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Application of the Hylleraas-B-spline basis set: Static dipole polarizabilities of helium
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The Hylleraas-B-spline basis set is introduced for solving the Hamiltonian eigenvalue problem of a two-
electron atomic system. We demonstrate this method by calculating the static dipole polarizabilities of the
1 1S–5 1S, 2 3S–6 3S states of helium in both the length and velocity gauge, which shows a good agreement.
Comparing to the traditional B-spline basis, the present approach can significantly improve the rate of convergence
of energy eigenvalues. The final extrapolated values of the polarizabilities for these states are accurate to at least
eight significant digits, indicating that this method can handle intermediate states, including the continuum, of
the Hamiltonian sufficiently well.
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I. INTRODUCTION

Precise calculations and experimental measurements of
physical properties of helium have attracted increasing interest.
For instance, compared to hydrogen, the 2P state of helium
has a much longer lifetime which can be used for a precise
determination of the fine-structure constant [1–4]. Moreover,
high accurate results of oscillator strengths and polarizabilities
of helium can give a response of the atom to an external
electric field and provide a new route to testing the theory
of nonrelativistic quantum electrodynamics (NRQED) [5–7].

Being a Coulomb three-body system, the energy eigenvalue
problem of helium does not have an analytic solution. To
obtain a high precision approximate solution, the Rayleigh-
Ritz variational method is usually adopted. The basic idea of
variational calculation is to construct a convenient and efficient
basis set that should contain some optimized parameters and
should be nearly complete when the size of the basis set is
sufficiently large. In 1929, Hylleraas made a successful attempt
in calculation of the energy levels of helium by building a
correlation between the two electrons explicitly in his basis set,
called the Hylleraas basis set [8]; see the review [9] by Drake.
Hylleraas basis sets are also capable of handling Rydberg states
of helium [10]. A variant of Hylleraas-Gaussian basis can deal
with low-lying energy levels of helium in strong magnetic field
[11]. By explicitly using logarithmic factors and half-integer
powers in the Hylleraas basis set, the variational upper bound
of the ground state of helium can be calculated to 36 digits [12].

The variational method in Hylleraas coordinates mentioned
above usually is not designed for a continuum state. When we
want to calculate the polarizability of an atom, or calculate an
energy level shift when we come to some higher-order QED
corrections, all relevant continuum states should in principle
be included in the calculation. For this situation, the concept of
pseudostates is used; see [13]. First we put the atom in a non-
penetrable box of limited size and thus the Hamiltonian spec-
trum is discrete. We then perform a calculation for a physical
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property of interest. When we increase the size of the box grad-
ually, what we can expect is that the result we obtained should
be progressively converged to the exact value of that property.

In order to utilize the pseudostates approach, we should
construct a suitable basis set that is generated in a finite-size
space. Among various basis sets used in atomic and molecular
structure calculations, the B-spline basis set is the one that we
will use [14,15]. As we know, a B-spline is highly localized in
a finite-size box, which is ideal in implementing the concept
of pseudostates. In fact, using B-spline basis sets, some
calculations on the dipole polarizabilities of helium were
performed [16,17]. Since a B-spine basis set is not capable
of describing the wave-function behavior at two-electron
coalescences, calculation of polarizabilities requires rather
large partial-wave expansion. The results of adopting B-spline
basis is usually less accurate than the Hylleraas-type basis. In
order to enhance the computational power of a B-spline basis,
we insert explicitly a correlation factor r12 = |r1 − r2| in the
traditional B-spline function. We call such generated basis
function as a Hylleraas-B-spline; see (2) below. The Hylleraas-
B-spline basis set not only inherits the virtues of the traditional
B-spline but also has no numerical linear dependence
problem. Because of the correlation factor appeared in
the Hylleraas-B-spline basis, the rate of convergence in a
partial-wave expansion should be improved greatly.

The paper is organized as follows. In Sec. II we first
introduce the concept of Hylleraas-B-spline basis for the
atomic system and its mathematical construction. We then
present some basic formulas for calculating the dipole
polarizability. Section III presents computational results of
energy levels and dipole polarizabilities for the 1 1S–5 1S

and 2 3S–6 3S states of helium using the Hylleraas-B-spline
basis, including convergence studies against the length of
partial-wave expansion and the size of the basis set. Finally, a
summary is given in Sec. IV.

II. THEORETICAL METHOD

A. Hylleraas-B-spline

In the center-of-mass frame, after eliminating the global
motion of the system, the nonrelativistic Hamiltonian of atomic
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FIG. 1. Tendency of the polarizability for the 2 3S state of helium
as the size of box rmax increases. Here we fix lmax = 1 and N = 50.
The black points represent the calculated results. Units are a.u.

helium can be written in the form

H =
2∑

i=1

(
− 1

2μ
∇2

i − 2

ri

)
− me

M
∇1 · ∇2 + 1

r12
, (1)

where me is the electron mass, M is the nuclear mass, μ =
meM/(me + M) is the reduced mass between the electron and
nucleus, r1 and r2 are the two electron distances relative to the
nucleus, and r12 is the distance between the two electrons. We
set M = ∞ in the present work.

The Hylleraas-B-spline variational basis set is constructed
in the finite domain (0,rmax) according to

�
(k)
ijcl1l2

= Bi,k(r1)Bj,k(r2)rc
12 �LM

l1l2
(r̂1,r̂2) ± exchange , (2)

where �LM
l1l2

is the vector coupled product of angular momenta
l1 and l2 for the two electrons

�LM
l1l2

(r̂1,r̂2) =
∑
m1m2

〈l1l2m1m2 | LM〉Yl1m1 (r̂1)Yl2m2 (r̂2) , (3)

Bi,k(r) is a B-spline [18] with i and k being the serial number
and the spline order, respectively, and rc

12 is the correlation
factor. The shape of Bi,k(r) depends on the nondecreasing
knot sequence {tk} (see below) and the spline order.

TABLE II. Convergence study of the ground-state energy of
helium as the total number of B-splines N increases under fixed
lmax = 4. The number in parentheses of the extrapolated value is the
computational uncertainty. Units are a.u.

N Number of terms E(N ) R(N )

20 2100 −2.9037176344643
25 3250 −2.9037240799982
30 4650 −2.9037243503318 23.842
35 6300 −2.9037243734819 11.677
40 8200 −2.9037243764457 7.8110
45 10350 −2.9037243769088 6.3989
50 12750 −2.9037243769997 5.0961
Extrap. −2.9037243771(2)

The B-splines satisfy the following recursion relation:

Bi,k(r) = r − ti

ti+k−1 − ti
Bi,k−1(r) + ti+k − r

ti+k − ti+1
Bi+1,k−1(r), (4)

together with the definition of the B-spline of order 1

{
Bi,1(r)=1, ti � r < ti+1,

Bi,1(r)=0, otherwise. (5)

In order to satisfy the boundary conditions of the wave
functions, the knot sequence should be arranged as

⎧⎪⎪⎨
⎪⎪⎩

ti = 0, i = 1,2, . . . ,k − 1,

ti = rmax
eγ ( i−k

N−k+1 ) − 1

eγ − 1
, i = k,k + 1, . . . ,N,

ti = rmax, i = N + 1, . . . ,N + k − 1 ,

(6)

where γ = τ rmax with τ being an adjustable parameter to
adjust the knot sequence, and N is the total number of B-
splines. If rmax, the knot sequence, the order k, and N are given,
the basis set of Hylleraas-B-spline is completely constructed.

In choosing i,j,c,l1,l2 in (2), we restrict c to be less than
2. Thus a polynomial of cos θ from the correlation factor will
not directly present in basis functions, where θ is the angle
between r1 and r2. This choice of c will not be in conflict with
the freedom of choosing l1 and l2. We list these parameters

TABLE I. Convergence study of the ground-state energy of helium as the total number of B-splines N and the partial-wave expansion
length lmax increase. Units are a.u.

N
∖

lmax 1 2 3 4

20 −2.9036 −2.90371 −2.90371 −2.90371
25 −2.903723 −2.903723 −2.903723 −2.9037240
30 −2.9037241 −2.90372430 −2.90372434 −2.90372435
35 −2.90372425 −2.90372436 −2.903724371 −2.903724373
40 −2.903724265 −2.903724375 −2.903724375 −2.9037243764
45 −2.903724267 −2.9037243766 −2.9037243767 −2.90372437690
50 −2.9037242683 −2.90372437687 −2.90372437696 −2.903724376999
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TABLE III. Comparison of the energies of the five lowest singlet and triplet states of helium. Numbers in parentheses of the extrapolated
values are the computational uncertainties. Units are a.u.

State This work Ref. [21] Ref. [22] Ref. [19]

1 1S −2.9037243771(2) −2.9035774 −2.9037243770341195
2 1S −2.14597404608(4) −2.1459649 −2.1459740292 −2.145974046054419(6)
3 1S −2.06127198976(3) −2.0612681 −2.0612719720 −2.061271989740911(5)
4 1S −2.03358671705(3) −2.0335850 −2.0335866995 −2.03358671703072(1)
5 1S −2.02117685159(3) −2.021175 −2.0211768309 −2.021176851574363(5)
2 3S −2.17522937826(4) −2.1752288 −2.175229378176 −2.17522937823679130
3 3S −2.068689067469(3) −2.0686888 −2.068689067283 −2.06868906747245719
4 3S −2.0365120831(1) −2.0365120 −2.036512082933 −2.03651208309823630(2)
5 3S −2.0226188723(1) −2.0226188 −2.022618871382 −2.02261887230231227(1)
6 3S −2.0153774530(1) −2.015377452422 −2.01537745299286219(3)

below:

i = 1,2, . . . ,j,

j = 1,2, . . . ,N,

c = 0,1,

l1 = 0,1, . . . ,lmax,

l2 = 0,1, . . . ,lmax.

(7)

Since the wave function must be antisymmetric against the
permutation between the two electrons, any term that makes
the norm of �

(k)
ijcl1l2

to be zero must be eliminated.

B. Polarizability

The averaged dipole polarizability for an atom is defined
by

α1 =
∑
n�=0

f
(1)
n0

(En − E0)2
, (8)

where f
(1)
n0 is the averaged dipole oscillator strength

f
(1)
n0 = 2

3(2L0 + 1)
(En − E0)

∣∣∣∣∣
〈
ψ0

∥∥∥∥∥
∑

i

ri

∥∥∥∥∥ψn

〉∣∣∣∣∣
2

. (9)

In the above, the summation i runs over all the electrons in
the atom, L0, E0, and ψ0 are, respectively, the total angular
momentum, the energy, and the corresponding wave function
for the state of interest, and En and ψn are for the nth
intermediate state. The above length-gauge oscillator strength

can also be expressed in the velocity gauge

f
(1)
n0 = 2

3(2L0 + 1)(En − E0)

∣∣∣∣∣
〈
ψ0

∥∥∥∥∥
∑

i

pi

∥∥∥∥∥ψn

〉∣∣∣∣∣
2

. (10)

Ideally, these two gauges would give rise to identical results
for a dipole polarizability if all eigenvalues and eigenfunctions
involved are exact. Thus the following quantity η may be used
as a measure for the quality of our calculations

η = 2
|a − b|
a + b

, (11)

where a and b stand for the results from the two gauges.

III. RESULTS AND DISCUSSIONS

Figure 1 presents the tendency of the polarizability of the
2 3S state of helium as the size of the box rmax increases.
Here we set the partial-wave expansion length lmax to be 1, the
number of B-splines N to be 50, and the parameter τ to be
0.038. From Fig. 1, we can see that as rmax reaches about 30 a.u.
the curve becomes flat. In our calculation, however, we set
rmax = 200 a.u., because some of the states under consideration
are quite diffuse.

A. Energy levels

Table I shows a convergence study for the helium ground-
state energy as the number of B-splines N and the partial-wave
expansion length lmax increase progressively. It can be seen
that fixing lmax to be 4 should be sufficient to guarantee the

TABLE IV. Convergence study of the static dipole polarizability for the 2 3S state of helium in the length gauge as the total number of
B-splines N and the partial-wave expansion length lmax increase. Units are a.u.

N
∖

lmax 1 2 3 4

20 315.5 315.6 315.6311 315.637
25 315.601 315.6311 315.6315 315.6316
30 315.6004 315.63148 315.631475 315.63148
35 315.600336 315.63147 315.6314722 315.631473
40 315.6003313 315.631465 315.6314723 315.6314726
45 315.6003316 315.6314644 315.6314724 315.6314724
50 315.600331943 315.631464209 315.631472397 315.631472384
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TABLE V. Convergence study of the static dipole polarizability for the 2 3S state of helium in the velocity gauge as the total number of
B-splines N and the partial-wave expansion length lmax increase. Units are a.u.

N
∖

lmax 1 2 3 4

20 315.3 315.5 315.61 315.62
25 315.5550 315.62 315.6311 315.6313
30 315.55591 315.63140 315.63143 315.63146
35 315.55590 315.631455 315.63146 315.6314723
40 315.555913 315.631452 315.631471 315.6314724
45 315.555916 315.6314508 315.6314722 315.631472364
50 315.55591865 315.631450648 315.631472353 315.63147236368

partial-wave convergence at the level of about 10 significant
digits. Table II displays the results for fixed lmax = 4, as N

increases, where the ratio R(N ), defined by

R(N ) = E(N − 5) − E(N − 10)

E(N ) − E(N − 5)
, (12)

could be regarded as an indicator for the rate of convergence
of the energy. The energy extrapolated to N = ∞ is estimated
by assuming a constant R(N ) for all N greater than the largest
N (denoted by Nmax) used in the calculation [19]

E(∞) = E(Nmax) + E(Nmax) − E(Nmax − 5)

R(Nmax) − 1
. (13)

The uncertainty is taken to be the difference between E(∞)
and E(Nmax). The extrapolated value for the ground state
is thus E = −2.9037243771(2), which has three significant
digits more precise than E = −2.903724268 obtained from
the traditional B-spline basis [20] using lmax = 16. In fact in
the present approach, such a level of accuracy can be achieved
by only using lmax = 1.

Table III is a comparison of our results for the five lowest
singlet and triplet states with other calculations. According to
the benchmark values [19] in the fifth column, our results are
substantially more precise than the results using the traditional
B-spline basis [21] listed in the third column, and comparable
to the values using the exponentially correlated Hylleraas basis
[22] listed in the fourth column. This comparison shows that
the current Hylleraas-B-spline basis could be considered as
another effective method to calculate energy levels of high
principal quantum number.

TABLE VI. Relative difference η for the static dipole polarizabil-
ity of the 2 3S state of helium in both the length and velocity gauge
as the total number of B-splines N and the partial-wave expansion
length lmax increase.

N
∖

lmax 1 2 3 4

20 6×10−4 1×10−4 6×10−5 3×10−5

25 1×10−4 4×10−6 1×10−6 9×10−7

30 1×10−4 2×10−7 1×10−7 6×10−8

35 1×10−4 5×10−8 1×10−8 4×10−9

40 1×10−4 5×10−8 2×10−9 6×10−10

45 1×10−4 5×10−8 6×10−10 1×10−10

50 1×10−4 5×10−8 1×10−10 6×10−11

B. Dipole polarizabilities

The dipole polarizability of the 2 3S state in both the length
and velocity gauge is given in Tables IV and V, respectively.
The relative difference η between these two gauges is given in
Table VI. Table VII summarizes the results for the five lowest
singlet and triplet states, together with other calculations. The
procedure of extrapolation we used in Table VII is the same as
in Table III.

Table VI shows that the difference of results between the
two gauges becomes smaller and smaller with increasing N

and lmax. When N = 50 and lmax = 4, the relative difference
reaches 6×10−11. On the other hand, the maximum value of η

in the whole calculation is only 9×10−10. Using the B-spline
configuration interaction method, Zhang et al. [17] calculated
the dipole polarizability for the 2 3S state of helium with
the result 315.6315(2). In their calculations, the partial-wave
expansion was terminated at lmax = 10. In our Hylleraas-B-
spline approach, however, the same level of accuracy can be
reached at lmax = 2, as can be seen from Tables IV and V.

As shown in Table VII, compared with the traditional
B-spline basis calculation [23] in the fourth column, a
much higher accuracy for the dipole polarizabilities has been
achieved by us. From the table one can see that the excellent
agreement between the length and velocity gauge at the level
of at least eight significant digits has been obtained for the
dipole polarizabilities. Compared to the precision results from
Hylleraas basis sets [24] in the fifth column of the table,
there is a good agreement for 1 1S, 2 1S, 3 1S, 2 3S, and 3 3S.
However, some discrepancies appear for the rest of states. Such
a high degree of agreement between the two gauges probably
implies that our results are likely reliable. As the principal
quantum number increases, very little loss of significant digits
in our results is detected. Therefore, the Hylleraas-B-spline
approach holds potential for efficient and precise calculation
of polarizabilities of a two-electron atomic system in a Rydberg
state.

IV. SUMMARY

In this paper, we have introduced the method of Hylleraas-
B-spline basis by coupling the correlation factor r12 =
|r1 − r2| with the traditional B-spline basis. This basis is
capable of describing the two-electron coalescences. As
we have shown in this paper, the Hylleraas-B-spline basis
cannot only improve computational accuracy and efficiency
for excited states of helium compared to the traditional
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TABLE VII. Comparison of the static dipole polarizabilities for the five lowest singlet and triplet states of helium. Numbers in parentheses
are computational uncertainties. Units are a.u.

State This work (length gauge) This work (velocity gauge) Ref. [23] Ref. [24]

1 1S 1.3831921742(3) 1.3831921744(1) 1.38328 1.38319217440(5) [26]
2 1S 800.3162331(1) 800.3162332(1) 800.306 800.31633(7)
3 1S 16887.18563(1) 16887.18564(1) 16887.17(1)
4 1S 135851.5811(1) 135851.5812(1) 135851.430(1)
5 1S 669586.064(1) 669586.0653(1) 669585.8982(2)
2 3S 315.63147233(5) 315.63147236(1) 315.630 315.63147(1)
3 3S 7937.585923(3) 7937.5859256(5) 7937.58(1)
4 3S 68650.20892(2) 68650.20897(4) 68650.061(2)
5 3S 351796.228(1) 351796.2291(1) 351796.060(2)
6 3S 1314954.976(1) 1314954.979(3) 1314954.806(3)

B-spline basis, but can also offer a feasible way to over-
come the ground-state difficulty of using the traditional B-
spline-type basis. Furthermore, the Hylleraas-B-spline basis
is very suitable for dealing with problems involving the
continuum.

We have demonstrated our method by calculating energy
levels and dipole polarizabilities of helium in various S states at
the level of at least 10 and eight significant digits, respectively,
which would not be easy by using the traditional B-spline
basis. Our results are comparable with the doubled Hylleraas
basis approach, in particular for dipole polarizabilities. Our
method is applicable to two-electron atomic systems in
Rydberg states.

It would be interesting to apply the Hylleraas-B-spline
method to calculate higher-pole polarizabilities, the Bethe log-
arithms of quantum electrodynamic corrections, and the black-
body radiation shifts [25] for a two-electron atomic system.
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