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The security of quantum key distribution (QKD) protocols hinges upon features of physical systems that are
uniquely quantum in nature. We explore the role of quantumness, as qualified by quantum contextuality, in a QKD
scheme. A QKD protocol based on the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) contextuality scenario
using a three-level quantum system is presented. We explicitly show the unconditional security of the protocol by
a generalized contextuality monogamy relationship based on the no-disturbance principle. This protocol provides
a new framework for QKD which has conceptual and practical advantages over other protocols.
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I. INTRODUCTION

The existence of predefined values for quantum observables
that are independent of any measurement settings has been
a matter of debate ever since quantum theory came into
existence. While Einstein made a case for looking for hidden
variable theories that would give such values [1], the work of
Bell proved that such local hidden variable theories cannot be
compatible with quantum mechanics [2]. This points towards a
fundamental departure of the behavior of quantum correlations
from the ones that can be accommodated within classical
descriptions. While the departure from classical behavior
indicated by Bell’s inequalities requires composite quantum
systems and the assumption of locality, the contradiction be-
tween the assignment of predefined measurement-independent
values to observables and quantum mechanics goes deeper and
was brought out more vividly by the discovery of quantum
contextuality [3]. In a noncontextual classical description, a
joint probability distribution exists for the results of any joint
measurements on the system, and the results of a measurement
of a variable do not depend on other compatible variables being
measured. Quantum mechanics precludes such a description
of physical reality; on the contrary, in the quantum description,
there exists a context among the measurement outcomes,
which forbids us from arriving at joint probability distributions
of more than two observables. Given a situation where an
observable A commutes with two other observables B and C

which do not commute with each other a measurement of A

along with B and a measurement of A along with C may lead
to different measurement outcomes for A. Thus, to be able to
make quantum mechanical predictions about the outcome of
a measurement, the context of the measurement needs to be
specified.

The first proof that the quantum world is contextual was
given by Kochen and Specker and involved 117 different vec-
tors in a three-dimensional Hilbert space [3]. Subsequently, the
number of observables required for such a “no-coloring” proof
was brought down to 31 by Conway and Kochen [4], while
Peres provided a compact proof based on cubic symmetry
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using 33 observables [5]. In higher dimensions the number of
observables can be further reduced and more compact proofs
are possible [6,7].

Klyachko et al. found a minimal set of five observables
for a qutrit for which the predicted value for quantum
correlation exceeds the bound (the KCBS inequality) imposed
by noncontextual deterministic models [8]. The violation
observed is state dependent and one can find states that
do not allow for stronger than classical correlations for the
same set of observables. A state-independent violation of a
noncontextuality inequality implies that stronger correlations
than classical are possible for all states for the same set
of observables [9]. In a three-dimensional Hilbert space the
minimum number of observables required to achieve such a
violation is 13 [9,10] and can be brought down to nine if
one excludes the maximally mixed state [11]. Recently, graph
theory has also been used to describe contextuality scenarios,
where vertices describe unit vectors and edges describe the
orthogonality relationships between them [12,13].

While at the level of individual measurements quantum
mechanics is contextual, the probability distribution for an
observable A does not depend upon the context and is not
disturbed by other compatible observables being measured.
This is called the “no-disturbance” principle and leads to inter-
esting monogamy relations for contextuality inequalities [14],
similar to those obeyed by Bell-type inequalities [15]. These
monogamy relations are a powerful expression of quantum
constraints on correlations without involving a tensor product
structure and we shall exploit them in our work.

Nontrivial quantum features of the world play an important
role in quantum information processing [16], and in particular,
in making the quantum key distribution (QKD) protocols [17]
fundamentally secure as opposed to their classical counter-
parts [18–20]. QKD protocols can be categorized into two
distinct classes, namely the “prepare and measure schemes”,
and the “entanglement-assisted schemes”. In the prepare and
measure schemes whose prime example is the BB84 [21]
protocol, one party prepares a quantum state and transmits
it to the other party who performs suitable measurements to
generate a key. On the other hand, the entanglement-assisted
protocols utilize entanglement between two parties and a prime
example of such a protocol is the Ekert protocol [22]. One
distinct advantage in the entanglement-assisted QKD protocols
is the ability to check security based on classical constraints on
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correlations between interested parties via Bell’s inequalities.
It has also been shown that any two nonorthogonal states
suffice for constructing a QKD protocol [23]. The idea has
been extended to qutrits [24] to allow four mutually unbiased
bases for QKD. Quantum cryptography protocols have been
proven to be robust against eavesdropping and noise [18–27].

Our focus in this work is to explore the utility of quantum
contextuality for QKD. While contextuality has already
been exploited for QKD [28], we propose a new QKD
protocol which is based on the Klyachko-Can-Binicioğlu-
Shumovsky (KCBS) scenario and the related monogamy
relationships [8,14]. Our protocol falls in the class of “prepare
and measure schemes”, but still allows a security check based
on conditions on correlations shared between the two parties
Alice and Bob. In fact, in our protocol it is the monogamy
relation of the KCBS inequality which is responsible for
unconditional security.

We first devise a QKD protocol between Alice and Bob
utilizing the KCBS scenario of contextuality as a resource with
postprocessing of outcomes allowed on Alice’s site. Consider-
ing Eve as an eavesdropper and using the novel graph theoretic
approach [12,14] we then derive an appropriate monogamy
relation between Alice-Bob and Alice-Eve correlations for the
optimal settings of Eve. From this monogamy relationship,
we then explicitly calculate the bounds on correlation to be
shared among Alice and Bob, demonstrating the security of
the protocol. Our protocol enjoys a distinct advantage of not
employing entanglement as a resource which is quite costly to
produce, and still allows for a security test based on the KCBS
inequality, which is analogous to a Bell-like test for security
available for the entanglement-based protocols. Further, it can
be transformed into an entanglement-assisted QKD protocol
by making suitable adjustments. Although our protocol is not
device independent, it adds a new angle to the QKD protocol
research.

The material in the paper is arranged as follows: In
Sec. II we provide a brief review of the KCBS inequality. In
Sec. III A we describe our protocol, in Sec. III B we derive the
monogamy relations for the required measurement settings and
in Sec. III C we discuss the security of the protocol. Section IV
offers some concluding remarks.

II. KCBS INEQUALITY

The KCBS inequality is used as a test of contextuality
in systems with Hilbert space dimension three and more. In
this section we review two equivalent formulations of the
inequality, one of which will be directly used in our QKD
protocol to be described later.

Consider a set of five observables which are projectors in
a three-dimensional Hilbert space. The projectors are related
via an orthogonality graph as given in Fig. 1. The vertices in
the graph correspond to the projectors, and two projectors are
orthogonal to each other if they are connected by an edge. A
set of projectors which are mutually orthogonal also commute
pairwise and can therefore be measured jointly. Such a set of
comeasurable observables is called a context. Therefore, in the
KCBS scenario, every edge between two projectors denotes
a measurement context and each projector appears in two
different contexts. However, a noncontextual model will not
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FIG. 1. The KCBS orthogonality graph. Each vertex corresponds
to a projector and the edge linking two projectors indicates their
orthogonality relationship.

differentiate between different contexts of a measurement and
will deterministically assign values to the vertices irrespective
of the context.

A deterministic noncontextual model must assign a value
0 or 1 to the ith vertex and therefore the probability that the
vertex is assigned a value 1, denoted by Pi , takes values 0 or 1
(and the corresponding probability for a vertex to have value 0
is 1 − Pi). In such a noncontextual assignment the maximum
number of vertices that can be assigned the probability Pi = 1
(constrained by the orthogonality relations), is 2 irrespective
of the state. Therefore,

K̃(A,B) = 1

5

4∑
i=0

Pi � 2

5
. (1)

This is the KCBS inequality [8,12], which is a state-dependent
test of contextuality utilizing these projectors, and is satisfied
by all noncontextual deterministic models. In a quantum me-
chanical description, given a quantum state and the projector
�i we can calculate the probabilities Pi readily and it turns out
that the sum total probability can take values up to

√
5

5 > 2
5 ,

with the maximum value attained for a particular pure state.
Therefore, quantum mechanics does not respect noncontextual
assignments and is a contextual theory. In a more general
scenario, where one only uses the exclusivity principle [13]
(that the sum of probabilities for two mutually exclusive events
cannot be greater than unity) one can reach the algebraic
maximum of the inequality, namely,

Max
1

5

4∑
i=0

Pi = 1

2
. (2)

Unlike in inequality (1), here Pis can take continuous values in
the interval [0,1]. The bounds so imposed by noncontextuality,
quantum theory, and the exclusivity principle can be identified
with graph theoretic invariants of the exclusivity graph of the
five projectors, which in this case is also a pentagon [12].

The correlation can be further analyzed if one considers
observables which take values Xi ∈ {−1,+1} and are related
to the projectors considered above as

Xi = 2�i − I. (3)
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One can then reformulate Eq. (1) in terms of anticorrelation
between two measurements as [29]

K(A,B) = 1

5

4∑
i=0

P (Xi �= Xi+1) � 3

5
. (4)

Where i + 1 is sum modulo 5 and P (Xi �= Xi+1) denotes
the probability that a joint measurement of Xi and Xi+1

yields anticorrelated outcomes. Equation (4) is obeyed by all
noncontextual and deterministic models. However, quantum
theory can exhibit violation of the above inequality. The
maximum value that can be achieved in quantum theory is
for a pure state and turns out to be

1

5

4∑
i=0

PQM(Xi �= Xi+1) = 4
√

5 − 5

5
>

3

5
. (5)

It should be noted that the maximum algebraic value of the
expression on the left-hand side of the KCBS inequality as
formulated in Eq. (4) is 1. We shall use this formulation of the
KCBS inequality directly in our protocol in the next section
as it allows evaluation of (anti)correlation between two joint
measurements.

III. QKD PROTOCOL, CONTEXTUALITY
MONOGAMY, AND SECURITY

A. Protocol

In a typical key-distribution situation, two separated parties
Alice and Bob want to share a secret key securely. They both
have access to the KCBS scenario of five projectors. Alice
randomly selects a vertex i and prepares the corresponding
pure state �i and transmits the state to Bob. Bob, on
his part, also randomly selects a vertex j and performs a
measurement {�j,I − �j } on the state. We denote i and j

as the settings of Alice and Bob, respectively. The outcome
of Bob’s measurement depends on whether he ended up
measuring in the context of Alice’s state or not. The outcome
�j is assigned the value of 1 and the outcome I − �j is
assigned the value 0. After the measurement, Bob publicly
announces his measurement setting, namely the vertex j . Three
distinct cases arise.

(C1) i,j are equal(i = j ): By definition Bob is assured to
get the outcome 1. Alice notes down a 0 with herself and
publicly announces that the transmission was successful. Both
of them thus share an anticorrelated bit.

(C2) i,j are in context but not equal: Bob’s projector is in
the context of Alice’s state. Since the state Alice is sending is
orthogonal to Bob’s chosen projector, he is assured to get the
outcome 0. Alice then notes down 1 with herself and publicly
announces that the transmission was successful and Bob uses
his outcome as part of the key. This way they both share an
anticorrelated bit. It should be noted that Alice does not note
down her part of the key until Bob has announced his choice
of setting.

(C3) i,j are not in context: Bob’s projector does not lie in
the context of Alice’s state. Alice publicly announces that the
transmission was unsuccessful and they try again. However,
they keep these data as they may turn out to be useful to
detect Eve.

KCBS1
Alice Bob

Eve

KC
BS 2

Π 0 Π 1
Π 2

Π 3

Π 4

Π0

Π1

Π2

Π4

Π3

FIG. 2. Alice and Bob are trying to violate the KCBS inequality
[K(A,B)], while Eve in her attempts to gain information is trying to
violate the same inequality with Alice [K(A,E)].

Using the protocol, Alice and Bob can securely share a
random binary key. Their success depends on chances that
Bob’s measurements are made in the context of Alice’s state.
Whenever Bob measures in the correct context which happens
3
5 of the time, Alice is able to ensure that they have an
anticorrelated key bit. When Bob measures in the same context
but not the same projector as Alice, she notes down a 1 with
herself and thus they share a 1-0 anticorrelation. On the other
hand, when Bob measures the same projector as Alice’s state,
she notes down a 0 with herself and again they share a 0-1
anticorrelation. At no stage does Alice need to reveal her state
in public or to Bob. The QKD scenario is depicted in Fig. 2.

In the ideal scenario without any eavesdropper, Alice and
Bob will always get an anticorrelated pair of outcomes and
therefore will violate the KCBS inequality to its algebraic
maximum value which is 1. It should be noted that they are
able to achieve the algebraic bound because when Bob ends
up measuring the same projector as Alice, she notes down 0
on her side, which is not the quantum outcome of her state.
Thus this in no way is a demonstration that quantum theory
reaches the algebraic bound of KCBS inequality, which in
fact it does not. However, in the presence of an eavesdropper
the violation of the KCBS inequality can be used as a test for
security as will be shown later. The presence of Eve is bound to
decrease the Alice Bob anticorrelation and that can be checked
by sacrificing part of the key.

The key as generated by the above protocol. although
completely anticorrelated, is not completely random; there
are more 1’s in the key than 0’s. Therefore, the actual length
of the effective key is smaller than the number of successful
transmissions. To calculate the actual key rate we compute
the Shannon information of the transmitted string. Given the
fact that P0 = 1

3 and P1 = 2
3 for the string generated out of

successful transmission, the Shannon information turns out be

S = −P0 log2 P0 − P1 log2 P1 = 0.9183. (6)

The probability of success (i.e., when Bob chooses his
measurement in the context of Alice’s state) is 3

5 as stated
earlier. Thus the average key generation rate per transmission
can be obtained as 3

5S = 0.55. We tabulate the average key
rate of a few QKD protocols in the absence of an eavesdropper
in Table I.
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TABLE I. The key rate for various QKD protocols in the absence
of an eavesdropper. As can be seen, the KCBS protocol offers a little
higher key rate compared to the other protocols.

Success probability Av. key rate in bits
QKD protocol (per transmission) (per transmission)

BB84 (2 basis) 1
2 0.50

BB84 (3 basis) 1
3 0.50

Ekert (EPR pairs) 1
2 0.50

3-State [24] 1
4 0.50

KCBS 3
5 0.55

It is instructive to note that the above QKD protocol
can be transformed into an “entanglement-assisted” protocol,
where Alice and Bob share an isotropic two-qutrit maximally
entangled state as follows:

|ψ〉 = 1√
3

2∑
k=0

|kk〉. (7)

Alice randomly chooses a measurement setting i and im-
plements the measurement {�i,I − �i} on her part of the
entangled state. In the situation when she gets a positive answer
and her states collapses to �i Bob’s state collapses to �i also.
This then becomes equivalent to the situation where Alice
prepares the state �i and sends it to Bob. The probability of this
occurrence is 1

3 . Bob also randomly chooses a measurement
setting j and implements the corresponding measurement. The
rest of the protocol proceeds exactly as in the case of prepare
and measure scenario.

Although there are a number of possible choices for the
projectors �i , we detail below a particular choice of vectors
|vi〉 (unnormalized) corresponding to the projectors �i , on
which the above assertions can be easily verified:

|v0〉 =
(

1,0,

√
cos

π

5

)
,

|v1〉 =
(

cos
4π

5
, − sin

4π

5
,

√
cos

π

5

)
,

|v2〉 =
(

cos
2π

5
, sin

2π

5
,

√
cos

π

5

)
,

|v3〉 =
(

cos
2π

5
, − sin

2π

5
,

√
cos

π

5

)
,

|v4〉 =
(

cos
4π

5
, sin

4π

5
,

√
cos

π

5

)
, (8)

with

�i = |vi〉〈vi |
〈vi |vi〉 , i = 0,1,2,3,4. (9)

Thus our prepare and measure protocol can be translated into
an entanglement-assisted protocol. We provide this mapping
for the sake of completeness and in our further discussions we
will continue to consider the prepare and measure scheme.

B. Contextuality monogamy

In quantum mechanics, given observables A,B,C, such that
A can be jointly measured both with B and C (i.e., it is
compatible with both) the marginal probability distribution
P (A) for A as calculated from both the joint probability
distributions P (A,B) and P (A,C) is the same:

∑
b

P (A = a,B = b) =
∑

c

P (A = a,C = c) = P (A = a).

(10)

This is called the “no-disturbance” principle and it reduces to
the “no-signaling” principle when the measurements B and C

are performed on spatially separate systems.
The “no-disturbance” principle can be used to construct

contextuality monogamy relationships of a set of observables
if they can be partitioned into disjoint subsets each of
which can reveal contextuality by themselves, but cannot be
simultaneously used as tests of contextuality.

Consider the situation where Alice and Bob are different
parties who make preparations and measurements as detailed
in Sec. III A. We consider the possibility of a third party Eve
who tries to eavesdrop on the conversation between them. As
will be detailed in Sec. III C, Eve will have to violate the KCBS
inequality with Alice to gain substantial information about the
key.

We denote the Alice-Bob KCBS test by K̃(A,B) with
projectors {�i} and Alice-Eve KCBS test by K̃(A,E) with
projectors {�E

i }. We assume different projectors in the two
KCBS tests for clarity in derivation of a monogamy relation-
ship, but essentially the measurements to be performed by Eve
would have to be the same as that of Bob to mimic Alice and
Bob’s KCBS scenario, as will be detailed in Sec. III C where
we take up the security analysis of our protocol. In this joint
scenario the �th

i projector is connected by an edge to �i+1,
�E

i+1, �i−1, �E
i−1, and �E

i , where i + 1 and i − 1 are taken as
modulo 5 and the presence of an edge denotes commutativity
between the two connected vertices. These relationships follow
from the fact that the projectors used by Eve will follow
the same commutativity relationships as the original KCBS
scenario. By introducing herself in the channel, Eve has created
an extended scenario which will have to obey contextuality
monogamy due to the no-disturbance principle. The no-
disturbance principle guarantees that the marginal probabil-
ities as calculated from the joint probability distribution do
not depend on the choice of the joint probability distribution
used.

We follow the graph theoretical approach developed to
derive-generalized monogamy relationships based only on the
no-disturbance principle in Ref. [14]. A joint commutation
graph representing a set of n KCBS-type inequalities each, of
which has a noncontextual bound α, gives rise to a monogamy
relationship if and only if its vertex clique cover number is
n.α. The vertex clique cover number is the minimum number
of cliques required to cover all the vertices of the graph and
a clique is a graph in which all nonadjacent vertices are
connected by an edge. The joint commutation graph consid-
ered in the protocol resulting in the presence of Eve satisfies
the condition for the existence of a monogamy relationship
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FIG. 3. Joint commutation graph (top) of Alice-Bob KCBS test
(thin-red line) and Alice-Eve KCBS test (thick-blue line) and its
decomposition into two chordal subgraphs (below). Dotted edges
indicate commutation relation between two projectors belonging to
the two different KCBS tests.

between Alice-Bob and Alice-Eve KCBS inequalities as can
be seen from Fig. 3.

To derive the monogamy relationship one needs to identify
m chordal subgraphs of the joint commutation graph such
that the sum of their noncontextual bounds is n.α. A chordal
graph is a graph which does not contain induced cycles of
length greater than 3. As shown in Ref. [14], a chordal graph
admits a joint probability distribution and therefore cannot
violate a contextuality inequality. To this end we identify
the decomposition of the joint commutation graph into two
chordal subgraphs such that each vertex appears at most once
in both the subgraphs, as shown in Fig. 3. Their maximum
noncontextual bound will then be given by the independence
number of the subgraph. Therefore,

p
(
�E

0

) + p(�2) + p
(
�E

1

) + p(�1) + p
(
�E

2

)
� 2, (11)

p(�0) + p(�3) + p
(
�E

3

) + p(�4) + p
(
�E

4

)
� 2. (12)

Adding and grouping the terms according to their respective
inequalities [Eq.(1)] and normalizing, we get

K̃(A,B) + K̃(A,B) � 4
5 . (13)

If the projectors involved in the KCBS tests are transformed
according to Eq. (3), then using the KCBS given in Eq. (4) the
monogamy relationship reads as

K(A,B) + K(A,E) � 6
5 . (14)

The relationship derived above follows directly from the no-
disturbance principle and cannot be violated. In other words,
the correlation between Alice and Eve is complementary
to the correlation between Alice and Bob and thus if one
is strong the other has to be weak. One can thus use this
fundamental monogamous relationship to derive conditions
for unconditional security as will be shown in the next section.

C. Security analysis

In this section we prove that the above QKD protocol is
secure against individual attacks by an eavesdropper Eve. We
first motivate the best strategy available to an eavesdropper
limited only by the no-disturbance principle. The best strategy
would then dictate the optimal settings to be used to max-
imize the information of Eve about the key. We then prove
unconditional security of the protocol based on monogamy of
the KCBS inequality. The analysis is inspired by the security
proof for QKD protocols based on the monogamy of violations
of Bell’s inequality [20].

Alice and Bob perform the protocol a large number of
times and share the probability distribution P (a,b|i,j ), which
denotes the probability of Alice and Bob obtaining outcomes
a,b ∈ {0,1} when their settings are i,j ∈ {0,1,2,3,4}, respec-
tively. In the ideal case they obtain a �= b when j = i + 1,
where addition is taken as modulo 5. However, in the presence
of Eve, the secrecy of correlation between Alice and Bob has to
be ensured even if Eve is distributing the correlation between
them. On the other hand, Eve would like to obtain information
about the correlation between Alice and Bob and the associated
key. Eve can attempt to accomplish this in several ways
which might include intercepting the information from Alice
and resending to Bob after gaining suitable knowledge about
the key. It could also be that she is correlated to Alice’s
preparation system or to Bob’s measurement devices. In other
words, Eve has access to a tripartite probability distribution
P (a,b,e|i,j,k), where Alice, Bob, and Eve obtain outcomes
a, b, and e when their settings are i, j , and k, respectively. It
is required that the marginals to this probability distribution
correspond to the observed correlation between Alice and
Bob, as will be shown below. In general, it is not easy to
characterize the strategy of an eavesdropper without placing
some constraints on her.

For the following security analysis we place fairly minimal
restrictions on the eavesdropper. It is required of her to obey the
no-disturbance principle and as a consequence her correlation
with Alice will be limited by monogamy (14). Such a constraint
is well motivated because it is a fundamental law of nature and
will have to be obeyed at all times.

We assume that the correlation observed by Alice and Bob,
P (a,b|i,j ) as defined above is a consequence of marginal-
izing over an extended tripartite probability distribution
P (a,b,e|i,j,k), distributed by an eavesdropper Eve

P (a,b|i,j ) =
∑

e

P (a,b,e|i,j,k)

=
∑

e

P (e|k)P (a,b|i,j,k,e),
(15)

where the second equality is a consequence of the no-
disturbance principle: Eve’s output is independent of the
settings used by Alice and Bob. We can also analyze the
correlation between Alice and Eve in a similar manner:

P (a,e|i,k) =
∑

b

P (a,b,e|i,j,k)

=
∑

b

P (b|j )P (a,e|i,j,k), (16)
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where the second equality also follows from the no-disturbance
principle and implies that Eve can decide on her output based
on the settings disclosed by Bob. Bob’s outcome, however,
cannot be used as it is never disclosed in the protocol. The
natural question that arises now is how strong does the cor-
relation between Alice and Bob need to be such that the
protocol is deemed secure. As will be seen, the question can
be answered by the monogamy of contextuality.

The QKD scenario now is as follows: Alice and Bob utilize
the preparations and measurements as detailed in Sec. III A,
while an eavesdropper Eve limited only by the no-disturbance
principle is assumed to distribute the correlation between them.
Whenever Eve distributes the correlation between herself and
Alice she uses the same measurement settings as Bob to
guess the bit of Alice. This way Eve can hope to gain some
information about the key. However, contextuality monogamy
limits the amount to which Eve can be correlated to Alice
without disturbing the correlation between Alice and Bob
significantly as shown in Sec. III B.

The condition for a secure key distribution between Alice
and Bob in terms of Alice-Bob mutual information I (A : B)
and Alice-Eve mutual information I (A : E) is [30]

I (A : B) > I (A : E). (17)

For individual attacks and binary outputs of Alice it essentially
means that the probability PB that Bob guesses the bit of Alice
should be greater than the probability, PE for Eve to correctly
guess the bit of Alice. Thus the above condition simplifies
to [31]

PB > PE. (18)

Bob can correctly guess the bit of Alice with probability
PB = K(A,B). For K(A,B) = 1 Bob has perfect knowledge
about the bit of Alice while for K(A,B) = 0 he has no
knowledge. For any other values of K(A,B) they may have to
perform a security check.

We assume that Eve has a procedure that enables her
to distribute correlation according to Eqs. (15) to (16). The
procedure takes an input k among the five possible inputs
according to the KCBS scenario and outputs e. She uses this
outcome to determine the bit of Alice when Alice’s setting was
i. The probability that Eve correctly guesses the bit of Alice is
denoted by Pik . Since there are five possible settings for Alice
and Eve each, the average probability for Eve to be successful
PE is

PE = 1

15

4∑
i=0

(Pii + Pii+1 + Pii−1)

� max{Pii,Pii+1,Pii−1|∀ i}. (19)

The terms in the above equation denote the success probability
of Eve when she uses the same setting as Alice and when she
measures in the context of Alice, respectively. For all other
cases she is unsuccessful. Without loss of generality we can
assume that P01 is the greatest term appearing in Eq. (19). This
corresponds to the success probability of Eve when her setting
is 1 and Alice’s setting is 0. However, Alice’s setting is not
known to Eve as it is never disclosed in the protocol. Therefore
the best strategy that Eve can employ is to always choose her

setting to be 1 irrespective of Alice’s settings and try to violate
the KCBS inequality with her. The probabilities that appear in
the KCBS inequality would then be

P (a �= e|i = 0,k = 1) = P01 = P01,

P (a �= e|i = 1,k = 1) = P11 = 1 − P01,

P (a �= e|i = 2,k = 1) = P21 � P01,

P (a �= e|i = 3,k = 1) = P31 � P01,

P (a �= e|i = 4,k = 1) = P41 � P01. (20)

The probability for Eve to get a particular outcome is
independent of Alice’s choice of settings. Her best strategy to
eavesdrop can, at most, yield all the preceding probabilities to
be equal (except the second term which will show a correlation
instead of the required anticorrelation), which will maximize
K(A,E). Evaluating the KCBS violation for Alice and Eve,
we get,

K(A,E) = 3
5P01 + 1

5 > 3
5PE + 1

5 . (21)

Using the monogamy relationship given by Eq. (14), we get,

3
5PE + 1

5 � 6
5 − PB. (22)

For the protocol to work Eq. (18) must hold and the above
condition implies that it happens only if

K(A,B) > 5
8 . (23)

Therefore the protocol is unconditionally secure if Alice and
Bob share KCBS correlation greater than 5

8 . It is worth
mentioning that 5

8 is lesser than the maximum violation of
the KCBS inequality in quantum theory.

As shown in Ref. [14] the monogamy relation (14) is
a minimal condition and no stronger conditions exist. This
implies that any QKD protocol whose security is based on
the violation of the KCBS inequality cannot offer security
if the condition given in Eq. (23) is not satisfied. This quantifies
the minimum correlation required for unconditional security.
We conjecture that no key distribution scheme based on the
violation of the KCBS inequality can perform better than our
protocol since we utilize postprocessing on Alice’s side to
extend the maximum violation of the KCBS inequality up to
its algebraic maximum.

IV. CONCLUSION

The cryptography protocol we present is a direct application
of the simplest known test of contextuality, namely the
KCBS inequality and the related monogamy relation. For
the protocol to work, Alice and Bob try to achieve the
maximum possible anticorrelation amongst themselves. They
achieve the algebraic maximum of the KCBS inequality by
allowing postprocessing on Alice’s site. We then show that any
eavesdropper will have to share a monogamous relationship
with Alice and Bob, severely limiting her eavesdropping.
For this purpose we derive a monogamy relationship for the
settings of Eve which allow her to gain optimal information.

062333-6
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We find that the optimal information gained by Eve cannot
even allow her to maximally violate the KCBS inequality as
allowed by quantum theory. Such an unconditional security
provides a significant advantage to our protocol since it does
not utilize the costly resource of entanglement. Furthermore,
being a prepare and measure scheme of QKD it also allows for
a check of security via the violation of the KCBS inequality
much like the protocols based on the violation of Bell’s
inequalities. Finally, we note that our protocol is a consequence

of contextuality monogamy relationships, which are expected
to play an interesting role in quantum information processing.
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