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We present a family of quantum money schemes with classical verification which display a number of benefits
over previous proposals. Our schemes are based on hidden matching quantum retrieval games and they tolerate
noise up to 23%, which we conjecture reaches 25% asymptotically as the dimension of the underlying hidden
matching states is increased. Furthermore, we prove that 25% is the maximum tolerable noise for a wide class of
quantum money schemes with classical verification, meaning our schemes are almost optimally noise tolerant.
We use methods in semidefinite programming to prove security in a substantially different manner to previous
proposals, leading to two main advantages: first, coin verification involves only a constant number of states (with
respect to coin size), thereby allowing for smaller coins; second, the reusability of coins within our scheme
grows linearly with the size of the coin, which is known to be optimal. Last, we suggest methods by which the
coins in our protocol could be implemented using weak coherent states and verified using existing experimental
techniques, even in the presence of detector inefficiencies.
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I. INTRODUCTION

Quantum cryptography has traditionally been associated
exclusively with quantum key distribution [1], but it encom-
passes a much larger class of tasks and protocols [2]. Notable
examples are quantum signature schemes [3–5], two-party
quantum cryptography [6–8], delegated quantum computation
[9,10], covert quantum communication and steganography
[11–14], quantum random number generation [15–17], quan-
tum fingerprinting [18–21], and quantum money [22–24].
Historically, many of these protocols have been extremely
challenging to implement with available technologies, but we
are currently approaching a point where both theoretical and
experimental developments have made it possible for the first
experimental demonstrations to emerge. We are thus entering
an exciting stage where practical quantum cryptography has
begun to expand rapidly beyond the realms of quantum key
distribution.

Quantum money, which was suggested by Weisner in 1970
[22] as a means to create money that is physically impossible
to counterfeit, is one of the first examples of quantum cryp-
tography. The basic aim of any quantum money scheme is to
enable a trusted authority, the bank, to provide untrusted users
with finitely reusable, verifiable coins that cannot be forged.
Verifiability ensures that honest users can prove the money they
hold is genuine, while unforgeability restricts the ability of an
adversary to dishonestly fabricate additional coins. Potential
drawbacks of Weisner’s original scheme were that verification
required quantum communication between the holder and the
bank, and moreover security of the scheme had not been proved
rigorously. Indeed, it was shown in Refs. [25–27] that many
variants of the scheme were vulnerable to so-called “adaptive
attacks”—attacks in which the adversary is allowed a number
of auxiliary interactions with the bank before trying to forge a
coin.

In 2012, Gavinsky [23] addressed both issues and presented
a fully secure quantum money scheme in which coins

are verified using three rounds of classical communication
between the holder of the coin and the bank. The scheme was
based on hidden matching quantum retrieval games (QRGs),
introduced in Ref. [28]. Nevertheless, the scheme could not be
considered practical, as the security analysis did not include
the effects of noise. This issue was addressed by Pastawski
et al. [29], in which a noise tolerant quantum money scheme
with classical verification was proposed that remains secure
as long as the overall transmission fidelity is greater than
1
2 + 1√

8
≈ 85.4%. The scheme requires only two rounds of

communication for verification and is secure even against
adaptive attacks. Following this, Ref. [24] presented a simpler
protocol, again based on hidden matching QRGs, in which
the verification procedure contained only a single round of
communication and displayed an increased noise tolerance
of up to 12.5%, where noise is defined as the probability of
a single honest verifier measurement returning an incorrect
outcome.

Beyond the secret-key quantum money schemes discussed
above, there has also been significant interest in public-
key quantum money schemes, proposed in [25], offering
computational security against quantum adversaries. Since
then, Farhi et al. [30] introduced the concepts of quantum
state restoration and single-copy tomography to further rule
out a large class of seemingly promising schemes. Following
this result, Farhi et al. [31] suggested a scheme based on knot
theory and conjectured that it is secure against computationally
bounded adversaries. However, whether a secure public-key
quantum money scheme exists without the use of oracles is an
open question and, so far, the majority of schemes that were
proposed have subsequently been broken [32].

In this work, we focus on secret-key quantum money
schemes with classical verification and propose a scheme
based on hidden matching QRGs. Utilising semidefinite
programming, we provide a full security proof of our scheme,
and show that by increasing the dimension of the underlying
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states, we can increase the error tolerance to as much as 23.03%
for states of dimension n = 14, while also proving that the
maximum noise tolerance in that case is 23.3%. Thus, the error
tolerance of our protocols is nearly optimal. We conjecture
that for large dimension, the error tolerance of our protocols
approaches 25% asymptotically, and we further prove that 25%
is the maximum possible error tolerance for a wide range of
quantum money protocols, including all those based on hidden
matching QRGs. Increasing the error tolerance has a twofold
benefit: as well as allowing the protocol to be performed in
regions of higher noise than was previously possible, it also
increases protocol efficiency since we show that security relies
on the size of the gap between the expected error rate and the
maximum tolerable error rate of the scheme, thereby allowing
smaller coins.

We use methods in semidefinite programming to prove
security in a substantially simpler manner compared to pre-
vious proposals such as Refs. [23,24]. Besides an increase in
noise tolerance, our scheme also has two additional advantages
compared to previous proposals: coin verification involves
only a constant number of states with respect to coin size,
thereby allowing for smaller coins, and the reusability of coins
within our scheme grows linearly with the size of the coin,
which is known to be optimal. Finally, we discuss how our
schemes can be implemented in practice using a coherent state
encoding, while also showing that they remain secure even in
the presence of limited detection efficiency.

Definitions and previous results

In this section we state various definitions that are needed to
introduce our quantum money schemes. We consider the case
of quantum money “minischemes” in which the bank creates
only a single quantum coin and the adversary attempts to use
this coin to forge another copy. It has been shown in Ref. [33]
that by adding a classical serial number to each coin, a secure
full quantum money scheme can be created directly from the
secure minischeme, and so the two are essentially equivalent.

Definition 1. A quantum money minischeme with classical
verification consists of an algorithm, Bank, which creates a
quantum coin $ and a verification protocol Ver, which is a
classical protocol run between a holder H of $ and the bank B,
designed to verify the authenticity of the coin. The final output
of this protocol is a bit b ∈ {0,1} sent by the bank, which
corresponds to whether the coin is valid or not. Denote by
VerBH ($) this final bit. The scheme must satisfy two properties
to be secure:

(i) Correctness: The scheme is ε-correct if for every honest
holder, we have

Pr
[
VerBH ($) = 1

]
� 1 − ε.

(ii) Unforgeability: Coins in the scheme are ε-unforgeable
if for any quantum adversary who has interacted a finite and
bounded number of times with the bank and holds a valid coin
$, the probability that she can produce two coins $1 and $2 that
are verified by an honest user satisfies

Pr
[
VerBH ($1) = 1 ∧ VerBH ($2) = 1

]
� ε,

where H is any honest holder.

The first property guarantees that all honest participants
can prove the coins they own are valid, while the second
property guarantees that a dishonest adversary cannot forge
the coins. The definition covers adaptive attacks by allowing
the adversary to interact with the bank (via the verification
procedure) a finite number of times before attempting to forge
the coin.

The schemes presented in this paper are based on quantum
retrieval games (QRGs), which we have mentioned but not
formally introduced. A QRG is a protocol performed between
two parties, Alice and Bob, and can be seen as a generalization
of state discrimination. Alice holds an n-bit string x, selected
at random according to a probability distribution p(x), which
she encodes into a quantum state ρx . She sends the state to
Bob, whose goal is to provide a correct answer to a given
question about x. Mathematically, a question is modelled as a
relation: if X is the set of possible values x can take, and if
A is the set of possible answers, the relation σ is a subset of
X × A. If (x,a) ∈ σ , this means that, given x, the answer a

is a correct answer to the “question” σ . Formally, a quantum
retrieval game is defined as follows.

Definition 2. Let X and A be the sets of inputs and answers
respectively. Let σ ⊂ X × A be a relation and {p(x),ρx} an
ensemble of states and their a priori probabilities. Then the
tuple G = (X,A,{p(x),ρx},σ ) is called a quantum retrieval
game. If Bob may choose to find an answer to one of a finite
number of distinct relations σ1, . . . ,σk , then we write the game
as G = (X,A,{p(x),ρx},σ1, . . . ,σk).

A particularly useful class of QRGs is the hidden matching
QRGs [23,24,34], in which the relations are defined by
matchings. A matching M on the set [n] := {1,2, . . . ,n},
where n is an even number, is a partitioning of the set into n/2
disjoint pairs of numbers [35]. A matching can be visualized
as a graph with n nodes, where edges define the elements
in the matching, as illustrated in Fig. 1. In general, there are
1×3 × . . . × (n − 1) = (n − 1)!! distinct matchings of any set
containing n elements. For our purposes, we focus on sets
of matchings where no two matchings in the set contain a
common element. We call such sets pairwise disjoint. The
maximum number of pairwise disjoint matchings is n − 1,
since if we consider the element 1 ∈ [n], it must be paired in
each matching with a distinct integer less than or equal to n.

Definition 3. A maximal pairwise disjoint set of matchings
R is a set of pairwise disjoint matchings on [n] such that
|R| := n − 1.

A matching on the set [n] can be equivalently represented as
a graph with n nodes, with each element (i,j ) of the matching
identified with an edge in the graph. Maximal pairwise disjoint
sets of matchings for n = 4, 6, and 8 are illustrated in Fig. 1.

FIG. 1. Maximal pairwise disjoint set of matchings for (a) n = 4,
(b) n = 6, and (c) n = 8. Color is used to represent each matching
within the maximal pairwise disjoint set.
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In hidden matching QRGs the set of possible inputs is the
set of all n-bit strings, each chosen with equal probability,
where n is an even number. Alice encodes her input into the
n-dimensional pure state

|φx〉 = 1√
n

n∑
i=1

(−1)xi |i〉, (1)

where xi is the ith bit of the string x. Note that this state
corresponds to a O(log2 n) qubit state, so that the number of
qubits needed in the scheme scales favorably with n.

The relations in this game are defined by the matchings:
given a matching, the correct answers are the ones which
correctly identify the parity of the bits connected by an edge
in the matching. For example, if (1,2) is an element of the
matching, the measurement should output x1 ⊕ x2. Formally,
given a perfect matching M1, the set of answers is given by

A = {(i,j,b) : i,j ∈ {1, . . . ,n},b ∈ {0,1}}
and the corresponding relation is

σ1 = {(x,i,j,b) : xi ⊕ xj = b and (i,j ) ∈ M1}.
Bob is able to find a correct answer to any matching of his
choice with certainty simply by measuring in the basis

B =
{

1√
2

(|i〉 ± |j 〉)
}
, with (i,j ) ∈ M. (2)

This is because the outcome 1√
2
(|i〉 + |j 〉) can only occur if

xi ⊕ xj = 0, and similarly 1√
2
(|i〉 − |j 〉) can only occur if xi ⊕

xj = 1.
Previous quantum money schemes based on hidden match-

ing QRGs have used only two matchings for verification. In
the following section, we generalize these schemes to the case
of an arbitrary number of matchings and show that this allows
us to significantly increase the noise tolerance of the resulting
schemes.

II. QUANTUM MONEY SCHEME

Here we present a quantum money scheme which is secure
even in the presence of up to 23% noise. As in Ref. [24],
the verification protocol requires only one round of classical
communication.

In this scheme, the bank randomly chooses a number of
n-bit classical strings and encodes each of them into the hidden
matching states, given by Eq. (1). Essentially, the coin is a
collection of these independent quantum states, and each of
the quantum states can be thought of as an instance of a QRG.
We assume that there is a maximal pairwise disjoint set of
matchings on [n], known to all participants, which we call R.
This set specifies the n − 1 possible relations defined within
each QRG, and each state in the coin represents a QRG. To
verify a coin, the holder will pick a small selection of the states
from the coin and randomly choose a relation for each. The
holder will perform the appropriate measurement [defined by
Eq. (2)] to get an answer for each QRG under each chosen
relation. The holder then sends these answers to the bank
which returns whether or not more than a specified fraction
of the answers are correct. If they are, the coin is accepted as

valid; otherwise, it is rejected. The scheme is formally defined
below and illustrated in Figs. 2 and 3.

Bank algorithm

(1) The bank independently and randomly chooses q n-bit
strings which we will call x1, . . . ,xq .

(2) For i ∈ [q], the bank creates φxi := |φxi 〉〈φxi |, where

|φxi 〉 := 1√
n

n∑
j=1

(−1)x
i
j |j 〉.

For each i we define the QRG Gi = (Si,Ai,{φxi }xi ,

σ1, . . . ,σn−1), where R = {σ1, . . . ,σn−1} is a maximal pair-
wise disjoint set of matchings known to all participants in the
scheme.

(3) The bank creates the classical binary register r and
initializes it to 0q .

(4) The bank creates the counter variable s and initializes
it to 0.

(5) The pair ($,r) = (
⊗q

i=1 φxi ,r) is the coin for the
minischeme. The bank keeps the counter s in order to keep
track of the number of verification attempts.

Ver algorithm

(1) The holder of the coin randomly chooses a subset of
indices, L ⊂ [q] such that ri = 0 for each i ∈ L. The indices
i ∈ L specify the selection of games Gi which will be used as
tests in the verification procedure. For each i ∈ L, the holder
sets the corresponding bit of r to be 1 so that this game cannot
be used in future verifications.

(2) For each i ∈ L, the holder picks a relation σ ′
i at random

from R and applies the appropriate measurement to obtain
outcome di .

(3) The holder sends all triplets (i,σ ′
i ,di) to the bank.

(4) The bank checks that s < T , where T is the predefined
maximum number of allowed verifications for the coin. If
s = T , the bank declares the coin as invalid.

(5) For each i, the bank checks whether the answer is correct
by comparing (i,σ ′

i ,di) to the secret xi values. The bank accepts
the coin as valid if and only if more than l(c − δ) of the answers
are correct, where c is a correctness parameter of the protocol,
l = |L|, and δ is a small positive constant.

(6) The bank updates s to s + 1.

We say that an instance of the verification algorithm has
been passed or failed if the final output by the bank is “valid”

FIG. 2. Schematic illustration of the Bank algorithm for n = 8.
The bank selects q eight-bit strings and initializes the q-bit register
r to the zero string. The bank creates the corresponding hidden
matching states and sends these, together with r , to the holder of
the coin.
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FIG. 3. Schematic showing the verification algorithm. The veri-
fier selects a sample {ρx1 ,ρx4 , . . .} of the states contained within the
coin which have an r value of 0. He randomly chooses matching mea-
surements and applies them to get classical measurement outcomes
which he sends to the bank, together with the index of the state and
the matching chosen. The bank checks these against its secret strings,
as well as checking s < T . Finally, the bank declares an output based
on the number of incorrect outcomes.

or “invalid” respectively. Coins can be verified at most T times
until the Hamming weight of r is greater than T l, at which
point the coin is returned to the bank to be refreshed. We
choose T to be small but linear in q. Any such choice would
be acceptable but, for the sake of definiteness, in what follows
we set T := q/(1000l). We note that having T scale linearly
with q is optimal for any quantum money scheme [23] and that
this is an improvement over previous protocols (for example
those in Refs. [23,24]).

The noise of the protocol is defined as the probability that
an honest verifier obtains an incorrect outcome when making
the honest measurement on a single QRG state (i.e., in step 2
of the verification procedure). In the ideal setting we can set
c = 1, since an honest participant in possession of a correct
state will always get a correct answer to a relation. Of course,
in the practice system imperfections inevitably lead to errors
so that even when all participants are honest, it is not certain
that the holder’s measurement will return a correct answer.
Thus, in the presence of errors, we must have c < 1, and the
smallest value of c for which we can retain security determines
the noise tolerance of the protocol.

We note that this scheme requires the bank to maintain
a small classical database to record the number of times the
verification protocol has been run—i.e., the bank’s database is
“nonstatic,” and must be updated after each run of verification.
Although this requirement demands more from the bank than
completely static database models, we believe the requirement
is both minimal and realistic, and allows significant simplifi-
cations to the security analysis.

Nevertheless, in some cases it may be desirable for the bank
to have a completely static database—for example in applica-
tions in which the bank consists of many small decentralized
branches. In such a scenario, attacks targeting multiple branch
locations may be able to compromise security by gaining
additional verification attempts. To provide safeguards against
these types of attack, our scheme could be modified in two
different ways.

The simplest method would be to assume that all bank
branches have access to a single common database, thereby
preventing verifiers from performing too many verification
attempts on a single coin. Alternatively, we could add an

additional round of classical communication to the verification
protocol, similarly to Ref. [23], in which the bank selects the
states to be used in the verification protocol. The effect would
be to transform our scheme into one which uses a fully static
database, but still retains the same level of noise tolerance. Se-
curity of this modified scheme can be proved by directly apply-
ing the arguments in Ref. [23] to show that the additional veri-
fication attempts do not (significantly) help the adversary [36].

Security

In this section we prove that the scheme defined above is
secure according to Definition 1.

1. Correctness

Correctness of the scheme follows simply from the Hoeffd-
ing bound [37]. In the honest case, if the holder of a coin has
probability c of getting a correct answer for each of the l QRGs
selected in the verification protocol, then his probability of get-
ting fewer than (c − δ)l correct answers overall is bounded by

P(honest fail) � e−2lδ2
. (3)

Based on the security analysis in the following section, we
choose δ to be half of the gap between the error rate an honest
participant expects and the minimum error rate the adversary
can achieve. I.e., we set δ := (emin − β)/2, where emin is the
minimum error rate achievable by the adversary [derived
below in Eq. (27)], and β := 1 − c is the error rate expected
in an honest run of the protocol.

2. Unforgeability

We assume the adversary is in possession of a valid coin
and first address a simple forging strategy available to the
adversary based on manipulating the r register attached to the
coin. The adversary is allowed to set at most q/1000 of the r

register entries to 1. She creates ($1,r1) and ($2,r2) to send to
the two honest verifiers, Ver1 and Ver2 respectively. If she sets
r1(i) = 1 and r2(i) = 0, she can be certain that Ver1 will not
select the ith state to test, and so can forward the perfect state to
Ver2. In this way, q/1000 of the states in the coins sent to each
verifier will be perfect, and will not cause errors. The remaining
positions must have r register values of 0 for both verifiers.
Similarly, the adversary is able to use the auxiliary verification
attempts to her advantage. We make a worst-case assumption
and assume that the adversary gets full knowledge of every
state used in an auxiliary verification attempt. Since there are
at most T attempts allowed, each of which involve l states, the
adversary knows the identity of at most q/1000 of the states.
Since the states are prepared independently, this knowledge
does not provide any information on the remaining states.

The combined effect of the above two strategies is that the
adversary is able to exactly replicate q/500 of the states in
the coin, as shown in Fig. 4. To prove coins are unforgeable,
we consider the remaining 997q/1000 states for which the r

register is zero for both verifiers, and for which the adversary
has no auxiliary information. In reference to Fig. 4, we refer
to these states as the white states, and start by considering a
single such state, φxi := |φxi 〉〈φxi |, contained in the coin. For

062334-4



QUANTUM MONEY WITH NEARLY OPTIMAL ERROR TOLERANCE PHYSICAL REVIEW A 95, 062334 (2017)

FIG. 4. Representation of the states within the quantum coins
sent to the verifiers. The first block on the far left represents all states
for which the adversary set r = 1 for Ver1, and r = 0 for Ver2. The
adversary knows that Ver1 cannot select these states for testing, and
so is able to forward on the perfect states to Ver2. The second block of
states represents the same, but with the roles of the verifiers reversed.
The “Aux. Ver” states in the diagram are the ones that we assume
are known to the adversary via auxiliary verifications. The remaining
states in white are the ones we consider below—those states for which
the r register is zero for both verifiers, and which have not been used
in auxiliary verifications.

simplicity, we drop the superscript on the n-bit strings xi in all
that follows.

The idea behind the proof is to relate the probability that
the forger can use a single white state to create two states that
pass the verification test of the two honest verifiers, to the
average fidelity of these two states with the original state |φx〉.
The maximization of this average fidelity corresponds to the
optimal attack, which can be cast as a semidefinite program. By
focusing on the dual program, we can upper bound the value
of the semidefinite program and therefore bound the forging
probability of the adversary. Last, we show that coherent
attacks on multiple states cannot help the adversary to forge.

Since the adversary has a valid coin, she holds the unknown
state

|φx〉 = 1√
n

n∑
i=1

(−1)xi |i〉. (4)

From this state, the adversary wishes to create two states, ηx

and τx , which, when measured by the honest verifiers, will give
the correct answer to a randomly chosen relation in R. At this
stage we ignore any auxiliary verification attempts available
to her. Consider the normalized state sent to Ver1,

ηx =
n∑

i,j=1

aij |i〉〈j |. (5)

Suppose the verifier chooses to measure using the matching
Mα = {(i1,j1), . . . ,(in/2,jn/2)}, where α ∈ {1,2, . . . ,n − 1}.
To find a correct answer to the relation σα defined by this
matching, an honest verifier will apply the measurement
with projectors in the set {|+ikjk

〉〈+ikjk
|,|−ikjk

〉〈−ikjk
| : k =

1, . . . ,n/2}, where |±ikjk
〉 := 1√

2
(|ik〉 ± |jk〉). An incorrect

result is obtained whenever the verifier finds an incorrect
value for xik ⊕ xjk

, which happens whenever the measurement
outcome is one of the form

1√
2

[|i〉 − (−1)xi⊕xj |j 〉]. (6)

This happens with probability

p
α,x
Ver1

= 1

2

(
1 −

n/2∑
k=1

(−1)xik
⊕xjk aikjk

+ (−1)xik
⊕xjk ajkik

)
. (7)

Thus, the probability of an incorrect answer to σα is given by
a subset of the off-diagonal elements of the density matrix
ηx . The off-diagonal elements occurring are exactly those
with indices paired by the matching Mα . Since the set of
relations form a maximal pairwise disjoint set, the off-diagonal
matrix elements appearing in the error probability for different
relations will all be distinct. Therefore, averaging over all
possible relations that could be chosen by the verifier allows
us to significantly simplify the adversary’s error probability,
which becomes

px
Ver1

= 1

n − 1

n−1∑
α=1

p
α,x
Ver1

= 1

2(n − 1)

⎛
⎝n −

n∑
i,j=1

(−1)xi⊕xj aij

⎞
⎠

= n

2(n − 1)
(1 − Fx), (8)

where we have defined

Fx := 〈φx |ηx |φx〉 = 1

n

∑
i,j

(−1)xi⊕xj aij . (9)

Since the adversary does not know the secret string x, rather
than holding the state in Eq. (4), she instead holds a mixture
over the possible x values. We define F := 1

2n

∑
x Fx and take

an average over x values to get

pVer1 = 1

2n

∑
x

px
Ver1

= 1

2n

∑
x

n

2(n − 1)
(1 − Fx)

= n

2(n − 1)
(1 − F ). (10)

Essentially then, to successfully forge a coin, the adversary
is trying to create two states, ηx and τx , which both have a
high fidelity with the original state |φx〉. Let us define Gx =
〈φx |τx |φx〉, and G := 1

2n

∑
x Gx . For the purpose of forging,

the adversary needs both Ver1 and Ver2 to accept the coin she
sends, which requires her to make both error probabilities as
small as possible. From the above result, we can relate this to
maximizing the average fidelity of the states ηx and τx with
the original state. This problem can be cast as a semidefinite
program as follows.

Let � : L(X ) → L(Y ⊗ Z) be a physical channel taking
states in Hilbert space X to states in the Hilbert space Y ⊗ Z ,
where both Y and Z are isomorphic to X . We want to find the
channel that maximizes

F = 1

2n

2n∑
x=1

〈φx |ηx |φx〉 + 〈φx |τx |φx〉
2

, (11)

where ηx = TrZ [�(|φx〉〈φx |)] and τx = TrY [�(|φx〉〈φx |)]. In
other words, ηx is the reduced state of the channel output
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representing the state held by Ver1, and τx is the reduced
state of the channel output representing the state held by Ver2.
This maximization is subject to � being a completely positive
trace preserving linear map. To express this maximization in
the standard form of a semidefinite program, we express the
channel as an operator using the Choi representation. We fix
the preferred basis to be {|i〉}i=1,...,n, the basis used to define the
hidden matching states in the ensemble. Given this choice, the
Choi operator corresponding to the channel � is an operator
J (�) in L(X ⊗ Y ⊗ Z), given by

J (�) =
n∑

i,j=1

|i〉〈j |X ⊗ �(|i〉〈j |)YZ . (12)

Using the facts that 〈φx |i〉 = 〈i|φx〉 for all states in the
ensemble, and that � is a linear map, it can be shown that

TrXYZ
[(

φX
x ⊗ φY

x ⊗ 1Z
)
J (�)

] = 〈φx |ηx |φx〉Y , (13)

and similarly that

TrXYZ
[(

φX
x ⊗ 1Y ⊗ φZ

x

)
J (�)

] = 〈φx |τx |φx〉Z , (14)

where here, for ease of notation, we have used the superscript
to denote the relevant Hilbert space. With this we can rewrite
the problem in Eq. (11) as the problem of finding the operator
J (�) which maximizes

1

2n+1

2n∑
x=1

TrXYZ

× [((
φX

x ⊗ φY
x ⊗ 1Z

) + (
φX

x ⊗ 1Y ⊗ φZ
x

))
J (�)

]
. (15)

The conditions that the channel must be completely positive
and trace preserving lead to the conditions that J (�) must
be positive semidefinite and TrYZ (J (�)) = 1X . Written in
standard form, the semidefinite program corresponding to the
maximum average fidelity is given by

maximize: 〈Q(n),X〉,
subject to: TrYZ (X) = 1X ,

X � 0,

(16)

where

Q(n) = 1

2n+1

2n∑
x=1

((
φX

x ⊗ φY
x ⊗ 1Z

) + (
φX

x ⊗ 1Y ⊗ φZ
x

))
.

(17)
The dual problem is simply

minimize: Tr(Y ),

subject to: 1YZ ⊗ Y � Q(n),

Y ∈ Herm(X ),

(18)

since 〈1X ,Y 〉 = Tr(Y ) and the adjoint of the partial trace is
the extension by the identity. The dual problem approaches
the optimal value from above, so any feasible point (i.e., any
operator Y that satisfies the constraints of the dual problem)
gives us an upper bound on the maximum average fidelity. A
feasible point can easily be found in terms of the matrix Q(n)
as

Y = ||Q(n)||∞1X (19)

so that we arrive at the following upper bound on the average
fidelity:

F � n||Q(n)||∞. (20)

Thus, for quantum money protocols using states of dimension
n and a maximal disjoint set of matchings, we can upper bound
the error probability of the adversary in terms of the operator
norm of Q(n). Computing this norm for different values of n

leads to the bound

F � 1

2
+ 1

n
, (21)

which we have verified numerically for n � 14 and we
conjecture holds for any n. From now on, we simply assume
that n � 14. The analysis above enables us to restrict the
achievable error probabilities for the two verifiers on a single
game as

pVer1 = n

2(n − 1)
(1 − F ), pVer2 = n

2(n − 1)
(1 − G) (22)

subject to

1

2
(F + G) � 1

2
+ 1

n
, (23)

which leads to

pVer1 + pVer2 � 1

2
− 1

2(n − 1)
. (24)

Until now, we have considered only a single white state out
of the l games used in the verification protocol. Let us now
consider l such games, and let p

(i)
Verj

be the error probability
for honest verifier j on the ith run of the verification protocol.
We claim that when we have l independent white states (in the
sense that each xi is chosen independently), it is still the case
that

p
(i)
Ver1

+ p
(i)
Ver2

� 1

2
− 1

2(n − 1)
(25)

for all i, regardless of the outcomes of previous measurements
made by the verifiers. Though intuitively reasonable, this claim
is far from trivial, but can be proved using a teleportation
argument due to Croke and Kent [38] (see Appendix) so that,
essentially, we can imagine the adversary acts independently
on each game in the verification protocol. Therefore, on each
and every white state, at least one verifier must have an error
probability of at least

1

2

(
p

(i)
Ver1

+ p
(i)
Ver2

) = 1

4
− 1

4(n − 1)
. (26)

Overall, if we include the effects of r register manipulation
and auxiliary verifications, at least one verifier, say Ver1, must
have an average error probability over all l games of at least

emin = 997

999

(
1

4
− 1

4(n − 1)

)
≈ 1

4
− 1

4(n − 1)
. (27)

Using Hoeffding’s inequality, the probability of both verifiers
accepting the coin can be bounded as

P(both Ver1 and Ver2 generate outcome “valid”)

� P(Ver1 generates outcome “valid”)

� e−2lδ2
, (28)
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where δ = (emin − β)/2, as above. As long as β < emin,
the Hoeffding bound can be used to show that it becomes
exponentially unlikely for both verifiers to pass the verification
protocol. By increasing the maximum noise tolerance of the
protocol we increase the size of δ, thereby allowing smaller
sample sizes in the verification protocol, which increases the
reusability of coins. If we choose n = 4, our scheme would
be able to tolerate 16.6% noise, and for n = 14 it can tolerate
up to 23% noise. This concludes the proof of security against
forging.

In the next section, we prove an upper bound on the error
tolerance achievable for a general class of classical verification
quantum money schemes, and show this bound limits to 25%
as the dimension of the underlying states is increased. This
implies that our protocols are nearly optimal in terms of error
tolerance. When proving this result, we assume only that the
coin is a collection of quantum states each identified with a
secret classical string, and that to verify the coin the holder
must declare a number of single bit values which can be
checked against the classical record.

III. MAXIMUM ACHIEVABLE NOISE TOLERANCE

Suppose we have a scheme in which the coin consists
of many independently chosen n-dimensional pure quantum
states, φx = |φx〉〈φx |, with x ∈ X and where x is a classical bit
string chosen according to some probability distribution. To
verify each state, the holder performs some positive operator-
valued measure (POVM), Mx = {Mcor

x ,M inc
x }, to ascertain

one bit of information about each of the states used in
the verification protocol. The bit values resulting from the
measurement outcomes are checked against a classical record
to verify whether or not the coin is genuine.

Lemma 1. For any quantum money scheme of the above
type, the maximum tolerable noise emax must be less than

emax � 1

2
− 1

4

n + 2

n + 1
. (29)

Proof. We prove this by explicitly illustrating a strategy
available to the adversary. The adversary holds the unknown
state φx , which lives in Hilbert space H. She extends the
state to φx ⊗ �, where � = 1

n
1n, and symmetrises the system.

Specifically, she performs the mapping

φx ⊗ � → S2(φx ⊗ �)S2, (30)

where S2 is the projector onto H2
+, the symmetric subspace

of H⊗2, and where the state on the right-hand side is not
normalized. The resulting normalized state of each clone is
[39]

ηx = vφx + (1 − v)�, (31)

where v := 1
2

n+2
n+1 . By the correctness requirement of quantum

money schemes, an honest measurement on the correct state
should always give a correct answer so that the coin is declared
valid, i.e.,

Tr
(
Mcor

x φx

) = 1. (32)

We further assume that, without access to the state φx , the
adversary has no information on x and can do no better than

FIG. 5. Plot showing the theoretical bound on protocol noise
tolerance (dotted line) and the noise tolerance achieved by the
protocols in Sec. II (bold line) as the dimension of the underlying
systems increase.

to guess randomly. This means her probability of declaring a
correct bit value is 1/2, i.e., [40]

Tr
(
Mcor

x �
) = 1/2. (33)

Both honest verifiers hold the state ηx . Using Eqs. (32) and
(33), the probability that an honest verifier gets a correct
measurement outcome is

Tr
(
Mcor

x ηx

) = vTr
(
Mcor

x φx

) + (1 − v)Tr
(
Mcor

x �
)

= v + (1 − v)

2
. (34)

Expressing v in terms of the dimension of the system shows
that this strategy (which is always available to the adversary)
leads to the honest verifiers finding an error rate of

emax = 1

2
− 1

4

n + 2

n + 1
, (35)

and so for any such scheme to be secure an honest participant
must expect an error rate less than emax in an honest run of the
protocol.

Our analysis shows that for any scheme with n = 4 the
tolerable noise is at most 20%, which complements our results
in Sec. II where we described a protocol with n = 4 which
tolerated noise up to 16.6%. For n = 14, the bound in this
section shows that any such scheme has a noise tolerance
of at most 23.3%. For n = 14, our protocol can achieve an
error tolerance of 23.03%, and so it is nearly optimal. As
we increase the dimension of the quantum states used for the
coins, the upper bound on the tolerable noise approaches 25%
which coincides with our conjecture for the tolerable noise in
our protocols above (see Fig. 5).

IV. EXPERIMENTAL IMPLEMENTATION

The protocol presented in Sec. II gives rise to three
main technical challenges when one considers experimental
implementations, namely, the security analysis provided does
not account for losses; the bank requires a source of complex,
high-dimensional states; and the protocol requires that the
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coin holders have the ability to store states in quantum
memory. In this section we address the first two issues so
that a proof-of-principle implementation of the verification
algorithm of the quantum money schemes could be performed
with current technology.

A. Detector losses

Here we tackle the first of the issues, and consider an
implementation in which the verifiers use imperfect detectors
with efficiency η. We assume that all detector losses are
random and cannot be manipulated by the adversary. In this
paper we do not consider channel loss, as we assume that coin
transfers occur over short distances, meaning channel losses
are less relevant. Nevertheless, many of the methods presented
here would remain valid in the presence of small channel loss
with only minor modifications necessary. Note that detectors
are employed by the holder and not the bank.

To incorporate detector loss, it is necessary to modify the
verification protocol, previously stated in Sec. II, so that it
becomes the following.

Ver algorithm

(1) The holder randomly chooses a subset of indices, L ⊂
[q], with l = |L|, such that ri = 0 for each i ∈ |. The indices
i ∈ L specify the selection of games Gi which will be used as
tests for the verification procedure. For each i ∈ L, the holder
then sets the corresponding bit of r to be 1 so that this game
cannot be used in future verifications.

(2) For each i ∈ L, the holder picks a relation σ ′
i at random

from R and applies the appropriate measurement to get
answer di . If there is no measurement outcome we say the
measurement was unsuccessful and set di = ∅. We define the
number of successful measurement outcomes to be l′.

(3) If l′ < lmin := (η − ε)l, where ε > 0 is a small security
parameter, the verifier aborts the protocol.

(4) The holder sends all triplets (i,σ ′
i ,di) to the bank.

(5) The bank checks that s < T , where T is the predefined
maximum number of allowed verifications for the coin. If
s = T , the bank declares the coin as invalid.

(6) For each i, the bank checks whether the answer is correct
by comparing (i,σ ′

i ,di) to the secret xi values. The bank ignores
those outcomes for which di = ∅, and accepts the coin as valid
only if more than l′(c − δ) of the answers are correct, where
c = 1 − β is a measure of the channel correctness and δ is a
small positive constant.

(7) The bank updates s to s + 1.

1. Correctness

Correctness of the scheme follows from Hoeffding’s in-
equality. When all participants are honest, it is exponentially
unlikely for l′ to be less than lmin, so the protocol will not
abort, except with a negligible probability. If the protocol does
not abort, the verifier has at least lmin successful measurement
outcomes, each with an independent probability c of being
correct. Overall, the probability of the verification failing is
bounded by

P(Ver fails) � exp[−2lminδ
2] + exp[−2lε2], (36)

where now δ = (e′
min − β)/2, with e′

min derived in Eq. (40)
below as the minimum average error rate achievable by the
adversary.

2. Unforgeability

Since the protocol now includes detector losses, the
adversary may not have to send states to each verifier for each
game in the verification protocol, and she could attempt to
hide losses arising from her strategy in the losses arising from
detector inefficiency. As a consequence, the set of strategies
available to the adversary is increased, and we must make sure
our arguments in Sec. II still apply.

Let U1 and U2 be q-bit strings representing whether or not
the adversary sent a state to Ver1 and Ver2 respectively, for each
of the q games created by the bank. An entry of 1 means the
adversary sent a state to the verifier, while an entry of 0 means
the adversary did not send a state to the verifier. We want to
show that, in order for the protocol not to abort, W (Ui) � γ q,
where γ := 1 − 3ε

η
and W is the Hamming weight. Suppose

W (Ui) = γ q. Then, in step 1 of the verification protocol,
Veri takes a sample, Vi , consisting of l of the entries of Ui .
Hoeffding’s inequality gives

P

[
(Vi) �

(
γ + ε

η

)
l

]
� 1 − exp

[
−2

ε2

η2
l

]
. (37)

If W (Vi) � (γ + ε
η
)l, then the probability of at least lmin

successful measurement outcomes is given by

P

[
at least lmin succ. meas. | W (Vi) �

(
γ + ε

η

)
l

]

� exp[−2lε2]. (38)

The probability of the protocol proceeding past step 3 of
verification is therefore

P [no abort|W (Ui) = γ q] � exp

[
−2

ε2

η2
l

]
+ exp[−2ε2l].

(39)

In what follows we assume W (Ui) � γ q, since otherwise the
above shows that the verifiers will abort with near certainty.
This means the adversary is able to use any strategy that leads
to channel losses of at most 3ε

η
for each verifier, as these can be

hidden within the normal fluctuations of detector loss. Suppose
there is a strategy which gives at least (1 − 3ε

η
)q states to each

verifier, and which leads to an average error probability (on
only the states tested) of e′

min for at least one of the verifiers.
Then, there is a strategy which gives q states to each verifier,
and leads to an average error probability for at least one of
the verifiers of (1 − 3ε

η
)e′

min + 3ε
2η

(the adversary simply sends

the maximally mixed state to each verifier in place of the 3ε
η

losses). Since this strategy falls under the scope of the analysis
in Sec. II, we know that the resulting error rate must be at least
emin, which means

e′
min �

emin − 3ε
2η

1 − 3ε
η

. (40)

The parameter ε can be chosen to be arbitrarily small by
increasing the sample size l. As such, the protocol is able
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to handle arbitrarily large detector losses, and leads to noise
tolerance that can be kept arbitrarily close to the noise tolerance
derived for the case of perfect detectors.

Each verifier tests at least lmin states, and at least one verifier
expects an error rate of e′

min. The probability of this verifier
passing the test is bounded as

P (error rate < e′
min − δ) � exp[−2lminδ

2]. (41)

Combining Eqs. (39) and (41), the probability that the
adversary is able to forge a coin is given by

P (forgery) � exp

[
−2

ε2

η2
l

]
+ exp[−2lε2] + exp[−2lminδ

2].

(42)

B. Coherent state implementation

In this section we tackle the second issue arising when
considering experimental realizations of the scheme—the
bank must create hidden matching states of the form in Eq. (1),
which are high-dimensional states of high complexity. The
implementation of hidden matching quantum retrieval games
has been studied extensively in Ref. [34], where the coherent
state mapping defined in Ref. [41] was used to approximate
each hidden matching state by a sequence of n coherent states
of the form

|α,x〉 = e−|α|2/2
∞∑

k=0

αk

k!
(a†

x)n|0〉 =
n⊗

i=1

∣∣∣∣(−1)xi
α√
n

〉
, (43)

where

a†
x = 1√

n

n∑
i=1

(−1)xi b
†
i (44)

and {b†1,b†2, . . . ,b†n} are the creation operators of the n modes.
We call each sequence of coherent states a block, so that
a single block is used to approximate a hidden matching
state. As outlined in Ref. [34], Bob’s measurement can then
be performed using linear optics circuits and single-photon
detectors.

In the absence of a phase reference, the phase of each block
is randomized, which implies that each block is equivalent to
a classical mixture of number states [42]. More specifically,
writing α = eiθ |α|, we have∫ 2π

0

dθ

2π
|α,x〉〈α,x| = e−|α|2

∞∑
k=0

|α|2k

k!
|k〉〈k|x, (45)

where |k〉〈k|x is a state of k photons in the mode a
†
x . Thus,

the probability of obtaining a particular number of photons
depends only on α, which is a free parameter within the
coherent state mapping. We consider the following three cases.

1. Zero photons in the block

In this case the state emitted is simply the vacuum state.
If the adversary chooses to forward a state on to the verifiers,
she can do no better than to induce a 50% error rate, and it
is simple to show that it is never beneficial for her to do so.
This scenario can therefore be considered a “source” loss, as
opposed to a channel or detector loss. Crucially, since these

losses are not controllable by the adversary, they can be treated
in the same manner as detector losses in Sec. IV A simply by
including the source loss into the detector loss parameter η.
The probability of zero photons being emitted is p0 = e−|α|2 .

2. One photon in the block

In this case, the state emitted is equivalent to the ideal
hidden matching state in Eq. (1) since

|1〉x = a†
x |0〉 = 1√

n

n∑
i=1

b
†
i |0〉 = 1√

n

n∑
i=1

(−1)xi |i〉, (46)

where |i〉 is a single-photon state in the mode bi . Therefore,
whenever the bank’s source emits a single photon, the analysis
in Sec. II applies. The probability of one photon being emitted
is p1 = |α|2e−|α|2 .

3. More than one photon in the block

In this case we assume the worst case scenario: whenever
the source emits more than one photon to represent a hidden
matching state, the adversary can perfectly forge that state. The
resulting error rate for the adversary is e′

min( p1

p1+p2+
), where

p2+ = 1 − p0 − p1. For small |α|, p2+ ≈ |α|4
2 , while p1 ≈

|α|2, so that p2+ � p1 and the adversary’s error probability is
almost unchanged by using coherent states.

V. CONCLUSION

We presented a family of unconditionally secure classical
verification quantum money schemes which are tolerant to
noise up to 23%, and which we conjecture tolerate noise
up to 25%. We further proved that 25% is the maximum
noise tolerance achievable for a wide class of quantum
money schemes, including all classical verification secret-key
schemes previously proposed. The security of our schemes
depends on the difference between maximum tolerable noise
and expected noise, meaning the increase in maximum
tolerable noise increases the efficiency of our scheme, allowing
for smaller, more reusable coins. The techniques we use to
prove security differ considerably to previous papers, and
the reusability of our coins is optimal [23] in that it scales
linearly with the number of qubits in the coin. This is a
significant improvement when compared to Ref. [24], in which
the reusability scales as q1/3, and Ref. [23], in which reusability
scales as q1/4, where q is the total number of qubits in the
coin. With realistic assumptions on experimental equipment,
we expect that, using n = 8, a coin containing 109 qubits
would use l = 18 000 states for each verification, and would
be reusable T = 100 times for a security level of 10−6. Last,
we suggested methods of adapting our techniques to facilitate
experimental implementations of the scheme. We show that
the schemes can be implemented using weak coherent states
even in the presence of limited detector efficiency.
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APPENDIX

1. Overview of argument

In the main paper, we claim that the adversary cannot use
coherent attacks on multiple states in order to beat the bound
given in Eq. (24), even when conditioned on the states chosen
by the bank, and on the outcomes of previous measurement
results found by the verifiers. In this section we formally prove
our claim using a teleportation argument similar to the one
introduced by Croke and Kent in Ref. [38], so that each game
can essentially be viewed as independent of all others.

In order to apply the teleportation argument, we must first
introduce a modified individual setting, in which the adversary
is allowed an additional ability. We show that this modification
does not help the adversary to cheat. We then show that any
coherent strategy can be transformed into a modified individual
strategy. Therefore, any coherent strategy cannot beat the
bounds proved for the unmodified individual case, as claimed.

2. Modified individual attacks

In the individual setting, the verifiers each receive a single
hidden matching state and apply the verification protocol
to test its authenticity. As specified by the protocol, the
verifiers randomly choose to measure the state they receive
using one of the matching measurements. We include this
random choice of matching into the mathematical description
of the measurement, and group the outcomes to be either
“correct” or “incorrect.” It can be shown that if the bank creates
φx = |φx〉〈φx |, the verifiers’ measurement is described by the
POVM,

�x = {�cor,x,�inc,x} = n

2(n − 1)

{
n − 2

n
I + φx, I − φx

}
.

(A1)

Suppose now the adversary has the additional power of being
able to force the verifiers to apply a correction unitary (which
will be the teleportation corrections) to their measurement
outcomes before they are sent to the bank. The adversary must
specify the correction operation before sending the states to the
verifiers, and, crucially, the correction operation is such that it
is simply a permutation of the set of hidden matching states.
For example, suppose the teleportation operation takes input
|φx〉 and outputs |φx ′ 〉, with correction operator C. In this case,
before sending the states, the adversary will tell the verifiers
that they must apply correction C to their measurement
outcomes. In effect then, the verifiers will measure

�x ′ = {�cor,x ′
,�inc,x ′ }

= n

2(n − 1)

{
n − 2

n
I + φx ′ , I − φx ′

}
, (A2)

since the correction applied to �inc,x ′
is �inc,x . On average,

given φx , it is not possible for the adversary to create two

states, ηx and τx , such that Tr[�inc,x ′
(ηx + τx)] < p. If it were

possible, then it would imply that the adversary can clone φx ′

better than what is allowed by quantum mechanics (and our
arguments in the main paper). This is because if the adversary
was given φx ′ he could easily transform it to φx by applying C,
and then perform the strategy to get two copies with a fidelity
higher than the bound proved in the main paper. Therefore the
additional power given to the adversary does not allow her to
decrease the value of pVer1 + pVer2 .

3. Coherent strategy

We now consider the case of N games created by the bank.
The bank creates

1

2Nn

∑
x1,x2

|x1〉〈x1|X1 ⊗ |x2〉〈x2|X2

⊗|φx1〉〈φx1 |A ⊗ |φx2〉〈φx2 |B. (A3)

The X1 and A registers contain the first N − 1 secret strings
selected by the bank and the corresponding hidden matching
states, respectively. The X2 and B registers contain the N th
secret string selected by the bank and its corresponding hidden
matching state. Only the A and B registers are accessible to
the adversary. We assume for a contradiction that there exists
a strategy available to the adversary such that, conditional on
the value in the X1 register, and conditional on the verifiers
obtaining specific outcomes in previous measurements, the
value of pVer1 + pVer2 in the N th game is decreased below the
bound in Eq. (24).

We describe this strategy as follows—upon receiving
the states from the bank, the adversary applies the unitary
operation SABC so that the state becomes

1

2Nn

∑
x1,x2

|x1〉〈x1|X1 ⊗ |x2〉〈x2|X2

⊗SABC(|φx1〉〈φx1 |A ⊗ |φx2〉〈φx2 |B ⊗ |0〉〈0|C)S†
ABC

= 1

2Nn

∑
x1,x2

|x1〉〈x1|X1 ⊗ |x2〉〈x2|X2

⊗|�x1x2〉〈�x1x2 |AA′BB ′C ′ . (A4)

The A,A′ registers are the spaces that contain the states that
will be sent to Ver1 and Ver2 (respectively) for the first N −
1 games. The B,B ′ registers are the spaces that contain the
states that will be sent to Ver1 and Ver2 (respectively) for
the N th game. The C registers are auxiliary registers held
by the adversary. We assume that the bank measures the X1

register, and gets a state, x1, which satisfies the conditions in
the assumption. The state held by the adversary is then

1

2n

∑
x2

|�x1x2〉〈�x1x2 |. (A5)

The adversary gives the A,A′,B,B ′ parts of the state to the
verifiers. The honest verifiers will first make measurements on
systems A,A′ and a possible postmeasurement state is

1

2n

∑
x2

ax1x2�AA′ |�x1x2〉〈�x1x2 |�†
AA′ . (A6)
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We assume that �AA′ is a measurement outcome satisfying the
conditions of the assumption, so that the error probabilities on
the N th game are decreased. Here ax1x2 is the normalization
term, ax1x2 = 1/Tr[�AA′ |�x1x2〉〈�x1x2 |�†

AA′].
The verifiers now each measure �x2 , as defined in Eq. (A2),

on their B system. The assumption tells us that

1

2n

∑
x2

[
ax1x2 Tr

[
�

inc,x2
B �AA′ |�x1x2〉〈�x1x2 |�†

AA′
]

+ax1x2 Tr
[
�

inc,x2
B ′ �AA′ |�x1x2〉〈�x1x2 |�†

AA′
]]

< p. (A7)

We now aim to prove that this leads to a contradiction.

4. Teleportation strategy

Supposing the above strategy exists, we explore what this
enables the adversary to do in the individual case in the hopes
of finding a contradiction. We suppose the bank creates

1

2n

∑
x2

|x2〉〈x2|X2 ⊗ |φx2〉〈φx2 |B (A8)

and sends the B part to the adversary. The adversary can
simulate the above strategy locally, by creating |x1〉, |φx1〉
and the maximally mixed state on n dimensions |�〉. After
relabelling the registers, the adversary holds the state

1

2n

∑
x2

|x1〉〈x1|X1 ⊗ |x2〉〈x2|X2 ⊗ |φx1〉〈φx1 |A

⊗|φx2〉〈φx2 |D ⊗ |0〉〈0|C ⊗ |�〉〈�|BE. (A9)

To simulate the strategy in the previous section, the adversary
applies S to the A, B, and C registers, followed by a
measurement on the resulting A,A′ registers. Conditional on
measurement outcome �AA′ , she then applies a generalized
Bell measurement on the D and E registers in order to teleport
the unknown state |φx2〉 into the B register which was acted
on by S (modulo a teleportation correction). If the appropriate
measurement outcome is not found, the adversary does not
perform the Bell measurement and instead starts again. The
resulting state is

1

2n

∑
x2

ax1x
′
2
�AA′ |�x1x

′
2〉〈�x1x

′
2 |�†

AA′ . (A10)

Notice the state contains x ′
2 since the Bell measurement does

not faithfully teleport the state, and a correction is required
which we have not performed. If the dimension of the hidden
matching states is a power of 2, the correction operators are
simply tensor products of the Pauli operators [43]. Crucially,
all corrections define a bijective mapping between x ′

2 and x2,
so that as x2 cycles over all possible values so does x ′

2, and
the probabilities are not affected (all corrections are equally
likely, which must be the case so that information is not
communicated faster than light).

The state in Eq. (A10) is the same as the state in Eq. (A6),
but the measurements applied by the verifiers are correlated
with the X2 register held by the bank. Therefore, the verifiers’
failure probabilities are not the same when measuring the two
states. Measurements on the state in Eq. (A6) leads to a failure
probability of

1

2n

∑
x2

[
ax1x2 Tr

[
�

inc,x2
B �AA′ |�x1x2〉〈�x1x2 |�†

AA′
]

+ax1x2 Tr
[
�

inc,x2
B ′ �AA′ |�x1x2〉〈�x1x2 |�†

AA′
]]

, (A11)

while measurements on the state in Eq. (A10) lead to a failure
probability of

1

2n

∑
x2

[
ax1x

′
2
Tr

[
�

inc,x2
B �AA′ |�x1x

′
2〉〈�x1x

′
2 |�†

AA′
]

+ax1x
′
2
Tr

[
�

inc,x2
B ′ �AA′ |�x1x

′
2〉〈�x1x

′
2 |�†

AA′
]]

, (A12)

the difference being the appearance of x ′
2 in the second

expression. Nevertheless, the two can be made equal if
the verifiers are forced to apply the teleportation correction
unitary to their measurement outcomes. In effect, this cor-
rection relabels the measurement outcomes so that �inc,x2 →
�inc,x ′

2 . Following this correction, the two expressions (A11)
and (A12) are equal. This shows that the assumption in
Eq. (A7) leads to a contradiction, since it shows an individual
attack in the modified scenario can achieve the same error
probability as a coherent attack, and the error probabilities
achievable in the modified individual scenario are the same as
for the unmodified individual scenario.
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