 —0.5095030544577
1100 —0.5201709540191 1100 —0.5162184418657 1100 —0.5126598249150 1100  —0.5095042075422
1300 —0.5201710800433 1300 —0.5162186121525 1300 —0.5126600498905 1300 —0.5095044653161
*4000 —0.5201711438355 *4000 —0.5162187088779 *5000 —0.5126601912543 *5000 —0.5095046474123
16 900 —0.5067619132317 17 900 —0.5044503592932 18 900 —0.5025865108464 19 900 —0.5011923477510
1100 —0.5067632927475 1100  —0.5044519869695 1100 —0.5025884884742 1100 —0.5011940209047
1300 —0.5067636279441 1300 —0.5044524069436 1300 —0.5025888978524 1300 —0.5011944645923
*6000 —0.5067638738368 *6000 —0.5044526917472 *6000 —0.5025892273423 *7000 —0.5011947942236
20 900 —0.5002900763374 21 900 —0.4999094630930 22 900 —0.4998654605144
1100 —0.5002916950979 1100 —0.4999100692534 1100 —0.4998656818779
1300 —0.5002921103721 1300 —0.4999102425427 1300 —0.4998657400793
*7000 —0.500292453636 *7000 —0.4999103594832 *7000 —0.4998657783078
3. Dirac 8 function With that, we have
In calculating the matrix element of the three-dimensional .
Dirac § function, we use the formula (e18(r;; — &)r)
T
s@’'r — &) =8(air; +axry + - +a,r, — &), = Slitl 5 ©XP —E~—i . (36)
, , 732 Tr [Cy 3] Tr [Cyy Jij]
where a is a real n-component vector and & is some real three- .
dimensional parameter [9]. Using the following representation (Br|S(ri — &)l ¢n)
of the § function: S T
K £¢
= 37 P\ T 37
732 Tr [Cp 3] Tr [Cy; Jii]

B 3/2
Sa'r—&) = Jim (;) exp[—B@'r—§7°]  (33)
and formula (23), we get
(dul8@" T — &)Ih)
B 3/2
= lim <—) (x| exp[—pr” (aa")r
p—oo \ 1T

+2pa’rE — BETE1I¢) (34)

Sk

= expy————— . (35

732 Tr [Cp'aaT ] b { Tr [, aa’ | } G
The above matrix elements are obtained by setting a as a = j'
or a=j/ —ji, where j is an n-component vector whose ith
component is equal to one, while all others are equal to zero.
One should note that r;; = (j7 — j)"r, r; = (j')"r, and also
G/ — )G —§)7 =3 fori # jand ji )T = J;; fori = J.

V. NUMERICAL TEST

The algorithms for the relativistic corrections derived in
this work are implemented on a parallel computer platform
using FORTRAN90 and message passing interface (MPI). The
implementation is general and can be applied to an arbitrary
number of particles. The computational costs for calculation
of the matrix elements with CECGs and with the power ECGs
are similar. The solving of the secular equation for CECGs
takes somewhat more time than for the power ECGs, as
it involves diagonalization of the complex Hamiltonian and
overlap matrices.

The test calculations are performed for all 23 bound
rotationless vibrational states of the HD™ ion. HD* has been
chosen because very accurate results concerning the leading
relativistic calculations for this system were calculated in
our recent work [11] using real ECGs with preexponential
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multipliers being even non-negative powers 2m; of the
internuclear distance r;:

D (1) = ri™ exp[—rT Agr]. (38)

The CECG basis set for each state is generated by a growing
process involving adding new functions in subsets of 20,
variationally optimizing their nonlinear parameters (i.e., the
elements of the L; and By matrices), and then reoptimizing the
parameters of all CECGs in the basis set. In the optimization
and reoptimization steps, one basis function at a time is
optimized and the procedure cycles over all functions several
times to achieve the desired level of the energy convergence.
The analytical energy gradient determined with respect to the
optimization parameters is used to accelerate the optimization
process.

The maximum number of the basis functions generated for
each state is 1300 (this is 300 more for states with v = §-22
than presented in our previous CECG for on HD™ [10]). The
total energies obtained with this number of CECGs, as well
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as the energies obtained with 1100 and 900 CECGs obtained
in the present calculation for all 23 bound vibrational states
corresponding to the zero total angular momentum quantum
number, are show in Table 1. The energies are compared with
the energies obtained with real ECGs [Eq. (38)]. The number
of the real ECGs used for each state is also shown in the
table. As one can see, this number increases from 4000 for
the lowest state to 7000 for the top state. As expected, the
CECG energies are slightly higher than the corresponding
ECG energies and, as only 1300 CECGs are used for all
states, the energy gap between the CECG and ECG energies
increases with the vibrational excitation. For the v = O state,
the difference between the two energies appears at the 11th
significant figure, but for the highest v = 22 state, the two
energies already differ at the eighth significant figure.

The wave functions obtained with 900, 1100, and 1300 basis
functions for each state are used to calculate the MV, D, and OO
relativistic corrections as the first-order perturbation-theory
energy corrections. The results are shown in Table II. The

TABLE II. Expectation values of the operators representing the leading relativistic corrections: mass velocity (MV), Darwin (D), and orbit
orbit (OO). The results marked with * are taken from Ref. [11]. All energy values are given in a.u. (hartrees).

v Basis MV D 00 v Basis MV D 00 v Basis MV D 00
0 900 —0.7874 0.6508 —4.784E-04 1 900 —0.7696 0.6388 —4.669E-04 2 900 —0.7531 0.6217 —4.564E-04
1100 —0.7874 0.6508 —4.784E-04 1100 —0.7698 0.6359 —4.669E-04 1100 —0.7532 0.6218 —4.564E-04
1300 —0.7875 0.6508 —4.784E-04 1300 —0.7698 0.6359 —4.669E-04 1300 —0.7533 0.6219 —4.564E-04
*4000 —0.7873 0.6507 —4.784E-04 *5000 —0.7697 0.6358 —4.669E-04 *4000 —0.7533 0.6219 —4.564E-04
3 900 —0.7378 0.6086 —4.468E-04 4 900 —0.7234 0.5962 —4.380E-04 5 900 —0.7101 0.5847 —4.300E-04
1100 —0.7379 0.6087 —4.468E-04 1100 —0.7236 0.5964 —4.380E-04 1100 —0.7105 0.5851 —4.300E-04
1300 —0.7380 0.6088 —4.468E-04 1300 —0.7237 0.5966 —4.380E-04 1300 —0.7106 0.5852 —4.300E-04
*4000 —0.7378 0.6087 —4.468E-04 *4000 —0.7237 0.5966 —4.380E-04 *4000 —0.7105 0.5852 —4.300E-04
6 900 —0.6977 0.5739 —4.227E-04 7 900 —0.6863 0.5638 —4.163E-04 8 900 —0.6758 0.5545 —4.105E-04
1100 —0.6982 0.5744 —4.227E-04 1100 —0.6867 0.5643 —4.163E-04 1100 —0.6763 0.5552 —4.105E-04
1300 —0.6983 0.5746 —4.227E-04 1300 —0.6871 0.5647 —4.163E-04 1300 —0.6766 0.5555 —4.105E-04
#4000 —0.6983 0.5746 —4.227E-04 *4000 —0.6872 0.5649 —4.163E-04 *4000 —0.6768 0.5557 —4.105E-04
9 900 —0.6666 0.5461 —4.055E-04 10 900 —0.6573 0.5377 —4.013E-04 11 900 —0.6500 0.5309 —3.977E-04
1100 —0.6671 0.5468 —4.055E-04 1100 —0.6584 0.5389 —4.013E-04 1100 —0.6510 0.5319 —3.977E-04
1300 —0.6674 0.5472 —4.055E-04 1300 —0.6589 0.5395 —4.013E-04 1300 —0.6512 0.5324 —3.977E-04
#4000 —0.6676 0.5475 —4.055E-04 *4000 —0.6590 0.5397 —4.013E-04 *4000 —0.6516 0.5329 —3.977E-04
12 900 —0.6429 0.5242 —3.948E-04 13 900 —0.6365 0.5180 —3.927E-04 14 900 —0.6313 0.5128 —3.913E-04
1100 —0.6435 0.5250 —4.948E-04 1100 —0.6374 0.5191 —3.927E-04 1100 —0.6323 0.5139 —3.913E-04
1300 —0.6442 0.5258 —4.948E-04 1300 —0.6384 0.5201 —3.927E-04 1300 —0.6332 0.5149 —3.913E-04
#4000 —0.6442 0.5260 —3.949E-04 *4000 —0.6389 0.5209 —3.927E-04 *5000 —0.6338 0.5158 —3.913E-04
15 900 —0.6267 0.5080 —3.906E-04 16 900 —0.6232 0.5041 —3.907E-04 17 900 —0.6199 0.5002 —3.914E-04
1100 —0.6281 0.5095 —3.906E-04 1100 —0.6240 0.5050 —3.907E-04 1100 —0.6207 0.5012 —3.914E-04
1300 —0.6287 0.5103 —3.907E-04 1300 —0.6250 0.5060 —3.907E-04 1300 —0.6225 0.5029 —3.914E-04
*5000 —0.6295 0.5112 —3.907E-04 *6000 —0.6260 0.5073 —3.907E-04 *6000 —0.6235 0.5042 —3.915E-04
18 900 —0.6171 0.4966 —3.926E-04 19 900 —0.6185 0.4968 —3.932E-04 20 900 —0.6187 0.4953 —3.863E-04
1100 —0.6195 0.4991 —3.926E-04 1100 —0.6195 0.4977 —3.933E-04 1100 —0.6204 0.4972 —3.864E-04
1300 —0.6210 0.5005 —3.926E-04 1300 —0.6204 0.4988 —3.933E-04 1300 —0.6211 0.4981 —3.864E-04
*6000 —0.6218 0.5017 —3.927E-04 *7000 —0.6213 0.5000 —3.933E-04 *7000 —0.6218 0.4992 —3.865E-04
21 900 —0.6220 0.4974 —2.966E-04 22 900 —0.6234 0.4987 —2.747E-04
1100 —0.6223 0.4980 —2.972E-04 1100 —0.6238 0.4990 —2.751E-04
1300 —0.6229 0.4986 —2.974E-04 1300 —0.6239 0.4992 —2.752E-04
*7000 —0.6235 0.4992 —2.975E-04 *7000 —0.6242 0.4995 —2.752E-04
D+ H*t —0.62432 0.49959 —2.722 10~*
Dt +H —1.2483 049918 —5.437 107
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results are compared with the results obtained with ECGs (38).
As for the total energies, the agreement between the CECG
and ECG results becomes progressively worse, but, even in
the worse case, it is less than one in the third significant
digit. It is remarkable that for the OO correction, the CECG
calculations reproduce virtually all four significant figures of
the results obtained in the ECG calculations. In conclusion,
we can say that the derived algorithms and their computational
implementation are correct.

VI. SUMMARY

In our view, the development of methods employing
complex explicitly correlated n-particle Gaussian functions
for molecular non-BO calculations is a promising approach
for extending the calculations of bound rovibrational states to
molecular systems with more than two nuclei. These functions
are very efficient in describing the highly correlated motion of
particles with widely different masses and charges interacting
with Coulombic potentials. The focus of the present work
is the development of algorithms for calculating the leading

PHYSICAL REVIEW A 95, 062509 (2017)

relativistic corrections using the first-order perturbation theory.
The tests performed of all 23 bound vibrational states of
the HD" ion corresponding to the zero total rotational
quantum number show excellent agreement with the previous
high-accuracy results obtained with the real ECGs involv-
ing non-negative even powers of the internuclear distance
(i.e., in the case of HD™, the p-d distance) as preexponential
multipliers. The relativistic correction is indispensable in
high-accuracy calculations of rovibrational transition energies.
The algorithms developed in this work and their computation
implementation are general and can be applied to an arbitrary
number of particles. Applications of the algorithms in non-
BO calculations of such systems as Hj, HeHj, etc. are
forthcoming.
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