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Monotonic quantum-to-classical transition enabled by positively correlated biphotons
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Multiparticle interference is a fundamental phenomenon in the study of quantum mechanics. It was discovered
in a recent experiment [Y.-S. Ra et al., Proc. Natl. Acad. Sci. USA 110, 1227 (2013)] that spectrally uncorrelated
biphotons exhibited a nonmonotonic quantum-to-classical transition in a four-photon Hong-Ou-Mandel (HOM)
interference. In this work, we consider the same scheme with spectrally correlated photons. By theoretical
calculation and numerical simulation, we found the transition not only can be nonmonotonic with negatively
correlated or uncorrelated biphotons, but also can be monotonic with positively correlated biphotons. The
fundamental reason for this difference is that the HOM-type multiphoton interference is a differential-frequency
interference. Our study may shed new light on understanding the role of frequency entanglement in multiphoton
behavior.
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I. INTRODUCTION

Indistinguishability plays an important role in multiphoton
interference, which is a fundamental phenomenon in the study
of quantum mechanics [1–6]. It was believed that, with the
increase of indistinguishability, the multiphoton interference
pattern changes monotonically [1]. For example, in the case of
Hong-Ou-Mandel (HOM) interference demonstrated in 1987
[7], the twofold coincidence counts show a monotonic increase
when the time delay scanned from zero to infinity. This HOM
interference can be interpreted from the viewpoint of indistin-
guishability: with the increase of the time delay, the temporal
distinguishability (or the decoherence) of the biphoton was
also increasing and leading to a quantum-to-classical transition
[1,8,9]. Such a monotonic indistinguishability dependence was
also observed in the case of four-photon [10] and six-photon
[11] HOM-type interference, where all photons are detected
in one output port of the beam splitter.

However, recent works [1,12,13] revealed that such mono-
tonic quantum-to-classical transition was only an exception,
i.e., only valid for two-photon cases and for bunching detection
in multiphoton cases. For example, in the four-photon HOM-
type experiment [1], where two pairs of biphotons were
sent to two input ports of a 50:50 beam splitter and four
detectors were prepared at the two output ports (see Fig. 1),
by changing the detection schemes, different interference
patterns can be obtained: in a 2/2 detection [with two
detectors at one output port and two detectors at the other
port, shown in Fig. 1(a)], the fourfold coincidence counts
showed a nonmonotonic indistinguishability dependence; in
contrast, the 4/0 detection scheme, as shown in Fig. 1(c),
achieved a monotonic dependence. This study on the transition
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between quantum and classical in Ref. [1] is important for
deeper understanding of the multiparticle behavior in quantum
mechanics.

The interesting phenomenon in Ref. [1] was realized by
spectrally uncorrelated biphotons. Now a question comes
naturally: what will the phenomenon be if the biphotons
are spectrally correlated? In other words, with the intro-
duction of frequency entanglement, will the interference
patterns, especially the monotonicity dependence, be changed?
To answer this question, in this paper, we consider the
same scheme with spectrally correlated (frequency-entangled)
biphotons. It is seen that spectrally correlated biphotons show
different interference patterns from the patterns of uncorrelated
biphotons. For example, under the 2/2 detection scheme, the
spectrally negatively correlated and noncorrelated biphotons
show a nonmonotonic dependence, while the spectrally pos-
itively correlated biphotons show a monotonic dependence.
In contrast, the monotonicity is not affected by the spectral
correlation in the 4/0 and 3/1 detection schemes.

This paper is organized as follow: in the Introduction
section, we provide the background and motivation of this
research. Then, in the Theory section we develop a multimode
theory for four-photon HOM-type interference, where the
spectral correlation between the signal and idler photons are
concerned. Next, in the Analysis section, we first simulate
the HOM-type interference patterns using biphotons with
three different spectral correlations: no correlation, positive
correlation, and negative correlation. Then, we provide com-
prehensive discussions on the simulation results. Finally, we
summarize the paper in the Conclusion section. More details
for the derivation of the relative equations are given in the
Appendix.

II. THEORY

In this paper, we consider a four-photon HOM-type
interference with the experimental model shown in Fig. 1.
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FIG. 1. The 2/2, 3/1, and 4/0 detection schemes for the HOM-type interference. All the beam splitters (BS) are 50:50 beam splitters. Dn

(n = 1,2,3,4) is the single photon detector. τ is the time delay in the signal arm.

The four-photon state |ψ〉 is generated from the two-pair
components in a spontaneous parametric down-conversion
(SPDC) process,

|ψ〉 =
∫ ∞

0
dωsdωidω′

sdω′
if (ωs,ωi)f (ω′

s ,ω
′
i)

× â†
s (ωs)â

†
i (ωi)â

†
s (ω′

s)â
†
i (ω′

i)|0000〉, (1)

where â†(ω) is the creation operator at angular frequency ω,
the subscripts s and i denote the signal and idler photons from
the first pair, while s ′ and i ′ denote the signal and idler photons
from the second pair; f (ωs,ωi) and f (ω′

s ,ω
′
i) are their joint

spectral amplitude (JSA).
As calculated in detail in the Appendix, the fourfold

coincidence probability P22(τ ) in the 2/2 detection scheme
is

P22(τ ) = 1

64

∫ ∞

0
dω1dω2dω3dω4|I22(τ )|2, (2)

with

|I22(τ )|2 = |(f13f24 + f14f23)e−iω1τ e−iω2τ

+ (f31f42 + f32f41)e−iω3τ e−iω4τ

− (f12f34 + f14f32)e−iω1τ e−iω3τ

− (f12f43 + f13f42)e−iω1τ e−iω4τ

− (f21f34 + f24f31)e−iω2τ e−iω3τ

− (f21f43 + f23f41)e−iω2τ e−iω4τ |2, (3)

where fmn = f (ωm,ωn) and ωm(n) [m(n) = 1,2,3,4] is the
frequency of the detection field for the detectors Dn.

The coincidence probability P31(τ ) in the 3/1 detection
scheme is

P31(τ ) = 1

128

∫ ∞

0
dω1dω2dω3dω4|I31(τ )|2, (4)

with

|I31(τ )|2 = | − (f13f24 + f14f23)e−iω1τ e−iω2τ

+ (f31f42 + f32f41)e−iω3τ e−iω4τ

− (f12f34 + f14f32)e−iω1τ e−iω3τ

+ (f12f43 + f13f42)e−iω1τ e−iω4τ

− (f21f34 + f24f31)e−iω2τ e−iω3τ

+ (f21f43 + f23f41)e−iω2τ e−iω4τ |2. (5)

The coincidence probability P40(τ ) in the 4/0 detection
scheme is

P40(τ ) = 1

1024

∫ ∞

0
dω1dω2dω3dω4|I40(τ )|2, (6)

with

|I40(τ )|2 = |(f13f24 + f14f23)e−iω1τ e−iω2τ

+ (f31f42 + f32f41)e−iω3τ e−iω4τ

+ (f12f34 + f14f32)e−iω1τ e−iω3τ

+ (f12f43 + f13f42)e−iω1τ e−iω4τ

+ (f21f34 + f24f31)e−iω2τ e−iω3τ

+ (f21f43 + f23f41)e−iω2τ e−iω4τ |2. (7)

It is interesting to compare the six items in |I22(τ )|2,
|I31(τ )|2, and |I40(τ )|2: the first and second terms in |I22(τ )|2
are positive; the second, fourth, and sixth items in |I31(τ )|2
are positive; and all six items in |I40(τ )|2 are positive. As
calculated in the Appendix, the sign of these terms results
from the sign of the transmission and reflection terms after
the beam splitter (BS) in Fig. 1. These equations can be
further simplified by assuming the exchanging symmetry of
f (ωs,ωi) = f (ωi,ωs).

III. ANALYSIS

For a given JSA of f (ωs,ωi), using the equations of P22(τ ),
P31(τ ), and P40(τ ), it is possible to simulate the HOM-type
interference patterns. Three kinds of JSAs are shown in
Figs. 2(a1)–2(c1), with Fig. 2(a1) spectrally uncorrelated,
Fig. 2(b1) positively correlated, and Fig. 2(c1) negatively
correlated. Without the loss of generality, we set the center
wavelength of the JSAs at 1584 nm and set the bandwidth
(full width at half maximum) of the signal and idler photons
at 2 nm. Although the shape of the three JSAs is different, the
marginal distributions for the signal and idler photons are the
same. In other words, from the viewpoint of single photons, all
the signal and idler photons have the same spectral distribution
in Figs. 2(a1)–2(c1).

Figures 2(a2)–2(c2) show the HOM-type interference
patterns for 2/2 detection schemes. It is noteworthy that, for
the uncorrelated state [Fig. 2(a1)] and negatively correlated
state [Fig. 2(b1)], the coincidence probability changes in a
nonmonotonic manner, when the time delay changes from 0
to 10 ps. In contrast, the positively correlated state [Fig. 2(c1)]
shows a monotonic interference pattern. Figures 2(a3)–2(c3)
show the HOM-type interference patterns for 3/1 detection
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FIG. 2. Three different JSAs f (ωs,ωi): (a1) uncorrelated, (b1) negatively correlated, and (c1) positively correlated. The corresponding
HOM-type interference patterns are shown in (a2)–(c4): (a2)–(c2) 2/2 detection scheme, (a3)–(c3) 3/1 detection scheme, and (a4)–(c4) 4/0
detection scheme. All the y axes in (a2)–(c4) are normalized.

schemes, with all the figures in dips; i.e., the interference
patterns are monotonic when the time delay changes from
zero to infinity. The patterns for 4/0 detection are shown
in Figs. 2(a4)–2(c4), with all the figures in bumps; i.e., the
interference patterns show monotonic dependence.

In Fig. 2, biphotons with different correlations show
different interference patterns, but what is the underlying
physics for such phenomena? To answer this question, we
need to further simplify Eqs. (3), (5), and (7). As an example,
by assuming fmn = fnm, Eq. (3) can be simplified as follows:

|I22(τ )|2 = (f12f34)2 + (f13f24)2 + (f14f23)2 + f12f13f24f34 + f12f14f23f34 + f13f14f23f24

+ (f12f34 + f13f24)(f12f34 + f14f23) cos(ω1 − ω2)τ − (f12f34 + f13f24)(f13f24 + f14f23) cos(ω1 − ω3)τ

− (f12f34 + f14f23)(f13f24 + f14f23) cos(ω1 − ω4)τ − (f12f34 + f14f23)(f13f24 + f14f23) cos(ω2 − ω3)τ

− (f12f34 + f13f24)(f13f24 + f14f23) cos(ω2 − ω4)τ + (f12f34 + f13f24)(f12f34 + f14f23) cos(ω3 − ω4)τ

+ 1/2(f13f24 + f14f23)2 cos(ω1 + ω2 − ω3 − ω4)τ + 1/2(f12f34 + f14f23)2 cos(ω1 − ω2 + ω3 − ω4)τ

+1/2(f12f34 + f13f24)2 cos(ω1 − ω2 − ω3 + ω4)τ. (8)

Obviously, Eq. (8) is a function of ωm − ωn. Similar results can
also be derived for Eqs. (5) and (7). So, it can be concluded that
HOM-type multiphoton interference is a differential-frequency

interference. This is true not only for the two-photon HOM
interference [14–16], but also for the four-photon HOM
interference. Therefore, positively correlated biphotons, i.e.,
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around ωs − ωi = 0, exhibit different patterns from that of the
uncorrelated biphotons (ωs and ωi are arbitrary) or negatively
correlated biphotons (ωs + ωi = ωp, with ωp as the angular
frequency of the pump).

The interference patterns in Figs. 2(c2)–2(c4) are “fat-
ter” (the coherence time is longer) than the patterns in
Figs. 2(a2)–2(a4) or Figs. 2(b2)–2(b4). It can also be explained
from the above conclusion that HOM-type interference is
a differential-frequency interference. In fact, Eq. (3) can be
viewed as a Fourier transform from the frequency domain to
the time domain. Consequently, the width of the time-domain
interference pattern is determined by the spectral-domain
distribution along the direction of (ωs − ωi). The value of
(ωs − ωi) in Fig. 2(c1) is the smallest among Figs. 2(a1)–2(c1)
in the frequency domain, so the corresponding widths in the
interference patterns are the largest in the time domain, thanks
to the spectral positive correlation in Fig. 2(c1).

It should be emphasized that the theoretical model of our
scheme is different from the model in Refs. [1,12], where
the spectral correlations are not included. The photons in the
model of Refs. [1,12,17] are spectrally uncorrelated; therefore,
the experimental results in Refs. [1,12] only correspond to
Figs. 2(a2), 2(a3), and 2(a4) in our simulation.

Many studies have been dedicated to theoretically analyze
multiphoton interference using multimode theory. Ou et al.
analyzed multiphoton interference using multimode theory
from spectral modes [2,10,18]; Chen et al. modeled the
photons as wave packets in the time domain [19]; and Ra et al.
considered Schmidt decomposition on the temporal modes of
the photons in their theoretical model [1,12,13]. However, in
all these theoretical models, the role of spectral correlation is
not deeply investigated. Our model is a theoretical model for
multiphoton interference with spectral correlation included.

It is interesting to compare the four-photon HOM interfer-
ence with the case of the traditional two-photon HOM inter-
ference [7,20]. The twofold coincidence probability between
two output ports of a beam splitter (antibunching test) can be
written as

P11(τ ) = 1

4

∫ ∞

0
dω1dω2|I11(τ )|2, (9)

with

|I11(τ )|2 = |f (ω2,ω1)e−iω1τ − f (ω1,ω2)e−iω2τ |2. (10)

In contrast, the twofold coincidence probability of one output
port of the beam splitter (bunching test) can be written as

P20(τ ) = 1

16

∫ ∞

0
dω1dω2|I20(τ )|2, (11)

with

|I20(τ )|2 = |f (ω2,ω1)e−iω1τ + f (ω1,ω2)e−iω2τ |2. (12)

We also simulated P11(τ ) and P20(τ ) using the three JSAs
shown in Figs. 2(a1)–2(c1). It was found that the monotonicity
was not affected by the spectral correlations; i.e., all three
P11(τ ) patterns show dips, while all three P20(τ ) patterns show
bumps for the JSAs in Figs. 2(a1)–2(c1).

It is also important to rethink the prerequisite condition
for 100% visibility in the two-photon and four-photon
HOM interference. In the two-photon case, exchanging
symmetry of f (ω1,ω2) = f (ω2,ω1) is required to achieve
100% visibility, i.e., P11(0) = 0 [20,21]. In contrast, the

prerequisite condition is complex for the four-photon HOM
interference to achieve 100% visibility. For example, in
the case of 3/1 detection, P31(0) = 0 implies −(f13f24 +
f14f23) + (f31f42 + f32f41) − (f12f34 + f14f32) + (f12f43 +
f13f42) − (f21f34 + f24f31) + (f21f43 + f23f41) = 0, which
is an upgraded version of the exchanging symmetry for the
four-photon case.

In the theoretical model in Eq. (1), the four-photon state
is generated from a double pair emission, which has a
spectral distribution of f (ωs,ωi)f (ω′

s ,ω
′
i). In the future, it

will be possible to directly generate a four-photon state
with a spectral distribution of f (ωs,ωi,ω

′
s ,ω

′
i). This state

may be generated from, say, a fourth-order spontaneous
parametric down-conversion process, where a higher-energy
photon “splits” into four lower-energy photons. For example,
a 1600-nm photon may be down-converted to four 400-nm
photons. This is the inverse process of a fourth-harmonic
generation. The direct generation of the three-photon state
has been chased by several groups for a long time [22–25].
It is also interesting to study the case of the four-photon state
[26–28]. In this case, the spectral correlations and the HOM
interference might be different from the case discussed in this
paper. It will be an interesting topic to investigate in the future.
Another future work is to expand the theoretical model to the
case of six or more photons. Although the equations might be
complex, the expansion method is direct, i.e., similar to what
we did in this work.

For the future experimental demonstration, our scheme has
been ready to be realized with state-of-the-art technologies.
The spectrally uncorrelated JSA in Fig. 2(a1) can be generated
by filtering a periodically poled potassium titanyl phosphate
(PPKTP) down-conversion source at 1584 nm [29–31]. The
spectrally negatively correlated JSA in Fig. 2(b1) has been
generated in a picosecond-pulse-pumped periodically poled
stoichiometric lithium tantalate (PPSLT) crystal [21], while
the spectrally positively correlated JSA in Fig. 2(c1) has been
prepared in a femtosecond-pulse-pumped PPKTP crystal
[21]. For detection, we can use the similar setup demonstrated
recently [32].

Our work has several applications in the future. Higher-
order correlations in many-body systems are very important
for characterizing a quantum system and came to be a hot topic
in the study of quantum optics [17,33,34]. In this work, we
studied the role of spectral correlation in four-photon quantum
interference, which actually corresponds to a fourth-order
temporal correlation in a four-body system. Therefore, this
work may make a contribution to the deep understanding
of higher-order correlations of a quantum system. Another
possible application of our work is for quantum sensing based
on Hong-Ou-Mandel interference [35–37]. Third, the spectral
correlation may be applied to the reduction of detection noise
in a dispersive medium, which was recently demonstrate in
Ref. [38] with only two photons. In the case of four photons,
the noise-reduction effect might be enhanced.

IV. CONCLUSION

In conclusion, we have investigated the role of spectral
correlation (frequency entanglement) in quantum-to-classical
transition in a four-photon Hong-Ou-Mandel interference. By
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theoretical calculation and numerical simulation based on a
multimode theory for spectrally correlated photons, it was
found that the transition can be monotonic for positively
correlated biphotons and can be nonmonotonic for negatively
correlated or noncorrelated biphotons in the 2/2 detection
scheme. In contrast, the monotonicity was not changed in
the 3/1 and 4/0 detection schemes. The fundamental reason
for this difference is that the HOM-type interference is a
differential-frequency interference. Our theoretical scheme
can be easily demonstrated in experiment using the state-of-
the-art technologies. This study may shed new light on under-
standing the role of entanglement in multiphoton behavior.
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APPENDIX

Here we deduce the equations for the four-photon HOM-type interference in detail. The setup of HOM interference with 2/2
detection scheme is shown in Fig. 1(a). The two-pair component from a SPDC process is expressed as [Eq. (1) in the main text]

|ψ〉 =
∫ ∞

0
dωsdωidω′

sdω′
if (ωs,ωi)f (ω′

s ,ω
′
i)â

†
s (ωs)â

†
i (ωi)â

†
s (ω′

s)â
†
i (ω′

i)|0000〉. (A1)

The meaning of each parameter is explained in the main text. The detection field operator of detector Dn (n = 1,2,3,4) is

Ê(+)
n (tn) = 1√

2π

∫ ∞

0
dωnân(ωn)e−iωntn , (A2)

where ωn is the frequency of the detection field, and ân is the annihilation operator of the detection field. The transformation rule
of a 50:50 beam splitter is âo1 = 1√

2
(âin1 + âin2 ) and âo2 = 1√

2
(âin1 − âin2 ), where the subscripts o1 and o2 denote the two output

ports of the beam splitter, while the in1 and in2 denote the two input ports.
So, we can write the detection fields as

Ê
(+)
1 (t1) = 1

2
√

2π

∫ ∞

0
dω1[âs(ω1)e−iω1τ + âi(ω1)]e−iω1t1 ,

Ê
(+)
2 (t2) = 1

2
√

2π

∫ ∞

0
dω2[âs(ω2)e−iω2τ + âi(ω2)]e−iω2t2 ,

(A3)

Ê
(+)
3 (t3) = 1

2
√

2π

∫ ∞

0
dω3[âs(ω3)e−iω3τ − âi(ω3)]e−iω3t3 ,

Ê
(+)
4 (t4) = 1

2
√

2π

∫ ∞

0
dω4[âs(ω4)e−iω4τ − âi(ω4)]e−iω4t4 ,

where the phase term e−iωnτ is introduced by the time delay τ . The coincidence probability P22 as a function of delay time τ can
be expressed as

P22(τ ) =
∫

dt1dt2dt3dt4〈ψ |Ê(−)
4 Ê

(−)
3 Ê

(−)
2 Ê

(−)
1 Ê

(+)
1 Ê

(+)
2 Ê

(+)
3 Ê

(+)
4 |ψ〉. (A4)

First, let us consider the Ê
(+)
1 Ê

(+)
2 Ê

(+)
3 Ê

(+)
4 |ψ〉. For simplicity, the key components can be written as [âs(ω1) + âi(ω1)][âs(ω2) +

âi(ω2)][âs(ω3) − âi(ω3)][âs(ω4) − âi(ω4)]. Only 6 out of 16 terms exist: âs âs âi âi , âi âi âs âs , −âs âi âs âi , −âs âi âi âs , −âi âs âs âi ,
and −âi âs âi âs . The first term (âs âs âi âi) is

1

16

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4âs(ω1)âs(ω2)âi(ω3)âi(ω4)e−iω1τ e−iω2τ e−iω1t1e−iω2t2e−iω3t3e−iω4t4

×
∫ ∞

0
dωsdωidωs ′dωi ′f (ωs,ωi)f (ω′

s ,ω
′
i)â

†
s (ωs)â

†
i (ωi)â

†
s (ω′

s)â
†
i (ω′

i)|0〉

= 1

16

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4

∫ ∞

0
dωsdωidωs ′dωi ′ [δ(ω1 − ωs)δ(ω2 − ωs ′ ) + δ(ω1 − ωs ′ )δ(ω2 − ωs)][δ(ω3 − ωi)

× δ(ω4 − ωi ′) + δ(ω3 − ωi ′ )δ(ω4 − ωi)]f (ωs,ωi)f (ω′
s ,ω

′
i)e

−iω1τ e−iω2τ e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉

= 1

16

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4[f (ω1,ω3)f (ω2,ω4) + f (ω1,ω4)f (ω2,ω3) + f (ω2,ω3)f (ω1,ω4)
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+ f (ω2,ω4)f (ω1,ω3)]e−iω1τ e−iω2τ e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉

= 1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4[f (ω1,ω3)f (ω2,ω4) + f (ω1,ω4)f (ω2,ω3)]e−iω1τ e−iω2τ e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉

= 1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4 × ff1 × e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉, (A5)

where

ff1 = [f (ω1,ω3)f (ω2,ω4) + f (ω1,ω4)f (ω2,ω3)]e−iω1τ e−iω2τ . (A6)

In the above calculation, the following relationship is used:

âs(ω1)âs(ω2)â†
s (ωs)â

†
s (ω′

s)|0〉 = [δ(ω1 − ωs)δ(ω2 − ωs ′ ) + δ(ω1 − ωs ′ )δ(ω2 − ωs)]|0〉. (A7)

Similarly, the second term (âi âi âs âs) is

1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4 × ff2 × e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉, (A8)

where
ff2 = [f (ω3,ω1)f (ω4,ω2,) + f (ω3,ω2)f (ω4,ω1)]e−iω3τ e−iω4τ . (A9)

The third term (−âs âi âs âi) is

1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4 × ff3 × e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉, (A10)

where
ff3 = [−f (ω1,ω2)f (ω3,ω4) − f (ω1,ω4)f (ω3,ω2)]e−iω1τ e−iω3τ . (A11)

The fourth term (−âs âi âi âs) is

1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4×ff4 × e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉, (A12)

where
ff4 = [−f (ω1,ω2)f (ω4,ω3) − f (ω1,ω3)f (ω4,ω2)]e−iω1τ e−iω4τ . (A13)

The fifth term (−âi âs âs âi) is

1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4 × ff5 × e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉, (A14)

where
ff5 = [−f (ω2,ω1)f (ω3,ω4) − f (ω2,ω4)f (ω3,ω1)]e−iω2τ e−iω3τ . (A15)

The sixth term (−âi âs âi âs) is

1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4 × ff6 × e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉, (A16)

where

ff6 = [−f (ω2,ω1)f (ω4,ω3) − f (ω2,ω3)f (ω4,ω1)]e−iω2τ e−iω4τ . (A17)

We combine these six terms:

Ê
(+)
1 Ê

(+)
2 Ê

(+)
3 Ê

(+)
4 |ψ〉 = 1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4(ff1 + ff2 + ff3 + ff4 + ff5 + ff6)e−iω1t1e−iω2t2e−iω3t3e−iω4t4 |0〉.

(A18)
Then

〈ψ |Ê(−)
4 Ê

(−)
3 Ê

(−)
2 Ê

(−)
1 Ê

(+)
1 Ê

(+)
2 Ê

(+)
3 Ê

(+)
4 |ψ〉

= 1

8

(
1

2π

)2 ∫ ∞

0
dω1dω2dω3dω4(ff1 + ff2 + ff3 + ff4 + ff5 + ff6)e−iω1t1e−iω2t2e−iω3t3e−iω4t4

1

8

(
1

2π

)2

×
∫ ∞

0
dω′

1dω′
2dω′

3dω′
4(ff ∗

1 + ff ∗
2 + ff ∗

3 + ff ∗
4 + ff ∗

5 + ff ∗
6 )eiω′

1t1eiω′
2t2eiω′

3t3eiω′
4t4 , (A19)

where ff ∗ is the complex conjugate of ff .
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Finally,

P22(τ ) =
∫

dt1dt2dt3dt4〈ψ |Ê(−)
4 Ê

(−)
3 Ê

(−)
2 Ê

(−)
1 Ê

(+)
1 Ê

(+)
2 Ê

(+)
3 Ê

(+)
4 |ψ〉

= 1

64

(
1

2π

)4 ∫
dt1dt2dt3dt4

∫ ∞

0
dω1dω2dω3dω4

∫ ∞

0
dω′

1dω′
2dω′

3dω′
4(ff1 + ff2 + ff3 + ff4 + ff5 + ff6)

× (ff ∗
1 + ff ∗

2 + ff ∗
3 + ff ∗

4 + ff ∗
5 + ff ∗

6 )e−iω1t1e−iω2t2e−iω3t3e−iω4t4eiω′
1t1eiω′

2t2eiω′
3t3eiω′

4t4

= 1

64

(
1

2π

)4 ∫ ∞

0
dω1dω2dω3dω4

∫ ∞

0
dω′

1dω′
2dω′

3dω′
4(ff1 + ff2 + ff3 + ff4 + ff5 + ff6)

× (ff ∗
1 + ff ∗

2 + ff ∗
3 + ff ∗

4 + ff ∗
5 + ff ∗

6 )(2π )4δ(ω1 − ω′
1)δ(ω2 − ω′

2)δ(ω3 − ω′
3)δ(ω4 − ω′

4)

= 1

64

∫ ∞

0
dω1dω2dω3dω4|ff1 + ff2 + ff3 + ff4 + ff5 + ff6|2. (A20)

In the above calculation, the relationship of δ(ω − ω′) = 1
2π

∫ ∞
−∞ ei(ω−ω′)t dt is used.

In conclusion, the fourfold coincidence probability in the 2/2 detection scheme is

P22(τ ) = 1

64

∫ ∞

0
dω1dω2dω3dω4|I22(τ )|2, (A21)

with

|I22(τ )|2 = |(f13f24 + f14f23)e−iω1τ e−iω2τ + (f31f42 + f32f41)e−iω3τ e−iω4τ − (f12f34 + f14f32)e−iω1τ e−iω3τ

− (f12f43 + f13f42)e−iω1τ e−iω4τ − (f21f34 + f24f31)e−iω2τ e−iω3τ − (f21f43 + f23f41)e−iω2τ e−iω4τ |2, (A22)

where fij = f (ωi,ωj ).
In the 3/1 detection, the key components can be written as [âs(ω1) + âi(ω1)][âs(ω2) + âi(ω2)][âs(ω3) + âi(ω3)][âs(ω4) −

âi(ω4)]. Only 6 out of 16 terms exist: −âs âs âi âi , âi âi âs âs , −âs âi âs âi , âs âi âi âs , −âi âs âs âi , and âi âs âi âs . Following the similar
method as in the case of 2/2 detection, the coincidence probability P31(τ ) in the 3/1 detection scheme can be calculated as

P31(τ ) = 1

128

∫ ∞

0
dω1dω2dω3dω4|I31(τ )|2, (A23)

with

|I31(τ )|2 = | − (f13f24 + f14f23)e−iω1τ e−iω2τ + (f31f42 + f32f41)e−iω3τ e−iω4τ − (f12f34 + f14f32)e−iω1τ e−iω3τ

+ (f12f43 + f13f42)e−iω1τ e−iω4τ − (f21f34 + f24f31)e−iω2τ e−iω3τ + (f21f43 + f23f41)e−iω2τ e−iω4τ |2. (A24)

In the 4/0 detection, the key components can be written as [âs(ω1) + âi(ω1)][âs(ω2) + âi(ω2)][âs(ω3) + âi(ω3)][âs(ω4) +
âi(ω4)]. Only 6 out of 16 terms exist: âs âs âi âi , âi âi âs âs , âs âi âs âi , âs âi âi âs , âi âs âs âi , and âi âs âi âs . The coincidence probability
P40(τ ) in the 4/0 detection scheme is

P40(τ ) = 1

1024

∫ ∞

0
dω1dω2dω3dω4|I40(τ )|2, (A25)

with

|I40(τ )|2 = |(f13f24 + f14f23)e−iω1τ e−iω2τ + (f31f42 + f32f41)e−iω3τ e−iω4τ + (f12f34 + f14f32)e−iω1τ e−iω3τ

+ (f12f43 + f13f42)e−iω1τ e−iω4τ + (f21f34 + f24f31)e−iω2τ e−iω3τ + (f21f43 + f23f41)e−iω2τ e−iω4τ |2. (A26)
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