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Anisotropic optical trapping as a manifestation of the complex electronic structure of
ultracold lanthanide atoms: The example of holmium

Hui Li,1 Jean-François Wyart,1,2 Olivier Dulieu,1 and Maxence Lepers1,*

1Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
2LERMA, Observatoire de Paris–Meudon, PSL Research University, Sorbonne Universités,

UPMC Université Paris 6, CNRS UMR8112, 92195 Meudon, France
(Received 13 April 2017; published 26 June 2017)

The efficiency of optical trapping is determined by the atomic dynamic dipole polarizability, whose real
and imaginary parts are associated with the potential energy and photon-scattering rate, respectively. In this
article we develop a formalism to calculate analytically the real and imaginary parts of the scalar, vector, and
tensor polarizabilities of lanthanide atoms. We assume that the sum-over-state formula comprises only transitions
involving electrons in the valence orbitals like 6s, 5d, 6p, and 7s, while transitions involving 4f core electrons are
neglected. Applying this formalism to the ground level of configuration 4f q6s2, we restrict the sum to transitions
implying the 4f q6s6p configuration, which yields polarizabilities depending on two parameters: an effective
transition energy and an effective transition dipole moment. Then, by introducing configuration-interaction
mixing between 4f q6s6p and other configurations, we demonstrate that the imaginary part of the scalar, vector,
and tensor polarizabilities is very sensitive to configuration-interaction coefficients, whereas the real part is not.
The magnitude and anisotropy of the photon-scattering rate are thus strongly related to the details of the atomic
electronic structure. Those analytical results agree with our detailed electronic-structure calculations of the energy
levels, Landé g factors, transition probabilities, polarizabilities, and van der Waals C6 coefficients, previously
performed on erbium and dysprosium and presently performed on holmium. Our results show that, although
the density of states decreases with increasing q, the configuration interaction between 4f q6s6p, 4f q−15d6s2,
and 4f q−15d26s is surprisingly stronger in erbium (q = 12) than in holmium (q = 11), itself stronger than in
dysprosium (q = 10).
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I. INTRODUCTION

The physics of ultracold gases has evolved rapidly and
is poised to enter a new, promising regime, where complex
atomic and molecular species can be cooled and studied exten-
sively. Lanthanide atoms, with a strong magnetic moment and a
large orbital angular momentum, are extreme examples of such
complex species. In fact, the interest in ultracold lanthanide
atoms is motivated by several topics in current research,
including ultracold collisions and quantum chaos [1–3],
dipolar quantum gases with large magnetic moments and
strong dipole-dipole interactions [4–8], many-body quantum
systems [9,10], exotic quantum phases [11–13] like stable
quantum droplets [14–16], synthetic gauge fields [17,18],
and optical clocks [19–21]. Recent progress in laser cooling
and magneto-optical trapping of high-atomic-number (high-
Z) lanthanides [22,23], including dysprosium (Dy) [24–27],
erbium (Er) [28–30], holmium (Ho) [31], and thulium (Tm)
[32] is paving the way towards these investigations. In addi-
tion, both Bose-Einstein condensates and quantum-degenerate
Fermi gases have been produced in isotopes of Dy [4,33,34]
and Er [35,36].

The ground level of holmium is characterized by the
electronic configuration [Xe]4f 116s2 and electronic angular
momentum J = 15/2. Due to the nuclear spin I = 7/2 of
its only stable (bosonic) isotope 165Ho, holmium is the atom
possessing the largest number of hyperfine sublevels in the
electronic ground level, namely, (2J + 1) × (2I + 1) = 128.
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This rich structure is likely to be exploited in quantum
information [37,38]. Like other lanthanides, the complex
electronic structure of holmium induces a large magnetic
dipole moment (9 μB ),which makes it an interesting candidate
for the investigation of anisotropic interactions between atoms
[39,40]. Recently the holmium single magnetic atom and
holmium molecular nanomagnet were also presented as com-
peting candidates for the realization of quantum bits [41,42].

Many of the applications listed above involve optically
trapped ultracold atoms. The trapping efficiency is determined
by the interaction between the atoms and the electromagnetic
field [43,44]. The microscopic property characterizing the
atomic response is the (complex) dynamic dipole polarizability
(DDP). On the one hand, the field induces a potential energy,
i.e., an ac-Stark shift, in the atoms, which is proportional
to the real part of the DDP. On the other hand, the field
also induces photon scattering, whose rate is proportional to
the imaginary part of the DDP. In ultracold experiments, it
is necessary to characterize the photon-scattering rate, as it
provokes heating of the sample and trap losses [44]. Beyond
trapping itself, the real part of the vector and tensor DDPs
is also necessary to determine the Raman coupling strengths
between different Zeeman sublevels, which was proposed for
the implementation of synthetic gauge fields [17,18]. In our
previous works on Er [45] and Dy [46], we have shown that,
far from resonant frequencies, the ac-Stark shift only weakly
depends on the field polarization and atomic Zeeman sublevel,
despite the absence of spherical symmetry in the 4f -electron
wave functions. We have revealed the inverse situation for
photon scattering, as the imaginary part of the vector and
tensor DDPs represents significant fractions of the scalar one.
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This opens the possibility of controlling the trap heating and
losses with an appropriate field polarization. However, the
vector-to-scalar and tensor-to-scalar ratios vary strongly from
Dy to Er, which is still unexplained.

Understanding the origin of that difference is a major
motivation of the present work. Moreover, ultracold exper-
iments may require characterization of the optical trapping
of atomic excited levels with energies up to 25 000 cm−1

above ground level. Calculating the DDP of such levels with
the sum-over-state formula requires modeling highly excited
levels, roughly up to 60 000 cm−1 above ground level, which is
a hard task for the most complex spectra of lanthanide atoms.
Therefore, in this article, we present a simplified model of the
DDP based on the sum-over-state formula, where we suppose
that the only contributions come from transitions involving
valence electrons like 6s, 6p, 5d, and 7s and where we ignore
transitions involving 4f core electrons. Assuming that all
the levels of a given configuration have similar energies, we
obtain analytical expressions of the DDPs of an arbitrary level,
depending on a restricted number of effective parameters.
Focusing on the ground level of the configuration [Xe]4f q6s2

(q = 10, 11, and 12 for Dy, Ho, and Er, respectively), we
take into account only the excitation from the 6s to the
6p orbital, and not the excitation from the 4f to the 5d

orbital. We demonstrate that the real part of the DDP is
not influenced by the configuration interaction (CI) between
[Xe]4f q6s6p and other configurations like [Xe]4f q−15d6s2

and [Xe]4f q−15d26s. Our model also shows that the real
part of the vector and tensor ground-level DDPs vanish. By
contrast, the imaginary part of the DDPs is very sensitive to CI,
in particular, to the weight of the [Xe]4f q6s6p configuration
in excited levels. We demonstrate that strong CI mixing tends
to increase the vector and tensor DDPs with respect to the
scalar one. Surprisingly, CI mixing turns out to be larger for
Er than for Ho, and for Ho than for Dy, although the energy
spectrum of Dy is the densest one.

In order to check the validity of those conclusions, we per-
form a full numerical modeling of holmium spectrum, includ-
ing energy levels, transition probabilities, polarizabilities, and
van der Waals C6 coefficients, complementing our previous
studies on erbium [45] and dysprosium [46]. The DDPs and
C6 coefficients are calculated using the sum formula involving
transition energies and transition dipole moments extracted
from our computed transition probabilities. Following our
previous work [45–48], those quantities are calculated using a
combination of ab initio and least-squares fitting procedures
provided by the Cowan suite of codes [49] and extended in our
group. Therefore we provide a theoretical interpretation of Ho
even-parity levels, which especially results in the prediction of
the widely unmeasured Landé g factors. Because the spectrum
of high-Z lanthanide atoms in the ground level is composed of
a few strong transitions emerging from a forest of weak ones,
the sum-over-state formula is appropriate for calculation of
DDPs and C6 coefficients. It offers the possibility of precisely
calculating, with a single set of spectroscopic data, the real
and imaginary parts of the scalar, vector, and tensor DDPs in
a wide range of wavelengths, especially at 1064 nm, widely
used experimentally for trapping purposes.

This article is outlined as follows. We develop our simplified
model for the DDP in Sec. II: we first recall useful formulas

and, especially, the relationships between scalar, vector, and
tensor DDPs and tensor operators (see Sec. II A). Then
we calculate the contribution from the levels of a single
configuration (see Sec. II B) to the real and imaginary parts
of the DDPs, while the two next subsections are devoted
to the influence of CI mixing in the DDPs of ground-level
lanthanide atoms. Section III deals with the full numerical
modeling of the holmium spectrum—energy levels, transition
probabilities, polarizabilities, and van der Waals C6 coeffi-
cients (see Secs. III A–III D, respectively). Section IV contains
concluding remarks.

II. DYNAMIC DIPOLE POLARIZABILITY:
A SIMPLIFIED MODEL

A. Polarizability and tensor operators

For non–spherically symmetric atoms like lanthanides, the
ac-Stark shift is a linear combination of three terms, depending
on the scalar, vector, and tensor polarizabilities, taken at the
angular frequency ω of the oscillating electric field (hereafter
denoted the “frequency”). The magnitude of each term is
a function of the atomic Zeeman sublevel M and of the
electric-field polarization [43]. The scalar αscal(ω), vector
αvect(ω), and tensor polarizabilities αtens(ω) can be associated
with the coupled polarizabilities αk(ω), where k = 0, 1, and
2, respectively, are the ranks of the corresponding irreducible
tensor [43,50]. Namely,

αscal(ω) = − α0(ω)√
3(2J + 1)

, (1)

αvect(ω) = α1(ω)

√
2J

(J + 1)(2J + 1)
, (2)

αtens(ω) = α2(ω)

√
2J (2J − 1)

3(J + 1)(2J + 1)(2J + 3)
. (3)

For an atomic level |βJ 〉, where J is the electronic-angular-
momentum quantum number and β stands for all the other
quantum numbers, we write the complex polarizability αk(ω)
by applying the sum-over-state formulation of the second-
order time-dependent perturbation theory [51] and assuming
complex energies for the intermediate levels |β ′′J ′′〉,

αk(ω) =√
2k + 1

∑
β ′′J ′′

(−1)J+J ′′

×
{

1 1 k

J J J ′′

}
|〈β ′′J ′′‖d‖βJ 〉|2

×
(

(−1)k

Eβ ′′J ′′ − EβJ − i
h̄γβ′′J ′′

2 − h̄ω

+ 1

Eβ ′′J ′′ − EβJ − i
h̄γβ′′J ′′

2 + h̄ω

)
, (4)

where EβJ (Eβ ′′J ′′ ) are the energies of the levels |βJ 〉 (|β ′′J ′′〉),
〈β ′′J ′′‖d‖βJ 〉 is the reduced transition dipole moment be-
tween these two levels, γβ ′′J ′′ is the natural line width of the
intermediate level |β ′′J ′′〉, and the quantity in curly brackets
is a Wigner 6-j symbol [52].
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We consider frequencies far from any atomic resonances, i.e., Eβ ′′J ′′ − EβJ ± h̄ω � h̄γβ ′′J ′′/2, which is relevant for trapping
purposes and which greatly simplifies Eq. (4). We separate the real Re[αk(ω)] and imaginary parts Im[αk(ω)],

Re[αk(ω)] = 2
√

2k + 1
∑
β ′′J ′′

(−1)J+J ′′
{

1 1 k

J J J ′′

}
|〈β ′′J ′′‖d‖βJ 〉|2 (Eβ ′′J ′′ − EβJ )δ(−1)k ,1 − h̄ωδ(−1)k ,−1

(Eβ ′′J ′′ − EβJ )2 − h̄2ω2
, (5)

Im[αk(ω)] = √
2k + 1

∑
β ′′J ′′

(−1)J+J ′′
{

1 1 k

J J J ′′

}
h̄γβ ′′J ′′ |〈β ′′J ′′‖d‖βJ 〉|2

× [(Eβ ′′J ′′ − EβJ )2 + h̄2ω2]δ(−1)k ,1 − 2h̄ω(Eβ ′′J ′′ − EβJ )δ(−1)k ,−1

[(Eβ ′′J ′′ − EβJ )2 − h̄2ω2]2
, (6)

where we have used A + (−1)kB = (A + B)δ(−1)k ,1 + (A − B)δ(−1)k ,−1. Plugging Eqs. (5) and (6) into Eqs. (1)–(3) and
introducing the explicit expressions of 6-j symbols (see Ref. [52], p. 302), we get to the real and imaginary parts of the
scalar, vector, and tensor contributions:

Re[αscal(ω)] = 2

3(2J + 1)

∑
β ′′J ′′

(Eβ ′′J ′′ − EβJ )|〈β ′′J ′′‖d‖βJ 〉|2
(Eβ ′′J ′′ − EβJ )2 − h̄2ω2

, (7)

Im[αscal(ω)] = 1

3(2J + 1)

∑
β ′′J ′′

h̄γβ ′′J ′′ [(Eβ ′′J ′′ − EβJ )2 + h̄2ω2]|〈β ′′J ′′‖d‖βJ 〉|2
[(Eβ ′′J ′′ − EβJ )2 − h̄2ω2]2

, (8)

Re[αvect(ω)] =
∑
β ′′J ′′

J ′′(J ′′ + 1) − J (J + 1) − 2

(J + 1)(2J + 1)
× h̄ω|〈β ′′J ′′‖d‖βJ 〉|2

(Eβ ′′J ′′ − EβJ )2 − h̄2ω2
, (9)

Im[αvect(ω)] =
∑
β ′′J ′′

J ′′(J ′′ + 1) − J (J + 1) − 2

(J + 1)(2J + 1)
× h̄2ωγβ ′′J ′′ (Eβ ′′J ′′ − EβJ )|〈β ′′J ′′‖d‖βJ 〉|2

[(Eβ ′′J ′′ − EβJ )2 − h̄2ω2]2
, (10)

Re[αtens(ω)] = −
∑
β ′′J ′′

3[J ′′(J ′′ + 1) − J (J + 1)]2 − 9J ′′(J ′′ + 1) + J (J + 1) + 6

3(J + 1)(2J + 1)(2J + 3)
× (Eβ ′′J ′′ − EβJ )|〈β ′′J ′′‖d‖βJ 〉|2

(Eβ ′′J ′′ − EβJ )2 − h̄2ω2
, (11)

Im[αtens(ω)] = −
∑
β ′′J ′′

3[J ′′(J ′′ + 1) − J (J + 1)]2 − 9J ′′(J ′′ + 1) + J (J + 1) + 6

6(J + 1)(2J + 1)(2J + 3)

× h̄γβ ′′J ′′ [(Eβ ′′J ′′ − EβJ )2 + h̄2ω2]|〈β ′′J ′′‖d‖βJ 〉|2
[(Eβ ′′J ′′ − EβJ )2 − h̄2ω2]2

. (12)

Note that in Eqs. (7), (8), and (11) of Ref. [45], the sign of the vector polarizability is not correct; the error has been fixed in
Eqs. (9) and (10) above.

B. Effect of a single intermediate configuration

In this subsection, we assume that the intermediate levels
|β ′′J ′′〉 appearing in Eq. (4) all belong to the same configu-
ration and that their transition energies Eβ ′′J ′′ − EβJ can be
replaced by a single effective one. Moreover, we assume that
the configurations of the |βJ 〉 and |β ′′J ′′〉 levels differ by
the hopping of only one valence electron; in other words, we
ignore transitions involving the 4f core electrons. This will
yield analytical expressions useful for estimating αk(ω) and
understanding the trapping in some relevant levels, like those
belonging to the lowest or the [Xe]4f q6s6p configurations.

Many levels of lanthanide atoms can be interpreted in
the frame of the jj coupling scheme. The electronic core,
containing the 4f shell, is characterized by its orbital Lc, spin
Sc, and total electronic angular momentum Jc. The valence
electrons belong, for instance, to the 5d, 6s, or 6p shell.
This group of electrons is characterized by their orbital Lv ,
spin Sv , and total electronic angular momentum Jv . Then
Jc and Jv are coupled to give the total electronic angular
momentum J of the atomic level. In the present study, we
focus on the configurations [Xe]4f q.n1�1n2�2 (q = 10, 11,

and 12 for Dy, Ho, and Er, respectively) with two valence
electrons, including, e.g., 4f q6s2 or 4f q6s6p; but our results
can be extended to configurations with three valence electrons
like 4f q−15d6s2 and 4f q−15d26s. The full label of the level
is therefore [Xe]4f q(2Sc+1LcJc

).n1�1n2�2(2Sv+1LvJv
) (Jc,Jv)J ,

and its electronic parity is (−1)q+�1+�2 . In what follows, we
omit the xenon core [Xe] in electronic configurations.

It is noteworthy that the levels of the 4f q5d6s configuration
are better described in the jK coupling scheme 2Sv+1[K]J : Jc

is first coupled with Lv to give K , which is itself coupled with
Sv to give J . In order to calculate the polarizability of such
levels, it is necessary to apply the basis transformation from jj

to jK coupling schemes [49]. However, if those levels appear
in the sum over |β ′′J ′′〉, the jj coupling scheme is sufficient,
as all the levels of the 4f q5d6s configuration are assumed to
have the same energy (see Sec. II B 2).

1. Transition dipole moment in j j coupling

In the electric-dipole (E1) approximation, the transitions
with the strongest dipole moments are those for which one
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valence electron, say n2�2, is promoted to an orbital n′′
2�

′′
2

such that �′′
2 = �2 ± 1. The angular momenta of the atom must

also satisfy the selection rules, L′′
v = Lv or Lv ± 1, S ′′

v = Sv ,
J ′′

v = Jv or Jv ± 1, and J ′′ = J or J ± 1, excluding transitions
between couples of angular momenta (0,0), whereas the
quantum numbers of the core are not modified (L′′

c = Lc,
S ′′

c = Sc, and J ′′
c = Jc). In the frame of the jj coupling scheme,

we can express the reduced transition dipole moment between
the levels |βJ 〉 and |β ′′J ′′〉 as a function of the monoelectronic
transition dipole moment (MTDM) 〈n′′

2�
′′
2|r̂|n2�2〉 expressed

as the matrix element of the monoelectronic r̂ operator. We
apply the following successive steps [49].

By writing atomic levels as the lists of quantum numbers
|n1�1n2�2LvSvJvJcJ 〉 (and similarly for double-primed quan-
tum numbers), we start working with (Jc, Jv, J ),

|〈n1�1n
′′
2�

′′
2L

′′
vSvJ

′′
v JcJ

′′‖d‖n1�1n2�2LvSvJvJcJ 〉|2

= (2J + 1)(2J ′′ + 1)

{
Jv Jc J

J ′′ 1 J ′′
v

}2

× |〈n1�1n
′′
2�

′′
2L

′′
vSvJ

′′
v ‖d‖n1�1n2�2LvSvJv〉|2. (13)

Then we go one step further, with (Lv, Sv, Jv),

|〈n1�1n
′′
2�

′′
2L

′′
vSvJ

′′
v ‖d‖n1�1n2�2LvSvJv〉|2

= (2Jv + 1)(2J ′′
v + 1)

{
Lv Sv Jv

J ′′
v 1 L′′

v

}2

× |〈n1�1n
′′
2�

′′
2L

′′
v‖d‖n1�1n2�2Lv〉|2 , (14)

and with (n1, �1, n2, �2, Lv),

|〈n1�1n
′′
2�

′′
2L

′′
v‖d‖n1�1n2�2Lv〉|2

= (1 + δn1n2δ�1�2 )(1 + δn1n
′′
2
δ�1�

′′
2
)(2Lv + 1)

× (2L′′
v + 1)

{
�2 �1 Lv

L′′
v 1 �′′

2

}2

|〈n′′
2�

′′
2‖d‖n2�2〉|2 , (15)

where the δ’s are Kronecker symbols, which bring a factor of
2 for equivalent electrons (n1�1) = (n2�2) or (n1�1) = (n′′

2�
′′
2).

Finally,

|〈n′′
2�

′′
2‖d‖n2�2〉|2 = e2r2

n2�2,n
′′
2�

′′
2
(2�2 + 1)

× (2�′′
2 + 1)

(
�′′

2 1 �2

0 0 0

)2

, (16)

where (:::) is a Wigner 3-j symbol, e is the absolute value of the
electronic charge, and rn2�2,n

′′
2�

′′
2
= rn′′

2�
′′
2 ,n2�2 ≡ 〈n′′

2�
′′
2|r̂|n2�2〉.

2. Real part of the polarizability

We assume that the polarizability αk(ω) of level |βJ 〉 [see
Eq. (4)] involves transitions towards levels |β ′′J ′′〉 belonging
to configurations of the kind 4f q.n1�1.n

′′
2�

′′
2. By separating the

contributions of those configurations, we can write

αk(ω) =
∑
n′′

2�
′′
2

α
n′′

2�
′′
2

k (ω), (17)

which relies on two main hypotheses: (i) Transitions to
levels of configurations in which one core electron is
excited, e.g., 4f q−1.5d.n1�1.n2�2, are excluded, as they
are often significantly weaker. (ii) Configuration interaction
is totally neglected, both between different configurations
of the kind 4f q.n1�1.n

′′
2�

′′
2 and with those of the kind

4f q−1.n′′�′′.n1�1.n2�2. The effect of CI is addressed in the
next subsection.

The central assumption of this work is that the energy
differences implying the levels of a given configuration can
be replaced with a single effective energy h̄ωn′′

2�
′′
2
:

Eβ ′′J ′′ − EβJ ≈ h̄ωn′′
2�

′′
2
. (18)

The validity of this assumption depends on the frequency ω at
which the DDPs are calculated, which should not “fall” into
the levels of the 4f q.n1�1.n

′′
2�

′′
2 configuration. If we denote

min(Eβ ′′J ′′ ) and max(Eβ ′′J ′′ ) their lowest and highest energies,
Eq. (18) is not applicable for

min(Eβ ′′J ′′ ) − EβJ � ω̄ � max(Eβ ′′J ′′ ) − EβJ , (19)

where ω̄ = ±ω for Eβ ′′J ′′ > EβJ and Eβ ′′J ′′ < EβJ , re-
spectively. For ground-level Ho, the excluded fre-
quencies, which correspond to the energies of the
4f 11(4I o

15/2).6s6p(1P o
1 ) (15/2,1) manifold, roughly range

from 23 000 to 24 000 cm−1.

Consequently, the sum in Eq. (4) is restricted to the quantum numbers L′′
v,

′J ′′
v , and J ′′ allowed by electric-dipole transitions.

(For configurations with at least one s electron, there is obviously only one possible Lv value.) Inserting Eq. (17) into Eq. (5),
we can extract the real part:

Re
[
α

n′′
2�

′′
2

k (ω)
] = 2

(
ωn′′

2�
′′
2
δ(−1)k ,1 − ω δ(−1)k ,−1

)
h̄
(
ω2

n′′
2�

′′
2
− ω2

) √
2k + 1

∑
L′′

vJ
′′
v J ′′

(−1)J+J ′′
{

1 1 k

J J J ′′

}

× |〈n1�1n
′′
2�

′′
2L

′′
vSvJ

′′
v JcJ

′′‖d‖n1�1n2�2LvSvJvJcJ 〉|2 . (20)

Using Eq. (13), we obtain

Re
[
α

n′′
2�

′′
2

k (ω)
] = 2

(
ωn′′

2�
′′
2
δ(−1)k ,1 − ω δ(−1)k ,−1

)
h̄
(
ω2

n′′
2�

′′
2
− ω2

) √
2k + 1

∑
L′′

vJ
′′
v J ′′

(−1)J+J ′′
{

1 1 k

J J J ′′

}

× (2J + 1)(2J ′′ + 1)

{
Jv Jc J

J ′′ 1 J ′′
v

}2

|〈n1�1n
′′
2�

′′
2L

′′
vSvJ

′′
v ‖d‖n1�1n2�2LvSvJv〉|2 . (21)
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To calculate this expression, we note that the quantum number J ′′ only appears in angular terms, so that we use the identity (see
Ref. [52], p. 305)∑

X

(−1)R+X(2X + 1)

{
a b p

c d X

}{
c d q

e f X

}{
e f r

b a X

}
=

{
p q r

e a d

}{
p q r

f b c

}
, (22)

with R = a + b + c + d + e + f + p + q + r , as well as the invariance properties of Wigner 6-j symbols with respect to line
and column permutations. Applying Eq. (22) with a = d = 1, b = c = J, e = J ′′

v , f = Jc, p = k, and q = r = Jv , we can get
rid of J ′′ in Eq. (21):

Re
[
α

n′′
2�

′′
2

k (ω)
] = 2

(
ωn′′

2�
′′
2
δ(−1)k ,1 − ω δ(−1)k ,−1

)
h̄
(
ω2

n′′
2�

′′
2
− ω2

) √
2k + 1

∑
L′′

vJ
′′
v

(−1)Jc+2Jv+J ′′
v +J+k

× (2J + 1)

{
1 1 k

Jv Jv J ′′
v

}{
Jv Jc J

J k Jv

}
|〈n1�1n

′′
2�

′′
2L

′′
vSvJ

′′
v ‖d‖n1�1n2�2LvSvJv〉|2 . (23)

At this point, it is the following fact is noteworthy [53]. The definitions of the coupled polarizabilities αk(ω) and α
n′′

2�
′′
2

k (ω),
given, respectively, by Eqs. (4) and (17), are such that they can be written as the reduced matrix elements of the operators

α̂k(ω) and α̂
n′′

2�
′′
2

k (ω), which are tensors of rank k. In particular, one can resort to the Wigner-Eckart theorem [52] to calculate
the coupled polarizability of a level |βJM〉, namely, 〈βJM|α̂k(ω)|βJM〉 = 〈βJ‖α̂k(ω)‖βJ 〉 × CJM

JMk0/
√

2J + 1, with CJM
JMk0

a Clebsh-Gordan coefficient [and similarly for α̂
n′′

2�
′′
2

k (ω)]. One can also apply the transformation of tensor operators regarding
angular-momentum basis sets; in this respect, Eq. (23) can be seen as such a transformation,

〈n1�1n2�2LvSvJvJcJ‖Re
[
α̂

n′′
2�

′′
2

k (ω)
]‖n1�1n2�2LvSvJvJcJ 〉

= (−1)Jc+Jv+k+J (2J + 1)

{
Jv Jc J

J k Jv

}
〈n1�1n2�2LvSvJv‖Re

[
α̂

n′′
2�

′′
2

k (ω)
]‖n1�1n2�2LvSvJv〉 , (24)

where

〈n1�1n2�2LvSvJv‖Re
[
α̂

n′′
2�

′′
2

k (ω)
]‖n1�1n2�2LvSvJv〉

= 2
(
ωn′′

2�
′′
2
δ(−1)k ,1 − ω δ(−1)k ,−1

)
h̄
(
ω2

n′′
2�

′′
2
− ω2

) √
2k + 1

∑
J ′′

v L′′
v

(−1)Jv+J ′′
v

{
1 1 k

Jv Jv J ′′
v

}
|〈n1�1n

′′
2�

′′
2L

′′
vSvJ

′′
v ‖d‖n1�1n2�2LvSvJv〉|2 . (25)

Returning to our main purpose, we apply Eq. (22) twice more: first, with Eq. (14) to express the sum over J ′′
v and, second,

with Eq. (15) to express the sum over L′′
v . Doing so, we get to the final expression,

Re
[
α

n′′
2�

′′
2

k (ω)
] = 2

√
2k + 1

h̄
× ωn′′

2�
′′
2
δ(−1)k ,1 − ω δ(−1)k ,−1

ω2
n′′

2�
′′
2
− ω2

(1 + δn1n2δ�1�2 )

× (1 + δn1n
′′
2
δ�1�

′′
2
)(−1)J+Jc−Sv+�1+�′′

2+k(2J + 1)(2Jv + 1)(2Lv + 1)(2�2 + 1)(2�′′
2 + 1)

×
{
Jv Jc J

J k Jv

}{
Lv Sv Jv

Jv k Lv

}{
�2 �1 Lv

Lv k �2

}{
1 1 k

�2 �2 �′′
2

}(
�′′

2 1 �2

0 0 0

)2

e2r2
n2�2,n

′′
2�

′′
2
, (26)

which depends on two effective parameters: the transition
frequency ωn′′

2�
′′
2

and the MTDM −ern2�2,n
′′
2�

′′
2
.

The rest of Eq. (26) consists of very insightful angular
terms. In particular, the 6-j symbols indicate that, if one of the
quantum numbers J, Jv , or Lv is equal to 0, then the vector

and tensor polarizabilities, proportional to Re[α
n′′

2�
′′
2

k=1 (ω)] and

Re[α
n′′

2�
′′
2

k=2 (ω)]), respectively, vanish. This is, for instance, the
case for lanthanides at their ground level, which is character-
ized by Lv = Jv = 0. In our full numerical calculation of the
polarizability [45,46], we have shown that indeed the vector
and tensor contributions are much weaker than the scalar one.
Equation (26) tends to confirm that those weak contributions
come from transitions in which one 4f electron is excited.

Such conclusions are also valid for any level belonging to the
lowest configuration 4f q6s2, as shown in our previous articles
(see Ref. [46] and Sec. III C here).

3. Imaginary part of the polarizability

For the imaginary part to be relevant, we consider a
metastable level |βJ 〉, i.e., whose natural line width γβJ is
negligible compared to the photon-scattering rate induced
by the electromagnetic field [44,45]. In practice, this may
concern excited levels of the lowest configuration 4f q6s2 or
the levels 4f q(2Sc+1LcJc

).6s6p(3P2) (Jc,2)Jc+2, which have no
decay channel in the E1 approximation [except for level (6,2)o8
of Er] [54].
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As Eq. (6) shows, the imaginary part of the polarizability
involves the natural line width of intermediate levels |β ′′J ′′〉,

γβ ′′J ′′ =
∑

β̃J̃ , Eβ̃J̃ <Eβ′′J ′′

Aβ ′′J ′′,β̃J̃

=
∑

β̃J̃ (Eβ ′′J ′′ − Eβ̃J̃ )3|〈β ′′J ′′‖d‖β̃J̃ 〉|2
3πε0h̄

4c3(2J ′′ + 1)
, (27)

where Aβ ′′J ′′,β̃J̃ is the transition probability characterizing
the spontaneous emission from level |β ′′J ′′〉 to level |β̃J̃ 〉.
We focus on the influence of the β ′′J ′′ levels belonging
to the configuration 4f q.n1�1.n

′′
2�

′′
2. In addition, we assume

that the latter levels only decay towards levels |β̃J̃ 〉 belonging
to the configuration 4f q.n1�1.n2�2. Therefore the sum in
Eq. (27) runs over the quantum numbers J̃ , J̃v , and L̃v . If
we express the squared reduced transition dipole moment as
in Eq. (13), Eq. (27) becomes

γL′′
vJ

′′
v J ′′ =

ω3
n′′

2�
′′
2

3πε0h̄c3

∑
L̃v J̃v J̃

(2J̃ + 1)

{
J̃v Jc J̃

J ′′ 1 J ′′
v

}2

×|〈n1�1n
′′
2�

′′
2L

′′
vSvJ

′′
v ‖d‖n1�1n2�2L̃vSvJ̃v〉|2. (28)

Since J̃ only appears in angular factors, the sum over J̃ reduces
to the orthogonalization relations of 6-j symbols,

∑
J̃

(2J̃ + 1)

{
J̃v Jc J̃

J ′′ 1 J ′′
v

}2

= 1

2J ′′
v + 1

. (29)

Using Eqs. (14) and (15) for the transition dipole moment, we
can calculate the sums over J̃v and L̃v in a similar way, and
finally, we get to the expression [see also Eq. (16)]

γL′′
vJ

′′
v J ′′ =

ω3
n′′

2�
′′
2
e2r2

n2�2,n
′′
2�

′′
2

3πε0h̄c3
(2�2 + 1)

(
�′′

2 1 �2

0 0 0

)2

×(
1 + δn1n2δ�1�2

)(
1 + δn1n

′′
2
δ�1�

′′
2

)
. (30)

Strikingly, the natural line width of the intermediate levels
does not depend on L′′

v, J
′′
v , or J ′′; it is identical for all

the levels of the 4f q.n1�1.n
′′
2�

′′
2 configuration. In calculating

Im[α
n′′

2�
′′
2

k (ω)], we can factorize γL′′
vJ

′′
v J ′′ out of the sum over

L′′
v, J

′′
v , and J ′′, and so steps similar [see Eqs. (21)–(26)] to

those for the real part can be applied, which leads to the final
expression

Im
[
α

n′′
2�

′′
2

k (ω)
] =

ω3
n′′

2�
′′
2

√
2k + 1

3πε0h̄
2c3

×
(
ω2

n′′
2�

′′
2
+ ω2

)
δ(−1)k ,1 − 2ωωn′′

2�
′′
2
δ(−1)k ,−1(

ω2
n′′

2�
′′
2
− ω2

)2

(
1 + δn1n2δ�1�2

)2(
1 + δn1n

′′
2
δ�1�

′′
2

)2

×(−1)J+Jc−Sv+�1+�′′
2+k(2J + 1)(2Jv + 1)(2Lv + 1)(2�2 + 1)2(2�′′

2 + 1)

×
{
Jv Jc J

J k Jv

}{
Lv Sv Jv

Jv k Lv

}{
�2 �1 Lv

Lv k �2

}{
1 1 k

�2 �2 �′′
2

}(
�′′

2 1 �2

0 0 0

)4

e4r4
n2�2,n

′′
2�

′′
2
. (31)

Therefore, similarly to the real part, the imaginary part of the
polarizability depends on the effective frequency ωn′′

2�
′′
2

and the
monoelectronic transition dipole moment −ern2�2,n

′′
2�

′′
2

between
the two configurations and on some angular factors.

Again, those angular factors show that, if one of the
quantum numbers J, Jv , or Lv is equal to 0, then the vector
and tensor polarizabilities are equal to 0. For lanthanide atoms
in the ground level, our simplified model predicts that both the
real and the imaginary parts of the vector and tensor DDPs
vanish [see, respectively, Eqs. (26) and (31)]. For the real
part, that prediction agrees with our full numerical calculation
[45,46] (see also Sec. III C), but for the imaginary part it
does not. To explain this contradiction, we note that the
vector-to-scalar and tensor-to-scalar ratios are significantly
higher for Er than for Dy and Ho. In addition, Er is the
only atom among the three for which we modeled the excited
levels including the configurations 4f 115d6s2, 4f 115d26s,
and 4f 126s6p, and so we expect to have a better description of
CI mixing for it. This tends to prove that CI plays an important
role in the imaginary part of the DDPs. That is why, in the next
subsection, we improve our model by taking into account CIs
among excited levels.

C. Effect of configuration interaction

We focus on the polarizability of the ground level
of lanthanides, denoted |βJ 〉 ≡ |0J 〉 and characterized by

Lv = Sv = 0 and J = Jc. According to Eqs. (26) and (31),
there are three excited levels, denoted |1J ′′〉 for J ′′ = J

and J ± 1, which contribute to the polarizability; they are
characterized by L′′

v = J ′′
v = 1. In this section, we consider

that these levels can be mixed by CI to other levels |mJ ′′〉
belonging to other configurations. Therefore the eigenvector
of the excited levels |β ′′J ′′〉 can be expanded as

|β ′′J ′′〉 =
∑
m�1

c
(J ′′)
β ′′m|mJ ′′〉 , (32)

where |mJ ′′〉 are henceforth called basis states. Furthermore,
we assume that state |1J ′′〉 is the only one contributing to the
transition dipole moment 〈0J‖d‖β ′′J ′′〉. This is exactly valid
for basis states of the 4f q−15d26s configuration and approxi-
mately valid for states of the 4f q−15d6s2 configuration, as the
latter contribute significantly less than states of the 4f q6s6p

configuration.
In this case the squared transition dipole moment reads

|〈β ′′J ′′‖d‖0J 〉|2 = ∣∣c(J ′′)
β ′′,1

∣∣2|〈1J ′′‖d‖0J 〉|2

= 2
3w

(J ′′)
β ′′,1 (2J ′′ + 1)r2

6s6p, (33)

where, in the second line, we have expressed |〈1J ′′‖d‖0J 〉|2
using Eqs. (13)–(16) and the explicit forms of the 3-j and
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6-j symbols. In Eq. (33) we introduced the weights w
(J ′′)
β ′′,1 =

|c(J ′′)
β ′′,1|

2
of the basis states |1J ′′〉 in levels |β ′′J ′′〉, which satisfy

the normalization conditions∑
m�1

w
(J ′′)
β ′′m =

∑
β ′′

w
(J ′′)
β ′′m = 1 (34)

for each J ′′ separately.
Turning to the polarizability, we find that the real part is

Re
[
α

6p

k (ω)
]

= 4e2r2
6s6p

√
2k + 1

3h̄

ω6p δ(−1)k ,1 − ω δ(−1)k ,−1

ω2
6p − ω2

×
∑
J ′′

(−1)J+J ′′
(2J ′′ + 1)

{
1 1 k

J J J ′′

}∑
β ′′

w
(J ′′)
β ′′,1

= −4e2r2
6s6pω6p δk0

h̄
(
ω2

6p − ω2
)

√
2J + 1

3
, (35)

where the sums over β ′′ and J ′′ are calculated using, respec-
tively, Eq. (34) and (see Ref. [52], p. 305)

∑
X

(−1)a+b+X(2X + 1)

{
a a c

b b X

}

= δc0

√
(2a + 1)(2b + 1), (36)

with a = 1, b = J, c = k, and X = J ′′. Equation (35) shows
that the vector and tensor polarizabilities vanish for lanthanides
in the ground level (or in any level of the electronic configu-
ration 4f q6s2), whatever the CI mixing in the excited levels;
the only contribution is thus the scalar one, Re[αscal(ω)] =
4e2r2

6s6pω6p/3h̄(ω2
6p − ω2). In this respect the inclusion of CI

in our model does not modify the conclusions in the single-
configuration case [see Eq. (26)]. This confirms that, as shown
in our full numerical calculations in Sec. III, the vector and
tensor contributions arise from the 4f -5d transitions between
the configurations 4f q6s2 and 4f q−15d6s2, depending on
r4f 5d . By contrast, in Eq. (35), even if levels |β ′′J ′′〉 may
contain some 4f q−15d6s2 character, the contribution of the
4f q6s2-4f q6s6p transition is the only one considered in
|〈β ′′J ′′‖d‖0J 〉|2 [see Eq. (33)].

In order to calculate the imaginary part of the polarizability,
we recall that the excited level |1J ′′〉 can only decay toward
the ground level |0J 〉. Therefore Im[α6p

k (ω)] reads

Im
[
α

6p

k (ω)
] =

(
ω2

6p + ω2
)
δ(−1)k ,1 − 2ωω6p δ(−1)k ,−1(
ω2

6p − ω2
)2

× ω3
6p

√
2k + 1

3πε0h̄
2c3

∑
J ′′

(−1)J+J ′′
{

1 1 k

J J J ′′

}

×
∑
β ′′

1

2J ′′ + 1
|〈β ′′J ′′‖d‖0J 〉|4

=
(
ω2

6p + ω2
)
δ(−1)k ,1 − 2ωω6p δ(−1)k ,−1(
ω2

6p − ω2
)2

× 4ω3
6pr4

6s6p

√
2k + 1

27πε0h̄
2c3

∑
J ′′

(−1)J+J ′′
(2J ′′ + 1)

×
{

1 1 k

J J J ′′

} ∑
β ′′

(
w

(J ′′)
β ′′,1

)2
, (37)

where we have taken the square of Eq. (33).
Equation (37) is a key result of this work. Contrary to

the real part given by Eq. (35), the sum over β ′′ cannot be
simplified in the imaginary part of the polarizability, as it
involves the squared weights of the |1J ′′〉 basis vectors in
the excited levels |β ′′J ′′〉. In this respect, we can say that the
imaginary part of the polarizability is more sensitive to the
details of the atomic structure than the real part.

In particular, taking the square of Eq. (34), we find that

∑
β ′′

(
w

(J ′′)
β ′′m

)2
=

⎛
⎝∑

β ′′
w

(J ′′)
β ′′m

⎞
⎠

2

− 2
∑
β ′′

1 β ′′
2

β ′′
1 < β ′′

2

w
(J ′′)
β ′′

1 m
w

(J ′′)
β ′′

2 m

= 1 − 2
∑
β ′′

1 β ′′
2

β ′′
1 < β ′′

2

w
(J ′′)
β ′′

1 m
w

(J ′′)
β ′′

2 m
� 1, (38)

where β ′′
1 < β ′′

2 means Eβ ′′
1 J ′′ < Eβ ′′

2 J ′′ , to avoid double-

counting. The inequality comes from the fact that w
(J ′′)
β ′′m �

0,∀m,β ′′, J ′′. The limit for which Eq. (38) is unity corre-
sponds to the case where one weight is unity and all the others
are 0, i.e., there is no CI. In this particular case, the sums over
β ′′ and J ′′ in Eq. (37) can be simplified,

Im
[
α

6p

k (ω)
] = −4ω3

6p

(
ω2

6p + ω2
)
e4r4

6s6pδk0

9πε0h̄
2c3

(
ω2

6p − ω2
)2

√
2J + 1

3
, (39)

and so Imα
6p

scal(ω)]=4ω3
6p(ω2

6p+ω2)e4r4
6s6p/27πε0h̄

2c3

(ω2
6p − ω2)2, which can also be obtained from Eq. (31). By

comparing Eqs. (37)–(39), we find that CI has two effects:
(i) It tends to reduce the scalar contribution Im[α6p

0 (ω)].
Indeed in the limit of strong CI mixing, when N basis states
|mJ ′′〉 (m = 1 to N ) are equally spread over N excited levels
|β ′′J ′′〉, which means that w(J ′′)

β ′′m = 1/N for all J ′′, then Eq. (38)
is 1/N , and Eq. (39) is divided by N .

(ii) It tends to enhance the vector Im[α6p

1 (ω)] and tensor
Im[α6p

2 (ω)] contributions, because for arbitrary weights (dif-
ferent from 0, 1, and 1/N), the three J ′′ terms in Eq. (37) do
not exactly compensate each other.

The weights w
(J ′′)
β ′′m associated with the eigenvectors of

excited energy levels are therefore crucial for calculation of
the imaginary part of the polarizability. In our previous work
on erbium [45], we described the odd-parity levels with the
configurations 4f 126s6p, 4f 115d6s2, and 4f 115d26s, which
is likely to yield a reliable calculation of the weights w

(J ′′)
β ′′,1,

which play an important part in the polarizability. By contrast,
we did not consider the configurations 4f q−15d26s for Dy
(q = 10) and Ho (q = 11), because of the large number
of levels belonging to these configurations. Since some of
the weights w

(J ′′)
β ′′m are not correct, our computed imaginary

polarizabilities must be taken with caution. The relatively low
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ratio of the vector and tensor contributions with respect to
the scalar one, observed in Ref. [46] and Sec. III C, may
be due to the lack of CI in our eigenvectors. In the next
section, we present a method to estimate the weights w

(J ′′)
β ′′,1

from experimental values of the transition probabilities.

D. Estimate of configuration-interaction mixing

We consider transition probabilities Aβ ′′J ′′,J0, character-
izing the spontaneous emissions from level |β ′′J ′′〉 towards
the ground level |0J 〉, which are given by Eq. (27) with
|β̃J̃ 〉 = |0J 〉. Assuming that the transition is due to the
coupling between basis states |1J ′′〉 and |0J 〉, we obtain that
the squared transition dipole moment is proportional to w

(J ′′)
β ′′,1

[see Eq. (33)], and so the Einstein coefficient is proportional
to Aβ ′′J ′′,0J ∝ w

(J ′′)
β ′′,1 × (Eβ ′′J ′′ − E0J )3. Supposing all transi-

tion energies approximately equal, i.e., Eβ ′′J ′′ − E0J ≈ h̄ω6p,
yields that the sum of the transition probabilities for a given J

and J ′′ is a J - and J ′′-independent constant,

∑
β ′′

Aβ ′′J ′′,0J ≈ 2ω3
6pe2r2

6s,6p

3πε0h̄c3
. (40)

Therefore, knowing the transition energies and transition
probabilities, we can express the weight w

(J ′′)
β ′′,1 as

w
(J ′′)
β ′′,1 =

Aβ′′J ′′ ,0J

(Eβ′′J ′′−E0J )3∑
β∗

Aβ∗J ′′ ,0J

(Eβ∗J ′′ −E0J )3

, (41)

where the terms (Eβ ′′J ′′ − E0J ) and (Eβ∗J ′′ − E0J ) have been

explicitly written, in order to get a better estimate of w
(J ′′)
β ′′,1,

even though they could be approximated by h̄ω6p.
In practice, Lawler and Den Artog’s group performed

extensive measurements of transition probabilities, especially
in dysprosium [55], holmium [56], erbium [57], and thulium
[58]. The spectrum of the ground level is composed of a forest
of weak transitions from which emerge a few strong transitions
with similar transition energies. The number of strong lines
(say with Aβ ′′J ′′,0J > 107 s−1) increases with increasing atomic
number. When calculating the sum of Einstein coefficients
for separated J ′′ [see Eq. (40)], one usually finds 2.1 to
2.4 × 108 s−1. Among these transitions, some are certainly
due not to 6s-6p but, rather, to 4f -5d excitation; however,
they are so weak that they will not affect the calculation of
w

(J ′′)
β ′′,1 with Eq. (41).
In the case of erbium, we modeled the erbium spectrum in-

cluding configurations 4f 126s6p, 4f 115d6s2, and 4f 115d26s

[45], while we did not include either 4f 95d26s for dysprosium
[46] or 4f 105d26s for holmium (see Sec. III). So for erbium,
the “experimental” weights, given by Eq. (41), can be
compared with the “theoretical” ones, which we can extract
from our modeling of the spectrum [45]. The results are
listed in Table I for the odd-parity levels giving the strongest
transitions (with probabilities higher than 107 s−1) towards
the ground level 4f 126s2 3H6. In Table I we also compare the
energies and transition probabilities. As discussed in Ref. [45],
the agreementfor the energy is very good. As for the transition
probabilities, the overall agreement is satisfactory, even if the
theoretical transition probabilities and weights are globally

TABLE I. Comparison of theoretical and experimental energies
of selected excited odd-parity levels |β ′′J ′′〉 of erbium, of transition
probabilities characterizing the spontaneous emission from levels
|β ′′J ′′〉 to the ground level |0J 〉 = |4f 126s2 3H6〉, and of the weight
of the component |1J ′′〉 = |4f 12(3H6).6s6p(1P o

1 ) (6,1)o
J ′′ 〉 in the

eigenvector associated with level |β ′′J ′′〉 [see Eq. (32)]. Theoretical
quantities, in the columns “Theor.,” come from our previous work
[45], whereas experimental ones, in the columns “Expt.,” come
from Ref. [57]. Experimental weights w

(J ′′)
β ′′,1 are given by Eq. (41).

The selected excited levels are such that the experimental transition
probability towards the ground level is higher than 107 s−1. Values in
parentheses (n) indicate ×10n.

Eβ ′′J ′′ (cm−1) Aβ ′′J ′′,0J (s−1) w
(J ′′)
β ′′,1 (%)

Expt. Theor. J ′′ Expt. Theor. Expt. Theor.

24083 24056 5 1.02(8) 9.34(7) 48 46
24457 24492 6 3.26(7) 2.16(7) 16 11
24943 24946 7 1.85(8) 2.08(8) 76 79
25159 25168 7 4.03(7) 1.27(7) 16 5
25163 25171 5 3.76(7) 4.60(7) 15 16
25393 25419 6 3.19(7) 1.86(7) 14 7
25598 25570 7 1.51(7) 5.50(6) 6 2
25682 25598 5 6.3(7) 4.28(7) 24 13
25880 26071 6 1.22(8) 9.68(7) 49 31
26237 26178 6 2.90(7) 8.43(7) 11 26

lower than the experimental ones. For a given level |β ′′J ′′〉,
the discrepancies in Aβ ′′J ′′,0J and for w

(J ′′)
β ′′,1 are actually similar.

This confirms our assumption that the strongest transitions are
due to the |1J ′′〉 → |0J 〉 components. This also means that,
taking the experimental transition probabilities as benchmarks,
we may improve our theoretical values by improving the
quality of our eigenvectors.

To illustrate the validity of our weight calculations, in
Table II, we list the real part of the scalar contribution,
as well as the imaginary part of the scalar, vector, and
tensor contributions of the dynamic dipole polarizability
at the frequency corresponding to a 1064-nm wavelength,
for erbium, holmium, and dysprosium. The calculations are
carried out using three methods. (i) The transition energies and
squares of the transition dipole moments are taken from our
full numerical modeling of the atomic spectra. In particular,
the squares of the transition dipole moments are extracted from
the Einstein coefficients, by reversing Eq. (27):

|〈β ′′J ′′‖d‖0J 〉|2 = 3πε0h̄
4c3(2J ′′ + 1)Aβ ′′J ′′,0J

(Eβ ′′J ′′ − E0J )3
. (42)

This corresponds to the columns entitled “Theor.” in Table II.
(ii) The transition energies and the squares of the transition
dipole moments come from experimental measurements of
the transition probabilities using Eq. (42); this corresponds to
the columns entitled “Expt.” in Table II. (iii) Polarizabilities
are calculated using Eqs. (20) and (21); to that end, the weights
w

(J ′′)
β ′′,1 are calculated by applying Eq. (41) with experimental

data, and the quantities r6s6p come from our fitting procedure
of Einstein coefficients, namely, r6s6p = 3.551 a.u. for Er [45],
3.648 a.u. for Dy [46], and 3.630 a.u. for Ho (see Sec. III; for
dipole moments, 1 a.u. = ea0, with a0 the Bohr radius). This
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TABLE II. Dynamic dipole polarizabilities of dysprosium, holmium, and erbium in their ground level, at the commonly used 1064-nm
trapping wavelength. Namely, we give the real part of the scalar contribution (in atomic units; 1 a.u. = e2a3

0/4πε0), as well as the imaginary
part of the scalar, vector, and tensor contributions (in 10−7 a.u.). The last two lines list the vector-to-scalar and tensor-to-scalar ratios of the
imaginary part. The columns “Theor.” and “Expt.” list the theoretical (see Refs. [45] and [46] and Sec. III C here) and experimental [55–57]
transition energies and transition probabilities respectively. The columns “Eq. (41)” correspond to the application of Eqs. (20), (21), and (41).

Dy (5I8) Ho (4I o
15/2) Er (3H6)

Part Contribution Theor. Expt. Eq. (41) Theor. Expt. Eq. (41) Theor. Expt. Eq. (41)

Real Scalar 193 177 188 187 160 186 164 155 170
Imaginary Scalar 49.1 40.3 48.8 39.6 34.7 46.6 23.4 22.0 27.1

Vector 11.3 12.9 15.2 19.1 17.0 17.1 17.4 11.2 12.4
Tensor 5.8 −9.0 −11.3 4.9 5.5 9.2 −6.9 −5.4 −5.0

Vector/
scalar ratio 0.230 0.320 0.311 0.482 0.490 0.367 0.744 0.509 0.458
Tensor/
scalar ratio 0.118 −0.223 −0.244 0.124 0.159 0.197 −0.295 −0.245 −0.185

corresponds to the columns entitled “Eq. (41)” in Table II. The
real parts of the vector and tensor contributions are pointless
here, as they vanish with method (iii).

First, we see that the real part of the scalar polarizability is
smaller with the Expt. method. This is particularly striking in
the case of holmium. In comparison with the Theor. method,
this is due to the smaller number of experimental transitions
than of theoretical ones. In contrast, the number of transitions
in the Expt. and Eq. (41) methods is the same; however, we
saw in Table I that the experimental weights are overestimated.
Indeed there are certainly transitions with upper levels having
a small |1J ′′〉 character which have not been detected. This
results in the underestimation of the denominator of Eq. (41)
and, so, the overestimation of w

(J ′′)
β ′′,1. Similar discrepancies

are visible for the imaginary part of the scalar polarizability.
Therefore it is appropriate to analyze the vector-to-scalar and
tensor-to-scalar ratio contributions, in order to determine the
anisotropy of the photon-scattering rate. The overall agreement
of those ratios is good, and the two following trends are visible
with the three methods: (i) In absolute value, the vector-to-
scalar ratios are higher than the tensor-to-scalar ones; and
(ii) the ratios are higher for erbium than for holmium, and a
fortiori for dysprosium. Beyond these general features, it is
worthwhile to examine each atom separately.

Erbium is the atom for which the anisotropy is the most
pronounced, for both the vector and the tensor contributions,
even if the ratios vary significantly from one method to the
other. From the Eq. (41) method to the Theor. method, the
ratios Im(αvect)/Im(αscal) and Im(αtens)/Im(αscal) range from
0.458 and −0.185 to 0.744 and −0.295, respectively.

In the case of dysprosium, the agreement between the
Expt. and the Eq. (41) methods is very good. The ratios
Im(αvect)/Im(αscal) are equal to 0.320 and 0.311, and the ratios
Im(αtens)/Im(αscal) to −0.223 and −0.244, respectively. With
the Theor. method, the ratios are lower, (Im(αvect)/Im(αscal) =
0.230 and Im(αtens)/Im(αscal) = 0.118), especially because
this method does not allow for describing the CI mixing in
the levels at 23 832 and 23878 cm−1, and so it underestimates
Eq. (38).

Finally, the case of holmium is hard to analyze, since no
particular trend comes out of the calculations. The real part of
the scalar polarizability is 27 a.u. smaller in the Expt. method

than in the two others. Moreover, regarding the experimental
transitions towards the ground level, none of them imply an
upper level with an energy above 25 571 cm−1. These two facts
suggest the possibility that some strong transitions have not
been detected, especially with upper levels J ′′ = 13/2. For in-
stance, in our full numerical modeling of the Ho spectrum (see
Sec. III B) we predict two such transitions, with unobserved
upper levels: one with Eth

β ′′,13/2 = 28 014 cm−1, w
(13/2)
β ′′,1 = 4%,

Ath
β ′′,13/2,0J = 2.61 × 107 s−1 and the other with Eth

β ′′,13/2 =
30 942 cm−1, w

(13/2)
β ′′,1 = 7%, Ath

β ′′,13/2,0J = 1.89 × 107 s−1.

III. MODELING OF THE HOLMIUM SPECTRUM

In order to calculate the different components of the
polarizabilities, and also the various C6 coefficients, using
the sum-over-state formulas, one needs an extensive set
of transition energies and transition dipole moments. This
section is devoted to the full numerical calculations of those
quantities, in the case of holmium in its ground 4I o

15/2 and first

excited level 4I o
13/2. Indeed the transition between those two

levels, allowed in the electric-quadrupole and magnetic-dipole
approximations, was suggested as a candidate for optical
clocks [19,21], as these levels are expected to possess very
similar polarizabilities.

As the principle of our calculations [47–49] is identical
to that in our previous work on dysprosium [46], we only
highlight in this section the particularities of holmium. One
of them is the rarity of experimental Landé g factors, which
gives to our work a predictive character in this respect. The
experimental energies are published in the NIST database [54],
constructed from the critical compilation of Martin et al. [59]
and from Ref. [60], which is more recent than the compilation.
For odd-parity levels, we also use unpublished work from our
group [61]. Note that 165Ho, which is bosonic, possesses a
nuclear spin I = 7/2, but the resulting hyperfine structure is
not considered in the present article.

A. Energy levels

The ground level of holmium is of odd parity, with
the configuration 4f 116s2 and total electronic angular mo-
mentum J = 15/2. Table III presents a comparison of our
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TABLE III. Comparison of energies E through the quantity

E = Eexpt − Eth and Landé g factors gL of Ho I odd-parity levels
of the lowest electronic configuration [Xe]4f 116s2. The superscript
“expt” indicates experimental values, which are taken from [54]
and [60]. The superscript “th” indicates theoretical values from the
parametric study in Ref. [61].

Eexpt 
E % leading
Term J (cm−1) (cm−1) g

expt
L gth

L term

4Io 15/2 0 30 1.195 1.197 97
4I o 13/2 5419.70 7 – 1.107 99
4I o 11/2 8605.16 −6 1.012 0.985 85
4I o 9/2 10695.75 −5 0.866 0.864 60
4F o 9/2 13094.42 46 – 1.174 65
4Go 11/2 22593.53 −90 – 1.193 44

theoretical energies and Landé g factors versus their experi-
mental counterparts. The theoretical values are obtained in a
calculation including the configurations 4f 116s2, 4f 115d6s,
and 4f 106s26p [61]. The levels of the 4f 116s2 configuration
can be labeled in the LS coupling scheme; for example, the
orbital L = 6 and spin S = 3/2 angular momenta of the
ground level are good quantum numbers up to 97%. By
contrast, the level at 22 593.53 cm−1 is of 4G and 2H characters
up to 44% and 36%, respectively

In the even parity, the electronic configurations included in
our model are the two lowest ones, 4f 116s6p and 4f 105d6s2

[62], which are connected to the ground-state configuration
4f 116s2 by electric-dipole transitions. Therefore, in our
model, we neglect the configuration interaction with other
even-parity configurations, especially 4f 105d26s, which
contains a large number of levels. By contrast, the first
parametric study of even-parity levels was performed with
configurations with a limited number of LS terms of the
4f 10 and 4f 11 cores, including a configuration interaction
with 4f 105d26s; but such a truncation strongly damaged
the quality of the Hamiltonian eigenvectors [63]. In the
present study, 92 even-parity levels were fitted to their known
experimental counterparts [54,60], using 21 free energetic
parameters, giving a 45-cm−1 standard deviation.

A comparison between theoretical and experimental levels
is reported in Table VIII, while the fitted parameters are
listed in Table IX (see the Appendix). Due to the lack
of experimental g-factor data for most levels, we just list
the theoretical results. All energies are given relative to the
experimental 4f 116s2 4I o

15/2 ground level. Despite the absence
of the 4f 105d26s configuration, whose lowest classified level
is at 20 167.17 cm−1, the agreement is very satisfactory.

B. Transition probabilities

Now that the energy parameters have been adjusted, the
eigenvalues and eigenvectors of the Hamiltonian operator are
fixed. The transition probabilities also depend on the MTDMs
−ern�,n′′�′′ , whose adjustment using least-squares fitting be-
tween theoretical and experimental transition probabilities is
the goal of this subsection.

Due to the configurations that we consider, two MTDMs
come into play, r6s6p and r4f 5d , corresponding, respec-

tively, to the couples of configurations 4f 116s2-4f 116s6p

and 4f 116s2-4f 105d6s2. The least-squares fitting procedure
between theoretical and experimental Einstein coefficients
is performed on the scaling factors (SFs) f1 = r6s6p/rHFR

6s6p

and f2 = r4f 5d/rHFR
4f 5d , rather than the MTDMs themselves.

This allows for more direct comparisons with the results
for dysprosium and erbium. Note that rHFR

n�,n′′�′′ stands for the
ab initio values calculated with the Hartree-Fock method
including relativistic corrections (HFR).

As references, we take the measured transition probabilities
in Ref. [56]. We retain the transitions involving the ground and
first excited levels and upper levels with energies lower than
30 000 cm−1. Indeed the levels above 30 000 cm−1 are hard
to classify unambiguously in configurations 4f 105d6s2 and
4f 116s6p. In addition, in the list in Ref. [56], we can see some
strong transitions whose upper level does not belong to the
4f 116s6p or 4f 105d6s2 configuration (according to the NIST
database [54]), e.g., Eexpt

β ′′J ′′ = 24 263.88 cm−1, J ′′ = 17/2, but
is very close in energy to a 4f 116s6p level with the same
J ′′, e.g., E

expt
β ′′J ′′ = 24 360.81 cm−1. In contrast there is only

one close theoretical level predicted, Eth
β ′′J ′′ = 24 354.1 cm−1.

Similarly to the case for dysprosium, we can assume that the
eigenvector of that theoretical level contains some components
of the |1J ′′〉 state which is shared by the two “real” levels. In
these particular cases, we compare our theoretical Einstein co-
efficient with the sum of the experimental ones. In Table IV, the
two transitions labeled “mixed” correspond to that situation.

Due to strong differences between experimental and theo-
retical Einstein coefficients, we excluded six transitions (one
with a high ratio, Ath

β ′′J ′′,βJ /A
exp
β ′′J ′′,βJ , and another four with

TABLE IV. Transitions excluded from the least-squares fitting
procedure. The labels |β ′′J ′′〉 and |βJ 〉 correspond to upper and lower
levels, respectively. The superscript “expt” indicates experimental
values, which are taken from [56]. The transition wave number
σβ ′′J ′′,βJ = (Eβ ′′J ′′ − Eβ )/2πh̄c is in the vacuum. Values in paren-
theses (n) indicate ×10n. A blank in the column “removal reason”
indicates that the upper level belongs neither to the 4f 106s6p nor to
the 4f 95d6s2 configuration. r., ratio.

E
expt
β ′′J ′′ E

expt
βJ σ

expt
β ′′J ′′,βJ

A
expt
β ′′J ′′,βJ

Removal
(cm−1) J ′′ (cm−1) J (cm−1) (s−1) reason

20258 6.5 0 7.5 20258 3.40(5)
24014 6.5 0 7.5 24014 1.06(8) Large r.
24264 8.5 0 7.5 24264 1.42(7) Mixeda

24377 7.5 0 7.5 24377 5.78(6) Mixedb

24760 6.5 0 7.5 24760 1.20(6)
17059 6.5 5420 6.5 11640 0.34(3) Large r.
18756 7.5 5420 6.5 13337 1.92(4) Small r.
18858 6.5 5420 6.5 13438 0.91(4) Small r.
20258 6.5 5420 6.5 14839 0.42(5)
24760 6.5 5420 6.5 19340 0.47(4)
25571 6.5 5420 6.5 20151 0.38(5) Small r.
20241 6.5 8605 5.5 11636 1.19(4) Small r.
20258 6.5 8605 5.5 11653 0.20(4)
22978 6.5 8605 5.5 14373 4.28(4) Small r.
24760 6.5 8605 5.5 16155 0.48(4)

aMixed with level at 24 361 cm−1.
bMixed with level at 24 661 cm−1.
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TABLE V. Comparison of Einstein A coefficients. The superscript “expt” indicates experimental values, which are taken from [56]. The
superscript “th” indicates theoretical values from the present calculations. Values in parentheses (n) indicate ×10n. Values followed by an
asterisk correspond to sums of experimental Einstein coefficients (see Table IV).

E
expt
β ′′J ′′ E

expt
βJ σ

expt
β ′′J ′′,βJ

A
expt
β ′′J ′′,βJ

Ath
β ′′J ′′,βJ

(cm−1) J ′′ (cm−1) J (cm−1) (s−1) (s−1)

16710 8.5 0 7.5 16710 9.20(5) 1.51(6)
16882 7.5 0 7.5 16882 3.60(5) 7.91(5)
17059 6.5 0 7.5 17059 6.50(5) 1.25(6)
18652 7.5 0 7.5 18652 2.99(5) 2.19(5)
18756 7.5 0 7.5 18756 2.20(5) 5.77(4)
18858 6.5 0 7.5 18858 2.70(5) 2.87(5)
20075 7.5 0 7.5 20075 1.11(6) 6.24(5)
20241 6.5 0 7.5 20241 2.15(6) 1.72(6)
22978 6.5 0 7.5 22978 9.30(6) 1.18(7)
23445 7.5 0 7.5 23445 3.70(6) 3.62(6)
23499 8.5 0 7.5 23499 1.00(7) 1.13(7)
23835 7.5 0 7.5 23835 3.88(6) 2.79(6)
23956 6.5 0 7.5 23956 3.12(7) 2.23(7)
24361 8.5 0 7.5 24361 2.18(8)∗ 2.18(8)
24661 7.5 0 7.5 24661 2.06(8)∗ 2.14(8)
24741 6.5 0 7.5 24741 4.48(7) 3.08(7)
25273 7.5 0 7.5 25273 6.30(6) 8.32(6)
25571 6.5 0 7.5 25571 5.24(5) 5.08(5)
16882 7.5 5420 6.5 11463 6.00(3) 4.92(3)
20075 7.5 5420 6.5 14655 5.40(4) 7.48(3)
20241 6.5 5420 6.5 14822 2.58(5) 3.38(4)
22413 5.5 5420 6.5 16993 8.70(5) 1.51(6)
22978 6.5 5420 6.5 17558 2.60(5) 3.94(4)
24741 6.5 5420 6.5 19321 3.52(5) 8.96(4)
25273 7.5 5420 6.5 19853 2.99(4) 1.82(4)
29070 5.5 5420 6.5 23650 1.06(8) 1.11(8)
29097 5.5 5420 6.5 23677 6.70(6) 2.80(6)
29643 7.5 5420 6.5 24223 2.12(8) 2.13(8)
29752 6.5 5420 6.5 24332 2.00(8) 1.92(8)
25571 6.5 8605 5.5 16966 7.50(5) 1.39(6)

very low ratios). Special attention should be paid to the strong
transition between the ground level and the excited J ′′ = 13/2
level at Eexpt

β ′′J ′′ = 24 014.2 cm−1. For the optimal scaling factors
f1 and f2 (see below), the error in the other strongest transitions
(above 108 s−1) is below 5%, while for the latter it is 14%.
This may be due to an underestimated experimental value.
Another possible explanation is the following: There is a close
J ′′ = 6.5 level, at E

expt
β ′′J ′′ = 23 955.69 cm−1, where comparing

the sum of transition probabilities implying these two upper
levels, the theory-experiment agreement is very good (1.47 and
1.42 × 108 s−1, respectively). The agreement for individual
transitions can probably be improved by better CI mixing
between the configurations 4f 116s6p and 4f 105d6s2.

We fitted the SFs using the remaining 29 transitions and
found optimal SFs f1 = 0.798 and f2 = 0.969, corresponding
to a standard deviation in Einstein coefficients [see Ref. [45],
Eq. (15)] σA = 4.14 × 106 s−1. In particular the five strongest
transitions are calculated with a precision better than 5%. Then,
because the experimental Einstein coefficients in Ref. [56]
are given with uncertainties reaching up to 10%, we made
10 000 fits in which all the experimental A coefficients have
a random value within their uncertainty range. We obtain
optimal SFs with statistical uncertainties: f1 = 0.799 ± 0.010

and f2 = 0.97 ± 0.24. The standard deviation is therefore
much more sensitive to r6s6p than to r4f 5d , since it involves
the strongest transitions [45,46,48]. In what follows, we take
the optimal scaling factors f1 = 0.799 and f2 = 0.97, for
which a comparison between experimental and theoretical
transition probabilities involving the two lowest levels of Ho
I is presented in Table V. Using these optimal SFs, we can
also calculate transition probabilities, which have not been
measured and which are available upon request to the authors.
In particular, as discussed in Sec. II D, we predict two strong
transitions with unobserved upper levels of J ′′ = 13/2.

C. Dynamic dipole polarizability
The optimal set of spectroscopic data obtained in the

previous subsection is now used to compute the real and
imaginary parts of the scalar, vector, and tensor polarizabilities
given by Eqs. (7)–(12). The squared transition dipole moments
appearing in the sum are extracted from theoretical Einstein
coefficients using Eq. (42).

To compare our results with the literature, the scalar, vector,
and tensor static dipole polarizabilities are listed in Table VI,
as well as the dynamic ones for the widespread laser-trapping
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TABLE VI. Real and imaginary parts of the scalar, vector, and tensor dynamic dipole polarizabilities, at wave numbers σ = ω/2πc = 0
and 9398 cm−1 (corresponding to λ = 1064 nm), for the ground 4I o

15/2 and first excited 4I o
13/2 levels of holmium. Our results are compared with

available literature values.

σ Real part (a.u.) Imaginary part (10−7 a.u.)

Level (cm−1) Scalar Vector Tensor Scalar Vector Tensor

4I o
15/2 0 160 0 −2.3 25.1 0 3.4

159 [65], 170 [66] −3.19 [66]
156 [67], 161 [68] −1.17 [69]

9398 187 1.1 −3.5 39.6 19.1 4.9
4I o

13/2 0 160 0 −2.0 24.1 0 1.4
9398 187 1.0 −3.0 38.3 17.7 2.0

wavelength λ = 1064 nm (corresponding to a wave number
σ = 9398 cm−1). As one can note for the ground-level scalar
polarizability, the agreement is good between the different
theoretical results and with the new experimental one (for
which we do not have any numerical value [64]). The tensor
static polarizability is much smaller than the scalar one in all
sources. For the 4I o

13/2 level there are no literature values to
our knowledge. They are actually very similar to those of the
ground level, which supports the possibility of using these
levels in a clock transition.

For both levels, the main result obtained in our previous
work on erbium [45] and dysprosium [46] is confirmed.
Regarding the real part, the vector and tensor polarizabilities
are much smaller than the scalar one. The trapping potential is
thus mostly isotropic, as it hardly depends on the electric-field
polarization or the atomic azimuthal quantum number. By
contrast, the tensor, especially the vector contributions of the
imaginary part, represent a significant fraction of the scalar
contribution, which makes photon scattering anisotropic. In
Sec. II D, this anisotropy is discussed in detail and compared
with the results on neighboring atoms.

These features are confirmed in Figs. 1 and 2, which present
the real and imaginary, respectively, parts of the scalar, vector,
and tensor polarizabilities as functions of the field wavelength
λ and wave number σ = 1/λ = ω/2πc (c being the speed of
light). We present our results in atomic units and the corre-
sponding relevant quantities in physical units. The real part of
the polarizability is associated with the potential energy U , in
equivalent temperatures of microkelvins (μK), obtained for a
laser intensity of 1 GW/m2. The imaginary part is associated
with the photon-scattering rate 
, in inverse seconds (s−1), for
the same intensity. In Fig. 1(a), we also compare the real part
of the scalar DDP given by our full numerical results and by
the simplified model of Eq. (35) with ω6p = 24 320 cm−1 and
r6s6p = 3.630 a.u. We see that the latter reproduces very nicely
the background polarizability for both levels, but not the nar-
row peaks due to transition toward the levels of the 4f 105d6s2

configuration or the intercombination lines toward the levels
4f 11(4I o

15/2).6s6p(3P o
1 ) (15/2,1)J ′′ around 17 000 cm−1.

D. van der Waals C6 coefficients

Using the optimal spectroscopic data in Sec. III B, we can
also compute the van der Waals C6 coefficients, which also
consist of a sum on the transition energies and transition dipole
moments [70,71]. The van der Waals interaction between two

open-shell atoms actually depends on a limited number of
coefficients C6,kAkB

, where the indices kA and kB correspond
to the rank of irreducible tensors [46,72]. Giving diagonal
matrix elements, the coefficient C6,00 is referred to as isotropic,
while the other C6,kAkB

are called anisotropic. Table VII lists
our calculated C6,kAkB

coefficients for the two lowest levels
of holmium. For any pair of levels, and similarly to the case
of erbium [45] and dysprosium [46], the isotropic coefficient
C6,00 strongly dominates the anisotropic ones. Moreover, the
coefficients are very similar for the three pairs of levels,
because the polarizabilities of levels 4I o

15/2 and 4I o
13/2 are

almost equal (see Table VI).

IV. CONCLUSION

In this article, we have derived a simplified model to
characterize the optical trapping of ultracold lanthanide
atoms. We have calculated analytically the real and imaginary
parts of the scalar, vector, and tensor polarizabilities, assuming
that the transitions involving valence electrons are the only
ones present in the sum-over-state formula. We have given an
analytical expression for the contribution from all the levels be-
longing to a given electronic configuration; this expression de-
pends on only two parameters—an effective transition energy
and an effective transition dipole moment. When applied to the
two lowest levels of holmium, our model nicely reproduces the
calculations based on the detailed modeling of the even-parity
levels of holmium. We expect our simplified model to
properly estimate the polarizabilities of levels of the 4f q6s6p

configuration, which are relevant for trapping but which

TABLE VII. C6 coefficients (in atomic units), characterizing the
van der Waals interactions between holmium atoms in the ground
4I o

15/2 or first excited 4I o
13/2 level, as functions of the pairs of indices

kA, kB [46,72]. The case kA = kB = 0 corresponds to the so-called
isotropic C6 coefficient [70]. A 0 corresponds to an absolute value
smaller than 0.1 a.u.

kA, kB
4I o

15/2-4I o
15/2

4I o
15/2-4I o

13/2
4I o

13/2-4I o
13/2

0, 0 −2214 −2214 −2214
1, 1 0 0 0
2, 0 −8.0 −8.0 −7.3
0, 2 −8.0 −7.3 −7.3
2, 2 0 0 0
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FIG. 1. Real part of the (a) scalar, (b) vector, and (c) tensor
dynamic dipole polarizabilities of the 4I o

15/2 and 4I o
13/2 levels (in

atomic units) and corresponding trap depths obtained for an intensity
of 1 GW · m−2, as functions of the trapping wave number σ and
wavelength λ. In (a) the real part of the scalar polarizability given by
Eq. (35) is also displayed.

involve highly excited levels, for example, of configurations
4f q6s6d and 4f q6p2, rarely known experimentally. In this
respect, the future study of thulium will be particularly
interesting, since high-lying excited states have been
characterized in detail, and so the simplified expressions
given in the present paper will be compared with those
involving individual transition energies and transition dipole
moments.

Regarding the ground level of lanthanides, we have also
studied the influence of configuration interaction between
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FIG. 2. Imaginary part of the (a) scalar, (b) vector, and (c) tensor
dynamic dipole polarizabilities of the 4I o

15/2 and 4I o
15/2 levels (in

atomic units) and corresponding photon-scattering rates obtained for
an intensity of 1 GW · m−2, as functions of the trapping wave number
σ and wavelength λ.

4f q6s6p and other configurations. We have demonstrated that
the real part of the polarizability is insensitive to configuration
interaction and that the vector and tensor polarizabilities are
vanishingly small. By contrast, the imaginary part turns out to
be very sensitive to configuration interaction among excited
levels; the latter is responsible for a decrease in the scalar
contribution and for an increase in the vector and tensor
ones. By comparing our numerical results for dysprosium,
holmium, and erbium, we have found significant variations
of the imaginary part of the various polarizabilities. For
example, the scalar contribution for erbium is roughly twice
as small as that for dysprosium, which tends to prove that
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TABLE VIII. Same as Table III, for Ho I even-parity levels. Theoretical energies Eth, Landé factors gth
L , leading configurations, leading LS

terms, and their percentages in the eigenvectors, are derived by means of the Cowan code RCG with the parameter set reported in Table IX. In
the configuration notations, A stands for 4f 11, B for 4f 10, ds2 for 5d6s2, and sp for 6s6p. Lowercase letters or Arabic numbers in the seventh
column correspond to different possible parent terms [49]. Terms in parentheses are associated with the core configuration A or B.

Eexpt Eth 
E Leading Leading
(cm−1) (cm−1) (cm−1) gth

L configuration % LS term

J = 7/2
32758.37 32750.2 8 1.253 B − ds2 15 B − ds2(5S)4D

32931.51 32935.7 −4 1.232 B − ds2 25 B − ds2(5F )4G

33188.42 33202.1 −14 0.926 B − ds2 37 B − ds2 (5F )4H

35078.45 35105.5 −27 1.147 B − ds2 19 B − ds2 (5G)6D

36001.87 35991.9 10 1.074 B − ds2 13 B − ds2 (5G)6G

36504.15 36486.6 18 1.114 B − ds2 9 B − ds2 (5G)4F

J = 9/2
16719.62 16727.3 −8 1.118 B − ds2 40 B − ds2 (5I )6G

18757.87 18682.1 76 0.991 B − ds2 47 B − ds2 (5I )6I

21373.01 21371.6 1 1.140 B − ds2 62 B − ds2 (5I )4G

23861.17 23909.6 −48 0.980 A − sp 32 A − sp (4I )6H

24355.64 24367.3 −12 1.137 B − ds2 27 B − ds2 (5I )4H

25453.49 25427.1 26 0.906 A − sp 30 A − sp (4I )6I

26039.99 25991.7 48 0.831 B − ds2 48 B − ds2 (5I )4I

28638.41 28653.1 −15 1.456 B − ds2 54 B − ds2 (5S)6D

32039.69 32053.7 −14 1.247 B − ds2 20 B − ds2 (5G)6D

33577.20 33553.1 24 1.159 B − ds2 18 B − ds2 (5F )4G

35270.88 35269.7 1 1.137 B − ds2 11 B − ds2 (5G)6D

J = 11/2
13082.93 13094.9 −12 1.260 B − ds2 50 B − ds2 (5I )6G

15792.13 15805.2 −13 1.143 B − ds2 37 B − ds2 (5I )6I

16937.43 16958.5 −21 1.244 B − ds2 52 B − ds2 (5I )4G

18491.21 18465.0 26 1.107 B − ds2 25 B − ds2 (5I )6H

18821.25 18802.1 19 1.107 A − sp 46 A − sp (4I )2H

20493.40 20427.2 66 0.903 B − ds2 56 B − ds2 (5I )6K

20849.13 20863.0 −14 1.104 B − ds2 32 B − ds2 (5I )4H

22413.14 22378.1 35 1.078 A − sp 29 A − sp (4I )6H

23379.31 23361.4 18 1.065 B − ds2 29 B − ds2 (5I )4I

23946.16 23961.3 −15 1.057 A − sp 30 A − sp (4I )6H

24141.21 24179.4 −38 1.276 B − ds2 37 B − ds2 (5F )6F

24830.43 24907.2 −77 0.968 A − sp 27 A − sp (4I )6K

25261.55 25271.4 −10 0.864 B − ds2 44 B − ds2 (5I )4K

25503.33 25467.7 36 0.998 A − sp 14 A − sp (4I )6K

25914.31 25997.5 −83 1.209 B − ds2 32 B − ds2 (5F )6H

28793.03 28824.0 −31 1.230 B − ds2 48 B − ds2 (5F )4G

29069.78 29016.7 53 1.154 A − sp 33 A − sp (4I )4Hb

29096.77 29132.9 −36 1.078 A − sp 19 A − sp (4F )6F

30423.60 30332.7 91 1.240 B − ds2 39 B − ds2 (5F )6G

31903.28 31862.7 41 1.227 B − ds2 18 B − ds2 (5F )6G

32837.21 32860.6 −23 1.014 A − sp 31 A − sp (4I )4Ib

33212.51 33287.1 −75 1.206 A − sp 23 A − sp (2H )4G2
33986.71 33965.6 21 1.104 A − sp 10 A − sp (2H )2I2
34270.67 34292.7 −22 1.141 B − ds2 19 B − ds2 (5G)4G

J = 13/2
9147.08 9117.3 30 1.338 B − ds2 66 B − ds2 (5I )6G

12344.55 12364.8 −20 1.236 B − ds2 27 B − ds2 (5I )6I

15081.12 15112.6 −32 1.177 B − ds2 46 B − ds2 (5I )4H

16735.95 16763.6 −28 1.200 B − ds2 41 B − ds2 (5I )6H

17059.35 17019.9 39 1.193 A − sp 29 A − sp (4I )4Ha

18564.90 18493.2 72 1.050 B − ds2 45 B − ds2 (5I )6K

18858.19 18792.4 66 1.138 A − sp 37 A − sp (4I )2I

20241.31 20266.4 −25 1.104 B − ds2 43 B − ds2 (5I )4I
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TABLE VIII. (Continued.)

Eexpt Eth 
E Leading Leading
(cm−1) (cm−1) (cm−1) gth

L configuration % LS term

21044.81 21012.1 33 0.887 B − ds2 67 B − ds2 (5I )6L

21584.89 21623.2 −38 1.174 A − sp 27 A − sp (4I )6H

22157.86 22214.2 −56 1.059 A − sp 22 A − sp (4I )4Ka

22978.19 22969.7 08 1.013 B − ds2 43 B − ds2 (5I )4K

24014.22 23908.9 105 1.199 A − sp 39 A − sp (4I )4Hb

23955.68 23968.7 −13 1.138 A − sp 32 A − sp (4I )6I

24740.52 24739.9 1 1.245 B − ds2 36 B − ds2 (5F )6H

25571.15 25569.0 2 1.048 A − sp 34 A − sp (4I )6K

25930.66 25950.9 −20 0.831 B − ds2 75 B − ds2 (5I )4L

27141.28 27143.8 −3 1.096 A − sp 23 A − sp (4I )6I

29751.91 29792.1 −40 1.098 A − sp 45 A − sp (4I )4Ib

33907.40 33780.7 127 1.196 A − sp 22 A − sp (2H )4H2
J = 15/2

8427.11 8482.7 −56 1.279 B − ds2 53 B − ds2 (5I )6H

12339.04 12352.2 −13 1.237 B − ds2 36 B − ds2 (5I )6H

15136.06 15159.7 −24 1.170 B − ds2 55 B − ds2 (5I )4I

15855.28 15892.2 −37 1.261 A − sp 55 A − sp (4I )6H

16154.21 16087.4 67 1.183 B − ds2 28 B − ds2 (5I )6I

16882.28 16900.3 −18 1.125 A − sp 35 A − sp (4I )2K

18651.53 18600.1 51 1.196 A − sp 25 A − sp (4I )4Ia

18756.22 18744.3 12 1.029 B − ds2 56 B − ds2 (5I )6L

20074.89 20083.9 −9 1.094 B − ds2 35 B − ds2 (5I )6K

22227.34 22221.5 6 1.153 A − sp 42 A − sp (4I )6K

23445.28 23451.8 −6 1.010 B − ds2 59 B − ds2 (5I )4L

23834.94 23842.2 −7 1.176 A − sp 43 A − sp (4I )6I

24660.80 24723.4 −63 1.189 A − sp 42 A − sp (4I )4Ib

25272.63 25270.0 3 1.299 B − ds2 76 B − ds2 (5F )6H

26957.88 27015.9 −58 1.118 A − sp 25 A − sp (4I )6K

29642.95 29658.5 −16 1.093 A − sp 48 A − sp (4I )4Kb

37233.47 37253.2 −20 1.153 B − ds2 16 B − ds2 (3L)4I

J = 17/2
8378.91 8370.5 8 1.267 B − ds2 73 B − ds2 (5I )6I

11530.56 11523.0 8 1.190 B − ds2 52 B − ds2 (5I )4K

15130.31 15152.3 −22 1.148 B − ds2 33 B − ds2 (5I )6L

16438.01 16421.3 17 1.147 B − ds2 36 B − ds2 (5I )6K

16709.82 16640.0 70 1.229 A − sp 40 A − sp (4I )6I

18337.80 18305.2 33 1.239 A − sp 52 A − sp (4I )6I

20568.63 20589.1 −21 1.099 B − ds2 47 B − ds2 (5I )4L

23498.57 23549.6 −51 1.197 A − sp 60 A − sp (4I )6K

24360.81 24354.1 7 1.176 A − sp 57 A − sp (4I )4Ka

J = 19/2
9741.50 9772.5 −31 1.230 B–ds2 67 B–ds2 (5I )6K

11689.77 11650.3 40 1.181 B − ds2 57 B − ds2 (5I )4L

16683.52 16718.0 −34 1.176 B − ds2 69 B − ds2 (5I )6L

17883.57 17897.5 −14 1.261 A − sp 97 A − sp (4I )6K

J = 21/2
11322.31 11358.3 −36 1.232 B − ds2 93 B − ds2 (5I )6L

configuration-interaction mixing is stronger in erbium. This
is very surprising, as the density of levels of dysprosium
is higher around 25 000 cm−1 and, so, a priori more
favorable to configuration interaction. Again, the case of
thulium will be particularly enlightening, because the large
number of relatively strong transitions (with probabilities
higher than 107 s−1; see Ref. [58]) suggests even stronger
configuration interaction than in erbium. Finally, we would
like to emphasize that experimental measurements of heating

rate or trap lifetimes are particularly welcome, in order to
check the validity of our predictions.
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APPENDIX: EVEN-PARITY ENERGY LEVELS

This Appendix presents the detailed calculations of
holmium even-parity levels. Table VIII reports the results of

our calculations, including the discrepancy between theoretical
and experimental energies. Table IX lists the optimal parame-
ters after the least-squares fitting procedure on energies.

TABLE IX. Fitted parameters (in cm−1) for even-parity configurations of Ho I compared with relativistic Hartree-Fock (HFR) values. The
scaling factors are SF(P ) = Pfit/PHFR, except for Eav, where they equal Pfit − PHFR. Some parameters are constrained to vary at a constant
ratio rn, indicated in the second column except when ”fix” appears in the second or in the ”Uncertainty” column. In this case, the parameter P

is not adjusted. The Uncertainty columns list the standard error of each parameter after the fitting procedure.

Parameter Constant Fitted parameters Fitted parameters

P ratio Pfit Uncertainty PHFR SF Pfit Uncertainty PHFR SF

Eav 59617 105 5940 53677 51079 64 15134 35945
F 2(4f 4f ) r1 94927 707 125792 0.755 89432 666 118509 0.755
F 4(4f 4f ) r2 66088 1446 78881 0.838 61977 1356 73975 0.838
F 6(4f 4f ) r3 48377 1350 56738 0.853 45289 1264 53115 0.853
α r4 23.0 4 23.0 4
β Fix −650 −650
γ Fix 2000 2000
ζ4f r5 2141 4 2193 0.976 2009 4 2058 0.976
ζ5d r7 757 11 920 0.823
ζ6p r16 1435 15 990 1.449
F 1(4f 5d) r8 674 91
F 2(4f 5d) r9 15491 279 20639 0.751
F 4(4f 5d) r10 10954 464 9423 1.162
F 1(4f 6p) Fix 150
F 2(4f 6p) r17 3643 289 3324 1.096
G1(4f 5d) r11 5410 151 8944 0.605
G2(4f 5d) r12 1378 434
G3(4f 5d) r13 6036 460 7086 0.852
G4(4f 5d) r14 2314 546
G5(4f 5d) r15 4508 306 5353 0.842
G3(4f 6s) r18 1358 92 1676 0.810
G2(4f 6p) Fix 760 760 1.0
G4(4f 6p) Fix 662 662 1.0
G1(6s6p) r19 10321 74 23282 0.443
Configuration interaction 4f 105d6s2 − 4f 116s6p

R1(5d6s,4f 6p) r6 −3223 150 −4555 0.708
R3(5d6s,6p4f ) r6 −685 32 −968 0.708
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