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We consider the explicit construction of resource states for measurement-based quantum information
processing. We concentrate on special-purpose resource states that are capable to perform a certain operation or
task, where we consider unitary Clifford circuits as well as non-trace-preserving completely positive maps, more
specifically probabilistic operations including Clifford operations and Pauli measurements. We concentrate on
1 → m and m → 1 operations, i.e., operations that map one input qubit to m output qubits or vice versa. Examples
of such operations include encoding and decoding in quantum error correction, entanglement purification, or
entanglement swapping. We provide a general framework to construct optimal resource states for complex tasks
that are combinations of these elementary building blocks. All resource states only contain input and output
qubits, and are hence of minimal size. We obtain a stabilizer description of the resulting resource states, which
we also translate into a circuit pattern to experimentally generate these states. In particular, we derive recurrence
relations at the level of stabilizers as key analytical tool to generate explicit (graph) descriptions of families
of resource states. This allows us to explicitly construct resource states for encoding, decoding, and syndrome
readout for concatenated quantum error correction codes, code switchers, multiple rounds of entanglement
purification, quantum repeaters, and combinations thereof (such as resource states for entanglement purification
of encoded states).
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I. INTRODUCTION

Measurement-based quantum computation [1–3] enables
one to perform any quantum computation via a sequence
of single-qubit measurements on a large, highly entangled
resource state, the two-dimensional (2D) cluster state [4].
Hence, this specific state is universal for quantum computation.
As the 2D cluster state might be very large in terms of the
number of qubits, in many situations one is interested in
resource states of minimal size for implementing a specific
quantum task [5].

Such a measurement-based approach to quantum infor-
mation processing has been discussed in various contexts,
including quantum computation [1] and quantum communica-
tion [6] and was in some cases experimentally demonstrated
[7,8]. In contrast to a circuit-based approach, no coherent
manipulation of quantum information via the application of
single- and two-qubit gates is required. One rather needs to
prepare certain resource states, which are then manipulated
by means of measurements, e.g., by coupling input qubits
via Bell measurements to the resource state, similarly as
in a teleportation process where, however, in this case
a specific operation, determined by the resource state, is
performed. The only sources of errors in such a scheme
are imperfect preparation of resource states, and imperfect
measurements.

Two main advantages of such a measurement-based ap-
proach have been identified [6,9,10]: On the one hand, one
finds that the acceptable error rates are very high: depending
on the task, 10% noise per particle or more can be tolerated
when assuming a noise model where each qubit of the resource
state is subjected to single-qubit depolarizing noise. On the
other hand, such a measurement-based approach allows for
various ways to prepare resource states, including proba-
bilistic (heralded) schemes. This opens the possibility to use
probabilistic processes such as parametric-down conversion,

error detection, entanglement purification, or even cooling to
a ground state for resource-state preparation.

Depending on the task at hand, different resource states
need to be prepared. However, obtaining the explicit resource
state or even an efficient preparation procedure for a given
task is not straightforward, and explicit constructions are
often limited to small system sizes. In turn, any experimental
realization requires knowledge of the exact form of resource
states and how to prepare them. Also from a theoretical
side, knowing the explicit resource state for a specific task
allows one to investigate its entanglement features, stability
under noise and imperfections, and to design optimized
ways to generate them with high fidelity, e.g., by means of
entanglement purification

Here, we provide an explicit construction of resource
states for complex tasks that correspond to a composition
of elementary building blocks. These building blocks consist
of unitary and nonunitary 1 → m or m → 1 operations,
including, e.g., encoding and decoding in quantum error
correction, entanglement swapping, and entanglement purifi-
cation which is a probabilistic process. We develop a general
framework for concatenating resource states for different
quantum operations according to their stabilizer description
and obtain resource states of minimal size which consist
only of input and output particles (or only input particles
for tasks where there is no quantum output). We provide an
efficient and explicit description of families of resource states
via recurrence relations in terms of stabilizers for complex
quantum operations, and also obtain a representation of these
stabilizer states in terms of graph states. This leads directly to
an efficient quantum circuit that prepares these states using
at most O[(n + m)2] commuting two qubit gates for any
task with n input and m output systems. Furthermore, this
allows one to use several of the methods and techniques
developed for graph states [11,12], including entanglement
purification [13,14], or to analyze their stability under noise
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and decoherence. Entanglement purification is of particular
importance in this context, as this does not only allow one
to prepare resource states with high fidelity, but also yields
states which can be well described by a local noise model
[15], thereby confirming above-mentioned local error model
that was used, e.g., in [6,9,10,16].

The examples we provide include resource states for
multiple steps of entanglement purification using a recurrence
protocol [13,17,18], encoding, decoding, and error syndrome
readout for concatenated quantum error correction [19], quan-
tum code switchers that allow one to change between different
error correction codes (e.g., for storage and data processing),
entanglement purification of encoded states, or quantum
repeater stations for long-distance quantum communication
[20,21].

This paper is organized as follows. In Sec. II we relate our
findings to earlier works in the field and highlight our approach.
In Sec. III we provide some background information on stabi-
lizer states, graph states, and Clifford circuits, and give a brief
introduction to measurement-based quantum computation and
the Choi-Jamiolkowksi isomorphism [22]. We also settle the
notation we use throughout the article in this section. In Sec. IV
we describe the general framework of concatenated quantum
tasks, and present our main technical results to efficiently
construct a stabilizer description of the corresponding resource
states. In Sec. V we present several applications of our method.
We provide resource states for multiple steps of entanglement
purification using the recurrence protocol of [18], concatenated
quantum error correction using a generalized Shor code, code
switchers, and entanglement purification of encoded states. We
summarize and discuss our results in Sec. VI.

II. RELATION TO PRIOR WORK

Measurement-based quantum computation [1–3,5,23–26]
is a paradigm where quantum information is processed by
measurements only. Certain states, e.g., the 2D cluster state [4],
serve as universal resources [27]. That is, by performing only
single-qubit measurements, an arbitrary quantum computation
can be performed, or equivalently an arbitrary quantum
state can be generated. For an introduction and review on
measurement-based quantum computation we also refer to
[28–30] and for their implementation in specific systems to
[31–33]. Despite the probabilistic character of measurements,
the desired state is generated deterministically up to local
Pauli corrections. There are also special purpose resource
states [5,6,9,16] that allow one to perform a specific task or
operation. Typically, these special purpose resource states are
smaller in size. Such resource states can be constructed in
two different ways: First, one may start with a 2D cluster
state, and perform all measurements corresponding to Clifford
operations. This leaves one with a state of reduced size, which
can in principle be determined using the stabilizer formalism
[34] or graph-state formalism [11]. On the other hand,
for circuits that only include Clifford operations and Pauli
measurements, one can construct the resource state via the
Jamiolokowski isomorphism [22], i.e., by applying the circuit
to part of a maximally entangled state (see, e.g., [5,6,9,16]).
This equivalence is also apparent from Theorem 1 in [5]. In
both cases, the stabilizer formalism allows one in principle to

efficiently obtain the description of the resource state in terms
of its stabilizers. However, taking care of local correction
operations and stabilizer update rules is a tedious task,
making such a direct approach difficult for complex tasks and
operations, especially for operations that act on many qubits
and consist of many Clifford operations and measurements.

Measurement-based quantum information processing using
special purpose resource states has been investigated in
different contexts. In [5] explicit resources for a quantum adder
and the quantum Fourier transform have been constructed.
Quantum error correction codes associated with graph states
have been proposed in [35]. This type of quantum error
correction codes especially fit in a measurement-based setting
as their resource states correspond to graph states. Quantum
error correction codes where the codewords correspond to
graph states were studied, e.g., in [11,12,36,37]. The concate-
nation of quantum error correction codes is a standard way to
obtain efficient codes for fault-tolerant quantum computation
(see, e.g., [34]). The measurement-based implementations of
quantum error correction codes were studied in [6–9] where
explicit resource states for the repetition code and cluster-ring
code were provided. In [38,39] the practicality of optical
cluster-state quantum computation [40,41] using quantum
error correction codes was numerically investigated and it was
found that scalable optical quantum computing is possible.
Furthermore, it was also investigated in fault-tolerant quantum
computation on cluster states in [42–44]. In [16], explicit
resource states for entanglement purification and entanglement
swapping, as well as combinations thereof were constructed. In
particular, resource states for one and two rounds of entangle-
ment purification using the protocol of [18] and entanglement
purification followed by entanglement swapping. The latter is
a building block for a measurement-based quantum repeater,
which allows for long-distance quantum communication.

All examples mentioned so far have in common that they
construct a resource state for one specific task. Even though
these resource states do implement a particular quantum
operation, they still lack a composable description. It is a
nontrivial task to concatenate those elementary quantum oper-
ations at the level of resource states as already easy examples
like two rounds of entanglement purification show. Here, we
address this problem and provide an explicit construction of
resource states for concatenated tasks that are combinations
of elementary building blocks. Rather than calculating the
required resource state directly, we develop a method to
combine and concatenate small building blocks in terms of
their stabilizer description via a set of recurrence relations. We
would like to emphasize that our construction is applicable
not only to unitary Clifford circuits, but also to circuits that
contain Pauli measurements. In particular, also probabilistic
operations such as entanglement purification can be treated
in this way. Pauli measurements can be done beforehand,
thereby obtaining resource states of smaller (minimal) size.
Furthermore, the result of the Pauli measurement (which
determines whether the overall operation is successful and
the output states should be kept) can be determined from the
results of the in-coupling Bell measurements [6,9,10,16]. This
ensures full functionality of circuits, including post-selection
based on measurement outcomes, or application of correction
operations depending on the encountered error syndrome.

062332-2



CONSTRUCTION OF OPTIMAL RESOURCES FOR . . . PHYSICAL REVIEW A 95, 062332 (2017)

Consider, for example, a resource state for syndrome
read-out and error correction for a concatenated five-qubit
code with four concatenation levels. This corresponds to an
error correction code of 54 = 625 qubits, i.e., a resource state
of 1250 qubits. The circuit to implement the required error
correction operation thus contains several thousand gates, and
the direct computation of the resource state from the 2D cluster
state or via the Jamiolkowski isomorphism is difficult. With
our approach, we make use of the recursive and concatenated
structure of the states, and can easily construct the required
resource states for decoding and encoding for such concate-
nated codes in terms of their stabilizers. The combination of
decoding (with syndrome readout) and encoding allows then
to obtain the resource state for syndrome readout and error
correction, or alternatively a code switcher between different
codes. In a similar way, one can combine different kinds of
elementary building blocks, and obtain resource states for
multiple rounds of entanglement purification, entanglement
purification of encoded states, or quantum repeater stations for
encoded quantum information. This allows for full flexibility,
and for a broad applicability of our findings. Following our
approach, one immediately obtains a stabilizer description
of a concatenated quantum operation rather than computing
its implementing resource state from scratch. Furthermore, as
the construction scheme relies on stabilizers, this description
turns out to be especially suited for studying scaling and
stability properties of resource states, crucial for experimental
implementations. For all relevant examples, we also provide
an explicit description of the resulting resource states as graph
states. This has the advantage that one obtains directly an
efficient way to prepare these states via elementary two-qubit
operations. In addition, as entanglement purification protocols
for all graph states exist [45], one also obtains a way to generate
all these states with high fidelity from multiple copies via
entanglement purification.

III. BACKGROUND AND NOTATION

In the following, we recall some basic notations and results
concerning stabilizer states, graph states, and measurement-
based quantum computation which will be used throughout
the paper.

A. Stabilizer states, Clifford group, and graph states

Let Pn denote the n qubit Pauli group, i.e., Pn is the group
consisting of all n-fold tensor products of the Pauli operators
X, Y, and Z as well as the identity. We call an n qubit state
|ψ〉 a stabilizer state if it is stabilized by elements of Pn. More
precisely, there exist S1, . . . ,Sn ∈ Pn such that Si |ψ〉 = |ψ〉
for i = 1, . . . ,n [19]. The stabilizers of |ψ〉 form a subgroup
of Pn. Graph states [11,12] are specific stabilizer states. Given
a mathematical graph G = (V,E), where V denotes the set of
vertices and E the set of edges, the associated graph state |G〉
is stabilized by the operators

Ka = X(a)
∏

{a,b}∈E

Z(b), (1)

where the superscripts in brackets indicate on which Hilbert
space the Pauli operator acts. Hence, the graph state |G〉 is the

common +1 eigenstate of the family of operators {Ka}a∈V .
Alternatively, the graph state |G〉 can be generated via

|G〉 =
∏

{a,b}∈E

U {a,b}|+〉⊗V , (2)

where U {a,b} = |0〉〈0| ⊗ id + |1〉〈1| ⊗ Z is a controlled-Z
gate. Notice that this implies an efficient preparation procedure
for all graph states, i.e., knowing the graph state description
of a state provides one with a way to prepare the state with at
most quadratically many commuting two-qubit gates.

We call two graph states |G〉 and |G′〉 local unitary
equivalent (LU equivalent) if there exist unitaries Ui such that
U1 ⊗ · · · ⊗ Un|G〉 = |G′〉. An important group of unitaries is
the so-called Clifford group. The Clifford group is the set of all
n qubit unitaries U such that UPnU

† = Pn or, in other words,
the Clifford group is the normalizer of the Pauli group. An
important result which we will use here frequently is that any
stabilizer state is local Clifford equivalent (LC equivalent) to
a graph state [46] and that those local Clifford operations can
be determined efficiently. This equivalence can be most easily
derived in terms of the binary representation of stabilizers of
a stabilizer state. Finally, we denote the four Bell-basis states
by

|φ+〉 = (|00〉 + |11〉)/
√

2, (3)

|φ−〉 = (|00〉 − |11〉)/
√

2, (4)

|ψ+〉 = (|01〉 + |10〉)/
√

2, (5)

|ψ−〉 = (|01〉 − |10〉)/
√

2. (6)

B. Measurement-based quantum computation
and the Jamiolkowski isomorphism

In measurement-based quantum computation a specific
quantum operation is realized via a sequence of single-qubit
measurements on an entangled state. It has been shown in
[2] that the 2D cluster state [4] is universal for quantum
computation [27]. The 2D cluster state is a graph state
associated with a two-dimensional square lattice.

This enables a correspondence between a quantum opera-
tion and a specific sequence of measurements on the 2D cluster,
as those measurements implement the quantum operation in a
measurement-based way. However, the outcomes of measure-
ments are random, leading to Pauli correction operations. For
general quantum circuits, this implies that measurements need
to be modified depending on previous measurement results,
and quantum information processing takes place in a sequential
way. Nevertheless, by using a sufficiently large resource state,
one can deterministically implement an arbitrary quantum
circuit following this approach. Determinism in measurement-
based quantum computation was addressed in more depth in
[47,48].

The 2D cluster state is a universal resource and can thus
be used to simulate any quantum circuit. However, there can
be a large overhead in terms of the number of auxiliary
systems. So, if one is interested in a specific quantum task,
it might be beneficial to consider a special-purpose resource
state that can be used to realize a specific operation, and find a
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FIG. 1. Measurement-based implementation of the quantum op-
eration O mapping n = 3 qubits to m = 1 qubit via its Jamiolkowksi
state EO. The input qubits of the Jamiolkowski state are red, the
output qubit is blue, and the ellipses indicate Bell measurements.

state of minimal size or complexity [5]. The Jamiolkowski
isomorphism [22] establishes a one-to-one correspondence
between completely positive maps and quantum states. More
precisely, for every quantum operation O there exists a mixed
state EO (which we will refer to as resource state) such that
EO allows one to probabilistically implement the operation O
via Bell measurements at the input qubits of the resource state
(see Fig. 1).

For unitary operations U , or unitary operations followed
by projective measurements on some of the output qubits, the
corresponding resource state is pure, |EU 〉. We only consider
such situations in the following.

In this case, the Jamiolkowski state |EO〉 for the quantum
operation O is given by

|EO〉 = (IA ⊗ OB)
n⊗

i=1

|φ+〉AiBi
(7)

(see also Theorem 1 in [5]), where n denotes the number of
input qubits of O, and A and B denote input and output qubits,
respectively. For an n → m operation, i.e., an operation acting
on n input qubits and producing m output qubits, the resource
state is of size n + m. The processing of quantum information
now takes place by coupling the qubits of the input states to
the input qubits of the resource state via Bell measurements,
similarly as in teleportation. Depending on the outcome of
the Bell measurements, the output state is then given by a
state, where first some Pauli operations ⊗kσik (determined by
the outcomes of the Bell measurements) act, followed by the
application of the desired operation O. In general, the Pauli
operations and O do not commute, resulting in a probabilistic
implementation of O. In particular, if all outcomes of the
Bell measurements are given by |φ+〉 (which happens with
probability 1/4n), the desired operation is applied.

For specific operations O, including all Clifford circuits
(unitary operations from the Clifford group and Pauli measure-
ments), the Pauli operations can be corrected, and one obtains
a deterministic implementation of the map in this case. All
circuits we consider throughout the paper are of this form.

It is also straightforward to concatenate different quantum
tasks, as the quantum computation is done via Bell mea-
surements at the input qubits. In particular, one can combine
resource states via Bell measurements on the respective inputs
and outputs (see Fig. 2).

Because those Bell measurements might, in general, yield
other outcomes than |φ+〉, one would need to deal in sequential
implementations of concatenated quantum tasks with Pauli

FIG. 2. Construction and usage of the resource state for the
concatenated quantum task entanglement purification at a logical
level. The first figure illustrates the concatenation of several different
quantum tasks. In this example, the quantum tasks decoding in
the three-qubit bit-flip code (T1), one round of the entanglement
purification protocol [18] (T2), and encoding in the three-qubit bit-flip
code (T3) are concatenated. On the right-hand side, an LC-equivalent
graph state for performing all three quantum tasks in one go is
shown. This resource state implements one round of entanglement
purification at a logical level, i.e., without decoding. The second
figure depicts the usage of the resource state in a measurement-based
implementation of the concatenated quantum task entanglement
purification at a logical level.

by-product operators. We emphasize that within the framework
proposed here these coupling measurements are done virtually
only, thus enabling the deterministic generation of resource
states for complex quantum tasks. That is, the intermediate
output-input qubits only appear virtually, and are not part
of the resulting resource state that contains input and output
qubits of the general task. This is similar as for qubits which
are measured in the Pauli basis in a Clifford circuit: also
in this case, the measurement can be done beforehand on
qubits in the resource state, thereby leading to a state of
reduced size that only contains input and output qubits. The
result of Pauli measurements on beforehand measured (virtual)
systems is determined by the outcomes of the in-coupling Bell
measurements (see, e.g., [16] for entanglement purification).
This leads to a possible reinterpretation of the outcomes at the
read-in.

In the following, we will use at some points of the paper
the notation

σ0,0 = id, σ0,1 = X, σ1,0 = Z, σ1,1 = Y. (8)

We denote by n
O→ m that the quantum operation O maps

n input qubits to m output qubits. Furthermore, all resource
states we are concerned with here are stabilizer states.

IV. FRAMEWORK

In this section, we present a general framework to construct
the stabilizers of resource states for concatenated quantum
tasks.
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A. Basic observation

Suppose we implement the quantum operation 1
O→ m via

its Jamiolkowski state |ψO〉 in a measurement-based way, for
example, encoding quantum information in a quantum error
correcting code. We rewrite |ψO〉 as

|ψO〉 = |+〉in|G0〉out + |−〉in|G1〉out =
∑

i

|ix〉in|Gi〉out, (9)

where |+〉in = |0x〉in and |−〉in = |1x〉in denote the eigenstates
of X, in the input qubit, and out the system of output qubits.
Observe that the states |G0〉out and |G1〉out are not normalized.
Furthermore, assume there exist two classes of operators,
which we call auxiliary operators K and F , which satisfy
the equations

K|Gi〉out = |Gi⊕1〉out, (10)

F |Gi〉out = (−1)i |Gi〉out. (11)

The operator K serves as logical X and the operator F as a
logical Z operator for the states |Gi〉out. We denote byK andF
the sets of all operators satisfying (10) and (11), respectively.
Using (10) and (11), we immediately observe that the operators

Z ⊗ K, (12)

X ⊗ F (13)

stabilize |ψO〉, i.e., (Z ⊗ K)|ψO〉=|ψO〉 and (X ⊗ F )|ψO〉=
|ψO〉 for K ∈ K and F ∈ F . So, we infer that some stabilizers
of the resource state |ψO〉 are given by {Z ⊗ K}K∈K ∪ {X ⊗
F }F∈F .

According to the following argument, the stabilizers can
always be brought to this form: If there are at least two
generators of the stabilizer group with different Pauli operators
on the first qubit, we can construct a set of generators that are
of form (12) and (13) by picking different elements of the
stabilizer group. This can be done by multiplying two of the
known stabilizers together to get a new one. Furthermore, all
meaningful (i.e., entangled, so they actually can implement
an operation) resource states have at least two stabilizers with
different Pauli operators as every set of stabilizers is local
Clifford equivalent to a set of graph state stabilizers [46]. So,
in the graph-state picture there is an edge from the first qubit
to at least one of the other qubits. That means the stabilizers
can always be brought to the required form if the input qubit
is entangled with the other qubits.

In the following, we will construct the stabilizers of a
resource state implementing a concatenated quantum task,
such as concatenated quantum error correction or entangle-
ment purification at a logical level. Suppose we want to

concatenate the quantum operations 1
O→ m and 1

O′→ n, where
the latter acts on each output particles of the former, i.e., the
resulting quantum operation is O′⊗m ◦ O, and both operations
are implemented in a measurement-based way [49]. Examples
thereof are encoding a single qubit into a quantum error
correction code. Hence, we have to combine the resource
states |ψO〉 and |ψO′ 〉⊗m. Expressing |ψO〉 and |ψO′ 〉 as in (9)

FIG. 3. Graphical illustration of the construction of the resource
state for the concatenated quantum tasks O ′⊗m ◦ O. The ellipses
indicate Bell measurements.

yields

|ψO〉 =
1∑

i=0

|ix〉in

∣∣G1
i

〉
out, (14)

|ψO′ 〉 =
1∑

i=0

|ix〉in′
∣∣Gn

i

〉
out′ . (15)

Combining |ψO〉 and |ψO′ 〉⊗m is done via Bell measurements
(see Sec. III B) between out and in′ (see Fig. 3).

Because we are interested in the construction of the
resource state for implementing the composite O′⊗m ◦ O
rather than their sequential execution, we assume that the
(virtual) coupling Bell measurements reveal simultaneously
the |φ+〉 outcome. It is straightforward to define connecting
functions

αi(k1, . . . ,km) = ⊗m
〈
φ+∣∣kx

1 , . . . ,kx
m

〉
in′m

∣∣G1
i

〉
out (16)

for i = 0,1 where |kx
1 , . . . ,kx

m〉in′m = ⊗m
l=1 |kx

l 〉in′
l
. To sum-

marize, the resource state for implementing the quantum
operation O′⊗m ◦ O by denoting |�〉 = ⊗m

l=1 |φ+〉in′
l ,outl is

given by

∣∣ψO′⊗m◦O〉 = 1

2m
〈�|ψO〉|ψO′ 〉⊗m

= 1

2m
〈�|

∑
i

|ix〉in

1∑
k1,...,km=0

∣∣kx
1 , . . . ,kx

m

〉
in′m

⊗ ∣∣G1
i

〉
out

∣∣Gn
k1

, . . . ,Gn
km

〉
out′m

= 1

2m

∑
i

|ix〉in

1∑
k1,...,km=0

αi(k1, . . . ,km)

× ∣∣Gn
k1

, . . . ,Gn
km

〉
out′m, (17)

where |Gn
k1

, . . . ,Gn
km

〉out′m = ⊗m
l=1 |Gn

kl
〉out′l . We observe that

(17) is again of the form (9). In the rest of this section we
elaborate on the construction of the auxiliary operators of
|ψO′⊗m◦O〉 in terms of the auxiliary operators of |ψO′ 〉. We
emphasize that the same techniques apply to the concatenation
of quantum operations with a single-qubit output.

B. Main results

In the following, we denote concrete auxiliary operators of
|ψO′⊗m◦O〉 by Kn+1 and Fn+1, i.e., Kn+1 ∈ Kn+1 and Fn+1 ∈
Fn+1. The theorem below relates the auxiliary operator Kn+1
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of |ψO′⊗m◦O〉 to auxiliary operators Kn ∈ Kn and Fn ∈ Fn of
|ψO′ 〉.

Theorem 1 (Recurrence relation for Kn+1). Let K1 =
a

⊗m
k=1 σik,jk

with a ∈ {±1, ± i}, ik ∈ {0,1} and jk ∈ {0,1}
be the K-type operator of |ψO〉. Then, there exist γ ∈
Zm

2 , δ ∈ Zm
2 , and c ∈ C where |c| = 1 such that the aux-

iliary operator Kn+1 of |ψO′⊗m◦O〉 is given by Kn+1 =
c
⊗m

r=1(Fr )δr
⊗m

s=1(Ks)γs where γs = is , δs = js , Ks ∈ Kn,
and Fs ∈ Fn for all s and c = a

∏m
l=1 iiljl .

We sketch the proof of Theorem 1 as follows:
First, one observes that the new auxiliary operator
Kn+1 must satisfy (10), i.e., Kn+1|Gn+1

i 〉 = |Gn+1
i⊕1 〉.

The application of Kn+1 = c
⊗m

r=1(Fr )δr
⊗m

s=1(Ks)γs to
|Gn+1

i 〉 = ∑
k1,...,km

αi(k1, . . . ,km)|Gn
k1

. . . Gn
km

〉 leads to
c(−1)

∑
r δr kr αi(k1 ⊕ γ1, . . . ,km ⊕ γm) = αi⊕1(k1, . . . ,km).

From the definition of the connecting functions αi (16),
the expansion of K1 in the Pauli basis and the well-known
relationship (σi,j ⊗ id)|φ+〉 = (−1)ij (id ⊗ σi,j )|φ+〉 follows
the claim. We provide a detailed proof in Appendix A.
Theorem 1 establishes a recurrence relation for auxiliary
operators of type K for concatenated quantum tasks. We
provide a similar theorem for the auxiliary operators of
type F .

Theorem 2 (Recurrence relation for Fn+1). Let F1 =
a

⊗m
k=1 σik,jk

with a ∈ {±1, ± i}, ik ∈ {0,1} and jk ∈ {0,1}
be the F -type operator of |ψO〉. Then, there exist ε ∈
Zm

2 , η ∈ Zm
2 , and c ∈ C where |c| = 1 such that the aux-

iliary operator Fn+1 of |ψO′⊗m◦O〉 is given by Fn+1 =
c
⊗m

r=1(Fr )ηr
⊗m

s=1(Ks)εs where εs = is , ηs = js , Ks ∈ Kn,
and Fs ∈ Fn for all s and c = a

∏m
l=1 iiljl .

The proof is similar to the proof of Theorem 1: Fn+1 must
satisfy (11), i.e., Fn+1|Gn+1

i 〉 = (−1)i |Gn+1
i 〉. Hence, applying

Fn+1 to |Gn+1
i 〉 implies the condition c(−1)

∑
r ηr kr αi(k1 ⊕

ε1, . . . ,km ⊕ εm) = (−1)iαi(k1, . . . ,km). Again, from the defi-
nition of αi (16), and the expansion of F1 in the Pauli basis the
claim follows. The detailed proof is provided in Appendix A.
Thus, Theorems 1 and 2 show that the sets Kn+1 and Fn+1 are
given by

Kn+1 =
⋃

1�l�|K1|

{
c

m⊗
r=1

(Fr )δ
(l)
r

m⊗
s=1

(Ks)
γ

(l)
s :

Fr ∈ Fn,Ks ∈ Kn

}
, (18)

Fn+1 =
⋃

1�l�|F1|

{
c

m⊗
r=1

(Fr )η
(l)
r

m⊗
s=1

(Ks)
ε

(l)
s :

Fr ∈ Fn,Ks ∈ Kn

}
, (19)

where the families {γ (l)}1�l�|K1|, {δ(l)}1�l�|K1| and
{ε(l)}1�l�|F1|, {η(l)}1�l�|F1| denote the decompositions in
the Pauli basis of the initial auxiliary operators in K1 and F1,
respectively. The sets Kn+1 and Fn+1 enable us to provide a
complete set of recurrence relations for auxiliary operators via
(18) and (19). Recall that the auxiliary operators immediately
translate to stabilizers via (12) and (13). In general, the sets

FIG. 4. Illustration of the concatenation of single-qubit output
with single-qubit input quantum tasks via a Bell measurement. Here,
the single-qubit output task O is concatenated with the single-qubit
input task O ′, e.g., O might be a decoding procedure in a quantum
error correction and O ′ might be an encoding procedure into another
quantum error correction code.

Kn+1 and Fn+1 will contain too many auxiliary operators
depending on |K1| and |F1| and |Kn| and |Fn|. This is rather
obvious as all initial auxiliary operators in K1 and F1 enable
the application of Theorems 1 and 2. The new stabilizers
uniquely describe the resulting state because we can choose a
sufficient number (i.e., the number of qubits in the resulting
state) of linear independent stabilizers of the form (12) and
(13) from the sets Kn+1 and Fn+1. For the examples we
are concerned with in the following sections this follows
immediately from the construction of the new stabilizers
using Theorems 1 and 2. We address this issue in detail for
those cases in Appendix B. Furthermore, we show that this
method always provides a full set of independent stabilizers in
Appendix C. We conclude the technical results by providing
a theorem concerning the concatenation of single-qubit
output with single-qubit input quantum tasks, crucial for the
measurement-based implementation of code switchers and
quantum repeaters [20]. The setting is illustrated in Fig. 4.

Theorem 3 (Coupling of resource states). Suppose we are
given two resource states, |ψ1〉 = |+〉in|G0〉 + |−〉in|G1〉 and
|ψ2〉 = |+〉out|H0〉 + |−〉out|H1〉, implementing a single-qubit
input and single-qubit output quantum task, respectively.
Furthermore, assume that we are provided the sets of auxiliary
operators K1,F1 and K2,F2, i.e.,

K1|Gi〉 = |Gi⊕1〉 and F1|Gi〉 = (−1)i |Gi〉, (20)

K2|Hi〉 = |Hi⊕1〉 and F2|Hi〉 = (−1)i |Hi〉, (21)

where Ki ∈ Ki and Fi ∈ Fi . Then, the stabilizers of the
concatenated quantum task, i.e., the resource state obtained by
connecting |ψ2〉 and |ψ1〉 through a Bell measurement between
in and out , are given by

{K1 ⊗ K2 : K1 ∈ K1,K2 ∈ K2}
∪ {F1 ⊗ F2 : F1 ∈ F1,F2 ∈ F2}. (22)

Proof. First, we observe that |φ+〉 = (| + +〉+| − −〉)/√
2. Hence, we find for the state after connecting |ψ1〉 and

|ψ2〉 via the Bell measurement

1
2 |φ+〉〈φ+|in,out|ψ1〉|ψ2〉

= 1
2 (|G0〉|H0〉 + |G1〉|H1〉)|φ+〉 =: |ψ〉. (23)
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It follows for Ki ∈ Ki and Fi ∈ Fi that

(K1 ⊗ K2)|ψ〉 = (K1 ⊗ K2)(|G0〉|H0〉 + |G1〉|H1〉)/2

= (|G1〉|H1〉 + |G0〉|H0〉)/2 = |ψ〉, (24)

(F1 ⊗ F2)|ψ〉 = (F1 ⊗ F2)(|G0〉|H0〉 + |G1〉|H1〉)/2

= (|G0〉|H0〉 + (−1)2|G1〉|H1〉)/2 = |ψ〉,
(25)

which shows that K1 ⊗ K2 and F1 ⊗ F2 stabilize |ψ〉 as
claimed. �

C. Dealing with by-product operators

Finally, we have to deal with Pauli by-product operators due
to the Bell measurements at the read-in of the resource state.
Because all quantum operations we are concerned with here
belong to the Clifford group, the Pauli by-product operators at
the input qubits propagate through the resource state leading
to (possibly different) Pauli operations at the output qubits
(see Sec. III A). Thus, it is left to determine how those Pauli
errors propagate through a concatenated resource state which
we discuss below.

If the resource states |ψO〉 and |ψO′ 〉 implementing the
quantum operations O and O′ are concatenated to obtain the
resource state |ψO′⊗m◦O〉 implementing O′⊗m ◦ O, the Pauli
by-product operators due to the read-in Bell measurements
need to be propagated through |ψO′⊗m◦O〉. This is done as
follows: the Pauli by-product operator σα,β at the read-in of
|ψO〉 translates to an effective Pauli error σf (α,β) on the output
of |ψO〉. Because |ψO〉 and |ψO′ 〉⊗m were connected via a
virtual Bell measurement with |φ+〉 outcome, the Pauli error
σf (α,β) at the output of |ψO〉 is also the effective Pauli error
on the input of |ψO′ 〉⊗m. Hence, one obtains the resulting
Pauli error up to a global phase on the output of |ψO′⊗m◦O〉 by
propagating σf (α,β) through |ψO′ 〉⊗m leading to a deterministic
correctable Pauli error σg(f (α,β)) at the output of |ψO′⊗m◦O〉.

V. APPLICATIONS

In Sec. IV we showed theorems which allow one to con-
struct auxiliary operators for concatenated quantum tasks, and
determine the stabilizers of the resulting resource states. Now,
we provide applications of those theorems to different tasks
in quantum communication and computation. In particular,
we use Theorems 1–3 to construct stabilizers and graph-state
representation of resource states for measurement-based im-
plementations of multiple rounds of entanglement purification
protocols, for quantum error correction including encoding,
decoding, and syndrome readout for concatenated quantum
codes, as well as for code switchers. Finally, we construct
resource states for the measurement-based implementation of
entanglement purification protocols at a logical level.

A. Bipartite entanglement purification protocols

Bipartite entanglement purification protocols are used to
distill high-fidelity entangled states, ideally a perfect Bell
pair, from a set of noisy copies by means of local operations
and classical communication. Entanglement purification is

an important primitive in quantum information processing
[13], and constitutes a possible way to prepare states with
high fidelity, both locally where they have the role of
resource states to perform certain operations or tasks [15], as
well as in a distributed, nonlocal way, where entanglement
purification is used as a central element in long-distance
quantum communication protocols, the quantum repeater [20].
Entanglement purification protocols exist for all graph states
[45], and the methods we develop here are also applicable to
such protocols. That is, one can construct the corresponding
resource states to perform multiple rounds of multiparty
entanglement purification in a similar way as outlined below
for bipartite states.

Several different protocols for bipartite entanglement pu-
rification have been proposed [13,17,18,50]. Here, we provide
a detailed analysis of a measurement-based implementation
of the entanglement purification protocol of [18], which we
refer to as DEJMPS protocol in the following. The DE-
JMPS protocol is a recurrence-type entanglement purification
protocol that operates on two noisy pairs and produces
probabilistically one pair with improved fidelity. This is
achieved by applying at each site, referred to as Alice and Bob,
a certain two-qubit operation between the two pairs, followed
by a local measurement of the second pair. Depending on the
measurement outcome, the remaining pair is either kept or
discarded, a step for which two-way classical communication
is necessary. This constitutes the basic purification step, where
only Clifford operations and Pauli measurements are involved
and hence a three-qubit resource state with two input and
one output particle can be found for a measurement-based
implementation [10,16]. This basic purification step (also
referred to as purification round) may be applied in an iterative
manner, using the output pairs of the previous round as input
pairs for the next round. One may combine m of these basic
purification steps, thereby obtaining a protocol that operates on
2m input pairs which produces (probabilistically) one output
pair. The corresponding resource state for a measurement-
based implementation at each site is of size 2m + 1. This
setting has been studied for m � 2 in [16]. Notice that the
resource state for performing several purification rounds in one
step contains fewer qubits than the resource states to perform
the same task in a sequential fashion. For two rounds, one
needs at each site three three-qubit states, i.e., nine qubits,
when performing the protocol in a sequential fashion, while a
resource state of five qubits (four input plus one output) suffices
for the overall task. This reduction in size of resource states
seems to be the crucial feature that leads to very high error
thresholds in a measurement-based implementation, where a
threshold of more than 23% noise per qubit was found [10]. In
turn, performing multiple rounds in one step leads to a smaller
success probability. Obtaining the explicit form of resource
states that allow one to perform entanglement purification
with such a high robustness and tolerance against noise and
imperfections is highly relevant, and will be the subject of the
remainder of this section.

We emphasize that our results go beyond the analysis
provided in [10,16], as we offer a framework for constructing
analytically the concrete stabilizers of the resource state for
an arbitrary number of rounds of entanglement purifica-
tion explicitly rather than considering only a small number
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p

FIG. 5. Measurement-based implementation of two rounds of the
DEJMPS entanglement distillation protocol. The protocol operates on
four input pairs and produces one output pair probabilistically.

of entanglement purification rounds. Figure 5 shows the
measurement-based implementation of two rounds of the
DEJMPS protocol.

1. Construction of resource state for several rounds
of the DEJMPS protocol

The resource state for one basic purification step of the
DEJMPS protocol at Alice’s side [16] is

|ψD〉 = 1/
√

2(|−〉|φ−〉 − i|+〉|ψ+〉). (26)

Hence, we have that |G0〉 = −i|ψ+〉 and |G1〉 = |φ−〉. The re-
source state at Bob’s side differs in the sign of |G0〉. One easily
verifies that the initial auxiliary operators of |ψD〉 are K1 =
−(Y ⊗ id), K ′

1 = −(id ⊗ Y ), and F1 = −(Z ⊗ Z). Hence,
K1 = {−(Y ⊗ id), − (id ⊗ Y )} and F1 = {−(Z ⊗ Z)}. Thus,
we obtain via Theorem 1 that γ1 = δ1 = (1,0) and γ2 = δ2 =
(0,1) where c = −i for both cases. Furthermore, Theorem 2
implies ε = (1,1), η = (0,0), and c = −1. To summarize, the
sets of auxiliary operators Kn+1 and Fn+1 are given by

Kn+1 = {−i(FnKn ⊗ id) : Fn ∈ Fn,Kn ∈ Kn} (27)

∪ {−i(id ⊗ FnKn) : Fn ∈ Fn,Kn ∈ Kn}, (28)

Fn+1 = {−(Kn ⊗ K ′
n) : Kn,K

′
n ∈ Kn}. (29)

The stabilizers of the resource state for performing n pu-
rification steps of the DEJMPS protocol are, according to
(12) and (13), {Z ⊗ Kn}Kn∈Kn

and {X ⊗ Fn}Fn∈Fn
. One easily

verifies that those stabilizers are linear independent for all n

by construction.

2. Graph-state representation of resource states

In the following, we transform the resource states of the
DEJMPS protocol via local unitaries to graph states and show
that there exists a construction scheme solely based on simple
graph rules for concatenating the DEJMPS protocol. For that
purpose we observe from (28) and (29) that

Fn−1Kn−1 = −(Kn−2 ⊗ Kn−2)(−i)(id ⊗ Fn−2Kn−2)

= i(Kn−2 ⊗ Kn−2Fn−2Kn−2)

= iδi(Kn−2 ⊗ Fn−2) (30)

for Kn−2 ∈ Kn−2 and Fn−2 ∈ Fn−2 where δi ∈ {1, − 1} de-
pends on whether Kn−2 and Fn−2 commute or anticommute.

Similarly, one obtains via (27) and (29) that

Fn−1Kn−1 = iδi(Fn−2 ⊗ Kn−2) (31)

for Kn−2 ∈ Kn−2 and Fn−2 ∈ Fn−2. Inserting (30) and (31) in
(27) and (28) implies that

Kn = {
δ

(1)
KF id ⊗ id ⊗ K ⊗ F : K ∈ Kn−2,F ∈ Fn−2

}
∪ {

δ
(2)
KF id ⊗ id ⊗ F ⊗ K : K ∈ Kn−2,F ∈ Fn−2

}
∪ {

δ
(3)
KF K ⊗ F ⊗ id ⊗ id : K ∈ Kn−2,F ∈ Fn−2

}
∪ {

δ
(4)
KF F ⊗ K ⊗ id ⊗ id : K ∈ Kn−2,F ∈ Fn−2

}
,

(32)

where δ
(i)
KF ∈ {−1,1} for 1 � i � 4 depend on K ∈ Kn−2

and F ∈ Fn−2. One computes in a similar fashion
for Fn that Fn = −(Kn−1 ⊗ K ′

n−1) = id ⊗ Fn−2Kn−2 ⊗ id ⊗
F ′

n−2K
′
n−2 for Kn−2,K

′
n−2 ∈ Kn−2 and Fn−2,F

′
n−2 ∈ Fn−2. To

summarize, the stabilizers of the resource state for n rounds of
purification are

δK ′
1F

′
1
Z ⊗ id ⊗ id ⊗ K ′

1 ⊗ F ′
1, (33)

δK ′
2F

′
2
Z ⊗ id ⊗ id ⊗ F ′

2 ⊗ K ′
2, (34)

δK ′
3F

′
3
Z ⊗ K ′

3 ⊗ F ′
3 ⊗ id ⊗ id, (35)

δK ′
4F

′
4
Z ⊗ F ′

4 ⊗ K ′
4 ⊗ id ⊗ id, (36)

X ⊗ id ⊗ F ′
5K

′
5 ⊗ id ⊗ F ′

6K
′
6, (37)

where K ′
i ∈ Kn−2 and F ′

i ∈ Fn−2 for all 1 � i � 6. Multiply-
ing (34), (36), and (37) with appropriate choices of K ′

2 = K ′
6

and K ′
4 = K ′

5 yields the stabilizer δ′X ⊗ F ′
4 ⊗ F ′

5 ⊗ F ′
2 ⊗ F ′

6,
where we have used that Pauli operators either commute or
anticommute. Thus, we obtain as stabilizers of the resource
state for n + 2 rounds of the DEJMPS

δK ′
1F

′
1
Z ⊗ id ⊗ id ⊗ K ′

1 ⊗ F ′
1, (38)

δK ′
2F

′
2
Z ⊗ id ⊗ id ⊗ F ′

2 ⊗ K ′
2, (39)

δK ′
3F

′
3
Z ⊗ K ′

3 ⊗ F ′
3 ⊗ id ⊗ id, (40)

δK ′
4F

′
4
Z ⊗ F ′

4 ⊗ K ′
4 ⊗ id ⊗ id, (41)

δ′X ⊗ F ′
5 ⊗ F ′

6 ⊗ F ′
7 ⊗ F ′

8, (42)

where K ′
i ∈ Kn−2 for 1 � i � 4 and F ′

j ∈ Fn−2 for all 1 �
j � 8. From F1 = −Z⊗2 and F2 = Z⊗4 we deduce

Fn = Z⊗2n

, (43)

up to a global phase which implies |Fn| = 1 for all n. Now, we
show that the stabilizers (38)–(42) correspond to a graph state
up to local Clifford operations. We observe from (33)–(36)
that if the operators in K1 (odd number of purification rounds)
or K2 (even number of purification rounds) contain exactly
one Y or X, respectively, then all subsequent Kn ∈ Kn will
also contain exactly one Y (which maps to X by applying
Rz(−π/2) to that qubit) or X. Equation (43) implies that the
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FIG. 6. Constructing the resource state for three rounds of
entanglement purification from the resource state for one purification
round.

output particle will be connected to all input particles and
that the stabilizers describe a valid graph state. Furthermore,
we find from (43) and (38)–(41) that the resource state for n

rounds of purification is a tensor product corresponding to two
disjoint subgraphs, each described by (38) and (39) and (40)
and (41). Both subgraphs are of the form

δK ′
1F

′
n−2

Z ⊗ K ′
1 ⊗ Fn−2, (44)

δK ′
2F

′
n−2

Z ⊗ Fn−2 ⊗ K ′
2, (45)

where K ′
i ∈ Kn−2 for 1 � i � 2. From (44) and (45) we infer

the following construction scheme for the resource state of the
DEJMPS protocol:

(1) Remove the output qubit from the resource state. This
results in two disjoint graphs G1 and G2.

(2) Duplicate the disjoint graphs of item (1) and label them
with G3 and G4.

(3) Connect G1, G2, G3, and G4 according to the follow-
ing rules:

(i) each particle of G1 with each particle of G3,
(ii) each particle of G1 with each particle of G4,
(iii) each particle of G2 with each particle of G3,
(iv) each particle of G2 with each particle of G4.

FIG. 7. Constructing the resource state for five rounds of entan-
glement purification from the resource state for three purification
rounds.

FIG. 8. Graph-state representation of resource states for one, two,
and three rounds of entanglement purification using the DEJMPS
protocol. The red circle indicates a Rz(−π/2) rotation.

We denote the resulting graph G′
1.

(4) Duplicate the graph G′
1 of (3) and denote it G′

2.
(5) Insert the output qubit and connect it to all particles in

G′
1 and G′

2.
The construction scheme is depicted in Figs. 6 and 7 for

the resource state of three and five rounds of entanglement
purification. The resulting resource states for one, two, and
three steps of the DEJMPS protcol are depicted in Fig. 8.

Since all quantum gates involved in the DEJMPS protocol
are elements of the Clifford group and only measurements of
the Z observable are performed, we can propagate possible er-
rors due to the read-in Bell measurement through the resource
state (see Sec. III A). A detailed analysis of the resulting Pauli
corrections necessary at the output qubit is provided in [16]
for small resource states, but it is straightforward to explicitly
obtain a similar result for multiple rounds of entanglement
purification.

B. Quantum repeaters

Quantum repeaters enable long-distance quantum com-
munication by combining entanglement purification and en-
tanglement swapping [20]. This allows one to establish a
long-distance entangled pair over arbitrary distances, with an
overhead that scales only polynomially (in terms of resources,
success probability, or time) with the distance. To this aim,
the channel is divided into segments of shorter distance,
and (noisy) short-distance entangled pairs are generated over
all segments. Entanglement purification is used to generate
pairs with high fidelity, after which two neighboring pairs are
connected by means of Bell measurement. The measurement
within the Bell basis and the classical communication of the
outcome is also referred to as entanglement swapping. A
repeater station thus distills from several noisy Bell pairs
one Bell pair of sufficiently high fidelity relative to |φ+〉,
both for pairs from left and right. The resulting output qubits
(more precisely, one part of a Bell pair) belonging to different
segments get measured within the Bell basis and the obtained
outcome is classically communicated. This establishes a long-
distance quantum communication link by means of quantum
teleportation. Notice that at each repeater station, there are only
input and no output particles, i.e., no particles are left after the
protocol has finished. Only at the end stations at Alice and
Bob, no entanglement swapping is performed, and an output
qubit is kept. The basic functionality of a quantum repeater is
shown in Fig. 9.
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FIG. 9. Quantum repeaters establish long-distance quantum com-
munication by combining entanglement purification and entangle-
ment swapping.

If the quantum repeater station relies on a measurement-
based implementation [16], then the resource state of a
quantum repeater is the combination of the quantum tasks
entanglement purification and entanglement swapping. Hence,
we construct the explicit resource state via connecting the
resource states for entanglement purification of two segments
via a Bell measurement (see Fig. 4).

Now, we translate this construction into the proposed
framework. Because entanglement swapping coincides with
a Bell measurement if the outcome is |φ+〉, we easily find
the stabilizers of the resource state at a quantum repeater
via Theorem 3. Hence, the resource state is stabilized by the
operators{

KSi
⊗ KSi+1 : KSi

∈ KSi
,KSi+1 ∈ KSi+1

}
∪ {

FSi
⊗ FSi+1 : FSi

∈ FSi
,FSi+1 ∈ FSi+1

}
, (46)

where KSi
,FSi

and KSi+1 ,FSi+1 denote the sets of auxiliary
operators of the entanglement purification resource states for
segments Si and Si+1. Using (46) one can apply Theorem 1
of [46] to obtain a Clifford-equivalent graph state. In [16], the
resource states for one and two purification rounds followed by
entanglement swapping were constructed explicitly, whereas
here, with the proposed scheme, the stabilizers of resource
states for arbitrary rounds of entanglement purification fol-
lowed by entanglement swapping can easily be constructed
explicitly.

C. Quantum error correction

Quantum error correction codes are used to protect quantum
information against different types of errors [19]. The basic
idea is to encode a physical qubit as a logical qubit in a
higher-dimensional Hilbert space in such a way that any
error maps the two-dimensional code space to an orthogonal
two-dimensional subspace. By identifying the resulting error
subspace, one can detect and correct the corresponding error. It
is thereby sufficient to consider only Pauli errors. There exist
codes that protect only against bit-flip or phase-flip errors,
which are simple variants of classical repetition codes. One
can combine these codes to obtain an error correction code
that protects a single logical qubit against arbitrary errors on
one of the physical qubits. This leads to the Shor code [51], an
error correction code that uses nine qubits to encode a logical
qubit. The optimal code to protect a single logical qubit against
arbitrary errors on one of the encoding qubits is of size five,
where, e.g., a cluster-ring code can be used [37]. A multitude of
good quantum error correction codes are known that allow one

to protect a single (or several) qubits against arbitrary errors
occurring on a certain limited number of physical qubits, as
long as the error probability is small enough. One possible way
to construct such large-scale codes is by concatenating small-
scale codes [19,34], where the Shor code is the basic example.
The generalized Shor code makes use of this principle, and
leads in fact to a code with a very high error threshold against
individual noise [52–55]. The concatenation of quantum error
correction codes found promising applications [7,38,39,56].
This issue has been investigated in terms of stabilizers also
in [34] with a similar result as here, but has not been
applied to measurement-based implementations. Quantum
error correction codes which relate codewords to graph states
have been studied in detail in [11,12,36,37]. Other approaches
include topological codes [57,58]. All these examples have in
common that they are stabilizer codes [59], i.e., the codewords
|0L〉 and |1L〉 are stabilizer states. For all these codes, encoding,
decoding, and syndrome readout can be done using only
Clifford circuits and Pauli measurements, which allows for an
efficient measurement-based implementation [6,9]. Elements
of measurement-based quantum error correction have in fact
already been experimentally demonstrated using trapped ions
[7] and photons [8]. Furthermore, [38,39] numerically found
that optical cluster-state quantum computation [40,41] using
quantum error correction codes is practical, which enables
scalable optical quantum computation. These results motivate
the following subsection.

1. Encoding

In this section, we consider such a measurement-based
approach to quantum error correction. We first concentrate on
the encoding operation, as the resource states for decoding
are given by the same state, while the resource state for
syndrome measurement (error correction step) can be obtained
by combining the resource states for decoding and encoding.
For encoding, one needs to perform the mapping |0〉 �→ |0L〉
and |1〉 �→ |1L〉 where |0L〉 and |1L〉 denote the codewords
of the corresponding error correction code. A measurement-
based implementation is done by preparing a resource state
and executing Bell measurements at the read-in. One easily
verifies that the resource state for encoding and decoding in a
particular quantum error correction code is given by

|ψ〉 = (|0〉|0L〉 + |1〉|1L〉)/
√

2

= [|+〉(|0L〉 + |1L〉) + |−〉(|0L〉 − |1L〉)]/2. (47)

Therefore, we have according to (9) that

|G0〉 = (|0L〉 + |1L〉)/2, (48)

|G1〉 = (|0L〉 − |1L〉)/2. (49)

As the read-in Bell measurement for encoding quantum
information is probabilistic, we need to take care of different
outcomes. We handle them as follows: Suppose we encode
|ϕ〉 = α|0〉 + β|1〉 using the resource state |ψ〉 of (47).
Furthermore, assume that the sets of auxiliary operators K and
F of |ψ〉 are known. A straightforward computation yields
for the state after the read-in (depending on the measurement
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TABLE I. Correction operators for different measurement out-
comes at the read-in where K ∈ K and F ∈ F .

Outcome Correction

|φ+〉 id
|ψ+〉 F

|φ−〉 K

|ψ−〉 FK

outcome)

α|0L〉 + β|1L〉 for the |φ+〉 outcome, (50)

β|0L〉 + α|1L〉 for the |ψ+〉 outcome, (51)

α|0L〉 − β|1L〉 for the |φ−〉 outcome, (52)

β|0L〉 − α|1L〉 for the |ψ−〉 outcome. (53)

A simple computation shows K|0L〉 = K(|G0〉 + |G1〉) =
|0L〉 and K|1L〉 = K(|G0〉 − |G1〉) = −|1L〉 for K ∈ K. Sim-
ilarly, one obtains F |0L〉 = |1L〉 and F |1L〉 = |0L〉 for F ∈
F . Hence, operators in K are logical Z operators whereas
operators in F are logical X operators. Table I enables us to
determine the correction operator for different measurement
outcomes at the read-in on encoding.

2. Decoding and correction

Notice that the same resource state as for encoding can
be used for decoding, where now the role of input and
output qubits is exchanged. The decoding procedure in fact
also involves an error correction step, where the required
correction operation is determined by the outcomes of the in-
coupling Bell measurements [6–9]. Determining the decoding
correction operation is a bit more complex than in the case
of encoding, as there are more possible combinations of mea-
surement outcomes to analyze. While it is of course possible to
obtain the corrections from the underlying construction of the
resource state via the Jamiolkowski isomorphism, they can also
be determined directly from the stabilizers and the auxiliary
operators K and F . The four Bell states can be written as
(id ⊗ σi,j )|φ+〉 with i = 0,1 and j = 0,1 so the projection on
any combination of Bell states can be understood as applying
a combination of Pauli operators on the input state |�in〉,
followed by projections on |φ+〉. A particular combination
of different measurement outcomes can only occur if the
overlap with |φ+〉⊗n is nonzero after applying these Pauli
operators. This is the case only if σi1,j1 ⊗ · · · ⊗ σin,jn

|�in〉 is
in the logical subspace. That means if no error occurred, only
measurement outcomes corresponding to σi1,j1 . . . σin,jn

which
leave the logic subspace invariant can occur. This is precisely
the logical group SL of the underlying error correction code,
which can be obtained from the auxiliary operators K and F in
a straightforward way. Some combinations of Pauli operators
act as the identity on the logic subspace and those can be found
by going over all different ways to multiply two K operators
or two F operators together. The representation of the logical
operator XL (YL, ZL) is not unique either and the different
representation can be found by choosing one representation

and multiplying it by the different representations of the
identity on the logic subspace. If the outcome corresponds
to a combination of Pauli operators that is one representation
of XL, then the correction operation on the output is X. This
can be understood in a similar fashion to the standard quantum
teleportation with one party holding a logical qubit instead
of a single physical one. Therefore, the measurement outcome
corresponding to XL is a projection on |ψ+〉, but on the logical
level. The same argument holds for outcomes corresponding
to YL and ZL which lead to corrections Y and Z, respectively.
Any other combination of measurement outcomes corresponds
to subspaces where an error is detected. If a code can correct
the Pauli errors Ek , the set EkSL corresponds to detecting the
error Ek . Similar as before, the correction operation is given by
X (Y , Z) if the measurement outcomes correspond to EkXL

(EkYL, EkZL). If the error correction code is not optimal,
for the remaining combinations one needs to define a default
correction as these belong to the subspaces that correspond to
errors the code can detect, but not correct. This approach is
also applicable to resource states which implement quantum
circuits other than error correction. The role of K and F stay
the same, even though it does not make sense to speak of
logical operators and subspaces in that case.

In the following, we first provide results concerning the bit-
and phase-flip code for pedagogical reasons and generalize
these results to a generalized Shor code [52–55]. We have also
analyzed the five-qubit cluster-ring code within the proposed
framework and refer the interested reader to Appendix D. We
emphasize that the framework is especially suited to construct
resource states for concatenated quantum error correction
codes which offer promising error thresholds [52–56].

3. Bit-flip code

For illustration purposes, we first discuss the bit-flip code.
The m-qubit bit-flip code protects a logical qubit against
up to (m − 1)/2 bit-flip errors, where we assumed that m

is odd. Therefore, we have the encoding |0L〉 = |0〉⊗m and
|1L〉 = |1〉⊗m. One easily verifies via (48) and (49) that
K1 = {Z(i) : 1 � i � m} and F1 = X⊗m. Hence, via Theorem
1 we easily obtain γi = (0 . . . ,0,1,0, . . . ,0) where only the ith
entry of γi is 1 for i = 1, . . . ,m as well as δ = (0, . . . ,0), thus
Kn+1 = {K (i) : 1 � i � m,K ∈ Kn}. For the operators Fn we
apply Theorem 2 and find that ε = (0, . . . ,0), η = (1, . . . ,1),
and c = 1. Hence, Theorem 2 implies thatFn+1 = {⊗m

j=1 Fj :
Fj ∈ Fn}. Thus, the resource state of the bit-flip code is
transformed into a graph state by applying a Hadamard
gate on all output particles leading to a mn + 1 GHZ state.
Furthermore, the obtained stabilizers are linear independent
by construction.

4. Phase-flip code

The m-qubit phase-flip code is used to correct phase-flip
errors affecting the encoded state, and can be obtained from
the bit-flip code by applying Hadamard operations. Thus,
the logical zero and logical one are given by |0L〉 = |+〉⊗m

and |1L〉 = |−〉⊗m, respectively. Hence, the initial auxiliary
operators are given by K1 = {X(i) : 1 � i � m} and F1 =
Z⊗m, respectively. Theorem 1 implies that γ = (0, . . . ,0) and
δi = (0, . . . ,0,1,0, . . . ,0) where only the ith entry of δi is
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1 for i = 1, . . . ,m, thus, Kn+1 = {F (i) : 1 � i � m,F ∈ Fn}.
Finally, Theorem 2 gives ε = (1, . . . ,1) and η = (0, . . . ,0),
hence Fn+1 = {⊗m

j=1 Kj : Kj ∈ Kn}.

5. Shor code and generalized Shor code

The Shor code [51] consists of a concatenation of phase-flip
and bit-flip code, each of size three. This leads to a nine-qubit
code that is capable of protecting quantum information against
one arbitrary error happening on one physical qubit. The idea
of the Shor code can be generalized to arbitrary numbers of
bit-flip and phase-flip encodings (see [52–56]). The resulting
quantum error correction code is constructed as follows: First
encode the qubit in an m1-qubit phase-flip code followed by
an m2-qubit bit-flip code. The codewords are thus given by

|0L〉 =
( |0〉⊗m2 + |1〉⊗m2

√
2

)⊗m1

, (54)

|1L〉 =
( |0〉⊗m2 − |1〉⊗m2

√
2

)⊗m1

. (55)

The resource state necessary to implement this quantum error
correction code is given by

|ψ〉 = |0〉
( |0〉⊗m2 + |1〉⊗m2

√
2

)⊗m1
/√

2

+ |1〉
( |0〉⊗m2 − |1〉⊗m2

√
2

)⊗m1
/√

2 (56)

up to a global normalization factor. We call such a code a
[m1,m2]-generalized Shor code. Now, we will construct the
stabilizers of |ψ〉 in terms of auxiliary operators. For that
purpose, we observe that we combine the resource state of an
m1-qubit phase-flip code with the resource state of an m2-qubit
bit-flip code. Hence, by inserting the initial auxiliary operators
of an m2-qubit bit-flip code, i.e., K1 = {Z(i) : 1 � i � m2}
and F1 = X⊗m2 , respectively, in the recurrence relations of
an m1-qubit phase-flip code Kn+1 = {F (i) : 1 � i � m1 ,F ∈
Fn} and Fn+1 = {⊗m

j=1 Kj : Kj ∈ Kn} we find with the help
of (12) and (13) the stabilizers for a [m1,m2]-generalized Shor
code to be

{Z ⊗ (X⊗m2 )(j ) : 1 � j � m1} (57)

∪
{

X ⊗
m1−1⊗
k=0

Z(ik+m2k) : 1 � ik � m2

}
. (58)

The stabilizers (57) and (58) can be transformed by applying
local unitaries to graph state stabilizers (see Appendix E for
details). The result thereof is depicted in Fig. 10.

6. Error syndrome readout and code switcher

The resource state for error correction (error syndrome
readout and correction) can be obtained from the resource
states from decoding and encoding. The output qubit of the
decoding resource state is connected via a Bell measurement
to the input qubit of the resource state for encoding, where
the initial and the final error correction codes are the same.
We emphasize that this is only used as a tool to construct the
resource state for the overall process, and quantum information

FIG. 10. Resource state of a [m1,m2]-generalized Shor code. The
red circles indicate that a Hadamard rotation needs to be applied at the
end. The red vertex corresponds to the input qubit, the blue vertices
to the output qubits.

is at no place actually decoded. Quantum information remains
protected in the quantum error correction code at all times,
and the required correction operation is determined from the
results of the in-coupling Bell measurements.

Notice that one may use different error correction codes for
decoding and encoding. In this way, one obtains a resource
state for a code switcher (with built-in error correction) that
allows one to switch between two arbitrary stabilizer codes.
Such a code switcher is a useful tool in several contexts. For
instance, it can be used to switch between an error correction
code for storage of quantum information, and a code for
processing the information [60]. For the former, a high stability
against noise and decoherence is crucial, where also a passive
or topological protection may be applicable. The requirements
on a code for processing information, e.g., in a fault-tolerant
quantum computation architecture, are different and also
include the simple realization of certain encoded gates. Codes
that are transversal for certain kinds of operations are known,
but not all operations can be performed transversally using
the same code. We remark that one can easily construct
resource states to realize logical Clifford operations for all
Calderbank-Shor-Steane or stabilizer codes [9] using only
input and output qubits, and with built-in error correction.
Here, we discuss how to obtain a general code switcher
(including error correction), which includes error syndrome
readout for a fixed code as a special case.

In the proposed framework, this boils down to combining
a decoding resource state and an encoding resource state via
a Bell measurement (see Fig. 4). Thus, we apply Theorem
3 which implies that the stabilizers of a code switcher, by
denoting the sets of auxiliary operators of encoding and
decoding resource state by KE and FE as well as KD and
FD, respectively, are given by

{KE ⊗ KD : KE ∈ KE,KD ∈ KD} (59)

∪ {FE ⊗ FD : FE ∈ FE,FD ∈ FD}. (60)

We emphasize that if the decoding and encoding quantum
error codes are fixed, then one can use Theorem 1 of [46]
to transform the stabilizers (59) and (60) to a graph state.
Furthermore, the decoding and reencoding operation is done
virtually, as the final resource state performs both tasks
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FIG. 11. Graph-state representation (up to local Clifford opera-
tions) for a code switcher between the three-qubit phase-flip code
and the five-qubit cluster-ring code. Colors correspond to input and
output qubits, respectively.

at the same time. This ensures a built-in error correction.
Furthermore, the delivered quantum information is never
unprotected. An example of a graph state for a code switcher
is shown in Fig. 11.

Last, we consider resource states for error syndrome
readout. The stabilizers of a resource state for error syndrome
readout of a particular quantum error correction are again
given by (60) with the restriction FD = FE and KD = KE.
An example of a local Clifford equivalent graph state for a
syndrome readout is depicted in Fig. 12.

D. Entanglement purification at a logical level

In this last section, we consider entanglement purification
at a logical level [61]. This is an interesting quantum task,
as it combines the benefits of entanglement purification and
quantum error correction codes, with potential applications in
long-distance quantum communication.

The construction of the resource state which implements
such a complex quantum task becomes simple in the proposed
framework, as we derived all necessary results in the previous
sections. We construct the stabilizers of the resource state
for n rounds of entanglement purification at a logical level
as follows: First, we virtually decode one part of the logical
Bell pair to be purified in a measurement-based way via the
decoding resource state |ψD〉. This yields the sets of auxiliary
operators KD and FD associated with |ψD〉. The decoding
is followed by n virtual rounds of the DEJMPS protocol.
In order to perform n rounds of the DEJMPS protocol, we
apply the recurrence relations (27)–(29) n times with initial
auxiliary operator sets KD and FD. This leads to the sets
Kn and Fn of auxiliary operators. Finally, we connect the
obtained resource state (decoding followed by entanglement
purification) with sets Kn and Fn to an encoding resource state
with auxiliary operators KE and FE via a Bell measurement.
Hence, according to Theorem 3, the resulting resource state

FIG. 12. LC-equivalent graph state for syndrome readout for the
three-qubit bit-flip code. The red vertices correspond to the input
qubits whereas the blue vertices to the output qubits.

FIG. 13. Construction of a resource state necessary for n rounds
of entanglement purification at a logical level.

for n rounds of entanglement purification at a logical level is
stabilized by the family of operators

{KE ⊗ Kn : KE ∈ KE,Kn ∈ Kn}
∪ {FE ⊗ Fn : FE ∈ FE,Fn ∈ Fn}. (61)

The construction scheme is depicted in Fig. 13.
We emphasize that decoding, entanglement purification,

encoding, and error correction are performed virtually only, as
the final resource state performs all three tasks at once. If one
needs to construct the resource state for a specific quantum
error correction code explicitly, then inserting the appropriate
values for KD, FD, KE, and FE leads to explicit stabilizers of
the resource state. The resulting stabilizers can be transformed
via Theorem 1 of [46] to a local Clifford equivalent graph state.
An example is depicted in Fig. 14 for the three-qubit bit-flip
code.

Another interesting approach is to encode a physical qubit
into a decoherence-free subspace and perform entanglement
purification for encoded Bell pairs, which found promising
application in the quantum repeater scheme [62]. Thereby we
define the logical zero and logical one as |0L〉 = |01〉 and
|1L〉 = |10〉, respectively. This encoding offers a protection
against global dephasing, as phases picked up by |0〉 and |1〉
vanish if the physical Bell pairs are encoded. The resource

FIG. 14. The figure shows an LC-equivalent graph state for
entanglement purification at a logical level, where the three-qubit
bit-flip code and one round of entanglement purification using the
DEJMPS protocol are considered. Input qubits are red and output
qubits blue.
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FIG. 15. The figure shows LC-equivalent graph states for entan-
glement purification at a logical level for one (left) and two (right)
purification rounds using a decoherence-free subspace encoding [62],
i.e., the encoding |0L〉 = |01〉 and |1L〉 = |10〉. Input qubits are red
and output qubits are blue.

state necessary to perform one and two rounds of entanglement
purification for logical Bell pairs encoded in a decoherence-
free subspace are depicted in Fig. 15.

Finally, we need to determine the Pauli corrections due
to the read-in Bell measurements. As outlined in Sec. IV C,
any other outcome than the |φ+〉 outcome is first propagated
through the decoding resource state. Then, the error at the
output of the decoding resource state is propagated through the
entanglement purification resource state, leading to a possibly
different Pauli error at the output of the entanglement purifi-
cation. This error is then propagated through the encoding
resource state.

VI. DISCUSSION

We proposed a framework which allows us to construct
resource states for a measurement-based implementation of
concatenated tasks in quantum communication and quantum
error correction. In particular, we have found a closed and
analytical description of families of resource states based on
recurrence relations of stabilizers. This forms a key tool to
generate explicit (graph) descriptions of the task at hand.

The resource states which we obtain are always of minimal
size, containing only input and (if appropriate) output qubits.
We derived graph-state representations for all resource states,
thereby identifying a possible way how to generate these
resource states efficiently using commuting two-qubit gates.
At the same time, this shows how to generate all these states
with high fidelity using multiparty entanglement purification
protocols [13], and to determine their features under noise and
decoherence [11].

We have explicitly constructed resource states for multiple
rounds of bipartite entanglement purification protocols, states
for encoding, decoding, and error syndrome readout for
quantum error correction using concatenated error correction
codes, code switchers, as well as resource states for combined
tasks such as entanglement purification of encoded states.
The proposed techniques are, however, not limited to these
examples, but are generically applicable to construct resource
states that are combinations of elementary quantum tasks.

The explicit knowledge of required resource states is
important in measurement-based implementations of quantum
communication [6] and fault-tolerant quantum computation
[9], in particular to design schemes and methods to prepare
them efficiently and with high fidelity in specific setups.

Given that such a measurement-based implementation offers
very high error thresholds, this may soon become of practical
relevance for scalable quantum information processing.
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APPENDIX A: PROOF OF MAIN THEOREMS

Proof of Theorem 1. Recall that |Gn+1
i 〉 =∑

k1,...,km
αi(k1, . . . ,km)|Gn

k1
, . . . ,Gn

km
〉. We need to show

that Kn+1|Gn+1
i 〉 = |Gn+1

i⊕1 〉 where Kn+1 = c
⊗m

r=1(Fr )δr⊗m
s=1(Ks)γs for some bit vectors γ and δ. We observe⊗m
s=1(Ks)γs |Gn

k1
, . . . ,Gn

km
〉 = |Gn

k1⊕γ1
, . . . ,Gn

km⊕γm
〉 which

implies

Kn+1

∣∣Gn+1
i

〉 = c

m⊗
r=1

(Fr )δr

m⊗
s=1

(Ks)
γs

×
1∑

k1,...,km=0

αi(k1, . . . ,km)
∣∣Gn

k1
, . . . ,Gn

km

〉

= c

m⊗
r=1

(Fr )δr

1∑
k1,...,km=0

αi(k1, . . . ,km)

× ∣∣Gn
k1⊕γ1

, . . . ,Gn
km⊕γm

〉
= c

m⊗
r=1

(Fr )δr

1∑
k1,...,km=0

αi(k1 ⊕ γ1, . . . ,km ⊕ γm)

× ∣∣Gn
k1

, . . . ,Gn
km

〉
=

1∑
k1,...,km=0

c(−1)
∑

r δr kr αi(k1 ⊕ γ1, . . . ,km ⊕ γm)

× ∣∣Gn
k1

, . . . ,Gn
km

〉
. (A1)

Now, we show the existence of the bit vectors γ and δ as
claimed in the theorem. First, we observe that

αi⊕1(k1, . . . ,km)

=⊗m
〈
φ+∣∣kx

1 , . . . ,kx
m,G1

i⊕1

〉
=⊗m 〈φ+|(id ⊗ K1)

∣∣kx
1 , . . . ,kx

m,G1
i

〉
=

[
m∏

k=1

(−1)ikjk

]
⊗m〈φ+|(K1 ⊗ id)

∣∣kx
1 , . . . ,kx

m,G1
i

〉
=⊗m 〈φ+|(KT

1 ⊗ id)
∣∣kx

1 , . . . ,kx
m,G1

i

〉
(A2)

by using that K1 is an element of the Pauli
group Pn and (σi,j ⊗ id)|φ+〉 = (−1)ij (id ⊗ σi,j )|φ+〉. Recall
that Z|kx〉 = |(k ⊕ 1)x〉, X|kx〉 = (−1)k|kx〉, and Y |kx〉 =
−iZX|kx〉 = (−i)(−1)k|(k ⊕ 1)x〉. Thus, we have σi,j |kx〉 =
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(−i)ij (−1)kj |(k ⊕ i)x〉. Recall that K1 = a
⊗m

k=1 σik,jk
where

a ∈ {±1, ± i}, ik ∈ {0,1}, and jk ∈ {0,1}. This implies for
(A2) by using Y T = −Y that

αi⊕1(k1, . . . ,km)

=⊗m 〈φ+|KT
1

∣∣kx
1 , . . . ,kx

m

〉∣∣G1
i

〉
= a

m∏
l=1

(−i)il jl (−1)ilkl (−1)
∑

r kr jr

× [⊗m〈
φ+∣∣(k1 ⊕ i1)x, . . . ,(km ⊕ im)x,G1

i

〉]
= a

m∏
l=1

iiljl (−1)
∑

r kr jr αi(k1 ⊕ i1, . . . ,km ⊕ im). (A3)

Thus, we have γ = (i1, . . . ,im), δ = (j1, . . . ,jm), and c =
a

∏m
l=1 iiljl , which completes the proof. �

Proof of Theorem 2. Recall that |Gn+1
i 〉 = ∑

k1,...,km

αi(k1, . . . ,km)|Gn
k1

, . . . ,Gn
km

〉. Thus, we need to show
that Fn+1|Gn+1

i 〉 = (−1)i |Gn+1
i 〉 for Fn+1 = c

⊗m
r=1(Fr )ηr⊗m

s=1(Ks)εs . Appyling Fn+1 to |Gn+1
i 〉 gives

Fn+1

∣∣Gn+1
i

〉
= c

m⊗
r=1

(Fr )ηr

m⊗
s=1

(Ks)
εs

×
1∑

k1,...,km=0

αi(k1, . . . ,km)
∣∣Gn

k1
, . . . ,Gn

km

〉

=
m⊗

r=1

(Fr )ηr

1∑
k1,...,km=0

cαi(k1, . . . ,km)

× ∣∣Gn
k1⊕ε1

, . . . ,Gn
km⊕εm

〉
=

m⊗
r=1

(Fr )ηr

1∑
k1,...,km=0

cαi(k1 ⊕ ε1, . . . ,km ⊕ εm)

× ∣∣Gn
k1

, . . . ,Gn
km

〉
=

1∑
k1,...,km=0

c(−1)
∑

r ηr kr αi(k1 ⊕ ε1, . . . ,km ⊕ εm)

× ∣∣Gn
k1

, . . . ,Gn
km

〉
. (A4)

Hence, we need to show that there exist bit vectors ε and η

such that

c(−1)
∑

r ηr kr αi(k1 ⊕ ε1, . . . ,km ⊕ εm)

= (−1)iαi(k1, . . . ,km). (A5)

Recall that |G1
i 〉 = (−1)iF1|G1

i 〉. Thus, we obtain in similar
fashion to the proof of Theorem 1 that

αi(k1, . . . ,km) = ⊗m
〈
φ+∣∣kx

1 , . . . ,kx
m,G1

i

〉
= (−1)i

[⊗m〈φ+|(id ⊗ F1)
∣∣kx

1 , . . . ,kx
m,G1

i

〉]
= (−1)i

[
m∏

k=1

(−1)ikjk

]

×[⊗m〈φ+|(F1 ⊗ id)
∣∣kx

1 , . . . ,kx
m,G1

i

〉]
= (−1)i

[⊗m〈φ+|(FT
1 ⊗ id

)∣∣kx
1 , . . . ,kx

m,G1
i

〉]
(A6)

because F1 = a
⊗m

k=1 σik,jk
where a ∈ {±1, ± i}, ik ∈ {0,1},

and jk ∈ {0,1}. Hence, we obtain as in the proof of Theorem 1
for (A6)

αi(k1, . . . ,km)

= (−1)i
(⊗m〈φ+|FT

1

∣∣kx
1 , . . . ,kx

m

〉∣∣G1
i

〉)
= a(−1)i

m∏
l=1

iiljl (−1)
∑

r kr jr

× [⊗m〈
φ+∣∣(k1 ⊕ i1)x, . . . ,(km ⊕ im)x,G1

i

〉]
= a(−1)i

m∏
l=1

iiljl (−1)
∑

r kr jr αi(k1 ⊕ i1, . . . ,km ⊕ im),

(A7)

i.e., (−1)iαi(k1, . . . ,km) = a
∏m

l=1 iiljl (−1)
∑

r kr jr αi(k1 ⊕ i1,

. . . ,km ⊕ im). Thus, (A5) holds with ε = (i1, . . . ,im), η =
(j1, . . . ,jm), and c = a

∏m
l=1 iiljl which completes the

proof. �

APPENDIX B: LINEAR INDEPENDENCE
OF STABILIZERS FOR SPECIAL CASES

In the following, we investigate the linear independence of
the sets of auxiliary operators Kn+1 and Fn+1 obtained via
Theorems 1 and 2 for special assumptions. Those assumptions
are met by the DEJMPS protocol [18] and the quantum error
correction codes studied in the main text. But, before we start,
we formulate the following lemma.

Lemma 4. Assume that the family of operators {Ai}ni=1 is
linear independent and let m ∈ N. Then, we can construct
nm − m + 1 linear independent operators of the form Ai1 ⊗
· · · ⊗ Aim .

Proof. Consider the following operators (where we have
omitted the tensor product symbols for ease of notation):

A1 A1 . . . A1 A1

A1 A1 . . . A1 A2

. . . . . . . . . . . . . . .

A1 A1 . . . A1 An

A1 A1 . . . A2 A1

. . . . . . . . . . . . . . .

A1 A1 . . . An A1

. . . . . . . . . . . . . . .

A2 A1 . . . A1 A1

. . . . . . . . . . . . . . .

An A1 A1 A1 . (B1)

This family of operators is linear independent by construction.
In total, we have m(n − 1) + 1 = mn − m + 1 operators,
which shows the claim. �
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Suppose we have a particular resource state |ψO〉 and the
corresponding sets of initial auxiliary operators

K1 =
{

K =
m⊗

k=1

σ
γ

(i)
k ,δ

(i)
k

: K satisfies (10)

}
, (B2)

F1 =
{

F =
m⊗

k=1

σ
ε

(i)
k ,η

(i)
k

: F satisfies (11)

}
. (B3)

The superscripts in γ, δ, ε, and η denote different vectors
whereas subscripts denote positions within those vectors. Now,
we want to explicitly construct linear independent stabilizers
of a concatenated quantum task. We assume that the families of
operatorsKn andFn are linear independent. Then, according to
the construction of linear independent operators in Lemma 4,
we find for the families of operators (18) and (19) that

|Kn+1| =
|K1|∑
i=1

(| supp γ (i)||Kn| − | supp γ (i)| + 1)

× (| supp δ(i)||Fn| − | supp δ(i)| + 1), (B4)

|Fn+1| =
|F1|∑
j=1

(| supp ε(j )||Kn| − | supp ε(j )| + 1)

× (| supp η(j )||Fn| − | supp η(j )| + 1). (B5)

Equations (B4) and (B5) will enable us to prove the linear
independence for specific quantum tasks.

Theorem 5. Suppose γ (i) = (0, . . . ,0) for all i, |δ| = m

where supp δ(i) = 1 for all i, η(i) = (0, . . . ,0) for all i and
|ε| = 1 where | supp ε| = m. Furthermore, let |Kn| + |Fn| =
n + 1. Then, we have nm + 1 linear independent stabilizers
via Lemma 4.

Proof. The assumption γ (i) = (0, . . . ,0) for all i implies that
all operators inKn+1 will contain only operators fromFn. From
supp δ(i) = 1 we further observe that all operators in Kn+1

will have exactly one Fn ∈ Fn in the tensor product. Because
|δ| = m and γ (i) = (0, . . . ,0) for all i we have that |K1| =
|δ| = m. Similarly, the assumption η(i) = (0, . . . ,0) for all i

implies that all operators in Fn+1 will contain only operators
from Kn and |ε| = 1 where | supp ε| = m that all operators in
Fn+1 will be of the form Fn+1 = ⊗m

i=1 Ki where Ki ∈ Kn.
Because η(i) = (0, . . . ,0) for all i and |ε| = 1 we have that
|F1| = |ε| = 1. Thus, (B4) and (B5) simplify to

|Kn+1| =
∑

i

|Fn| = m|Fn|, (B6)

|Fn+1| = m|Kn| − m + 1. (B7)

Hence, |Kn+1| + |Fn+1| = m(|Kn| + |Fn|) − m + 1 = mn +
1. The linear independence of the families Kn+1 and Fn+1

follows from the construction of Lemma 4 and the linear
independence of the families Kn and Fn. �

In Theorem 5 one may also exchange the assumptions on
γ and δ as well as the assumptions on ε and η. Theorem 5
especially applies to the bit-flip code and the phase-flip code.
Furthermore, we have the following:

Theorem 6. Suppose |K1| = m, | supp γ (i)| = | supp δ(i)| =
1 for all 1 � i � m, |η| = 1 and let |Fn| = 1 for all n where

Fn+1 = K⊗m
n and Kn ∈ Kn. Then, we have nm + 1 linear

independent stabilizers via Lemma 4.
Proof. The assumption | supp γ (i)| = | supp δ(i)| = 1 for all

i implies that all operators in Kn+1 will contain exactly one
Kn and one Fn, which are not necessarily at the same position
within the tensor product. Because |Kn| + |Fn| = n + 1 and
|Fn| = 1 for all n we find |Kn| = n. Thus, (B4) simplifies to

|Kn+1| =
∑

i

|Kn||Fn| = |γ ||Kn||Fn| = |K1||Kn|. (B8)

Hence, |Kn+1| + |Fn+1| = mn + 1. The linear independence
follows from the linear independence of Kn and Fn and the
construction via Lemma 4. �

Theorem 6 is applicable to the DEJMPS protocol. Finally,
we treat the linear independence of stabilizers constructed
via Theorem 3, crucial in the construction of resource states
for quantum repeaters, code switchers, and entanglement
purification at a logical level.

Theorem 7. Suppose we are given two resource
states |ψ1〉 = |+〉in|G0〉 + |−〉in|G1〉 and |ψ2〉 = |+〉out|H0〉 +
|−〉out|H1〉, where |ψ1〉 has n output qubits and |ψ2〉 has
m input qubits. Furthermore, assume that we are given the
corresponding sets of auxiliary operators K1,F1 and K2,F2

where |K1| + |F1| = n + 1 and |K2| + |F2| = m + 1. If we
connect the resource states |ψ1〉 and |ψ2〉 via Theorem 3 and
each family K1,F1 and K2,F2 is linear independent, then we
find n + m linear independent stabilizers.

Proof. Similar to Lemma 4 we find a family of operators
{K1 ⊗ K2}K1∈K1,K2∈K2 which is linear independent and con-
tains |K1| + |K2| − 1 elements. This family can be explicitly
constructed via

A1 B1

. . . . . .

A1 B|K2|
A2 B1

. . . . . .

A|K1| B1 , (B9)

where Ai ∈ K1 and Bj ∈ K2. Furthermore, we similarly find
|F1| + |F2| − 1 linear independent stabilizers via the family
{F1 ⊗ F2}F1∈F1,F2∈F2 . Because the families K1 and F1 and K2

and F2 are linear independent by assumption we have in total

|K1| + |K2| − 1 + |F1| + |F2| − 1

= n + 1 + m + 1 − 2 = n + m (B10)

linear independent stabilizers which completes the proof. �

FIG. 16. Resource state of the five-qubit cluster-ring code. The
red vertex is the input qubit.
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FIG. 17. Resource state of a [m1,m2]-generalized Shor code. The
red circles indicate that a Hadamard rotation needs to be applied.

APPENDIX C: SUFFICIENT NUMBER OF LINEAR
INDEPENDENT STABILIZER FOR GENERAL

CONCATENATIONS

In Appendix B we already showed that the recurrence
relations (18) and (19) provide a sufficient number of linear
independent stabilizers for some special cases of interest. Here,
we show that this is indeed a general feature of this approach
not limited to examples that have a quickly recognizable way
to pick a complete set of stabilizers.

For this purpose, we split up one concatenation step into
smaller parts, namely, performing only one projection on |φ+〉
at a time instead of all at once. A slight modification of the
proofs in Appendix A shows that this leads to only the ith block
in the operators in K1 and F1 being updated with elements of
Kn and Fn instead of all at once where i is the qubit in the set
out on which part of the projection acts.

If the initial state |ψO〉 consists of M qubits and |ψO′ 〉 is
given by N qubits, we need N + M − 2 linear independent
stabilizers to describe the state after the first projection is
performed. The stabilizers obtained from K1 and F1 can be
categorized by the Pauli operator that is going to be replaced,
namely,

mX of the type · · · ⊗ X ⊗ · · · ,

mZ of the type · · · ⊗ Z ⊗ · · · ,

mY of the type · · · ⊗ Y ⊗ · · · ,

mI of the type · · · ⊗ id ⊗ · · · , (C1)

. . .

. . .
FIG. 18. The resource state for the concatenated Shor code is

local Clifford equivalent to a two-colorable graph state. The qubit
on the very left is the input qubit. The dashed lines connect to other
copies of the center block with 27 qubits.

with mX + mY + mZ + mI = M . For this analysis it does
not matter whether the stabilizers relate to K-type or F -type
auxiliary operators. If the marked qubit is entangled with the
rest of the qubits, at least two of mX, mY , mZ are nonzero.

According to Theorems 1 and 2 the projection replaces the
X (Z, Y ) in the mX (mZ , mY ) X (Z, Y ) type stabilizers by Fn

(Kn, iKnFn) operators from the set(s) Fn (and/or Kn). For id
type stabilizers, the identity is simply replaced by the identity
on a larger space and the number of stabilizers m′

I = mI is
unaffected. From Lemma 4 it is clear that if mX = 0, we obtain
m′

X = mX + nF − 1 stabilizers that are independent from one
another, where nF is |Fn|. Similarly, if mZ = 0 we obtain
m′

Z = mZ + nK − 1 new linear independent stabilizers, with
nK = |Kn|.

For the Y -type stabilizers it is less straightforward to see,
but a similar technique as in Lemma 4 can be used also in this
case. If mY = 0, we get m′

Y = mY + nF + nK − 2 stabilizers
that are independent from one another, but these are not linear
independent from those obtained by either X- or Z-type
stabilizers. If mX = 0 (mZ = 0) we reduce that previous
number m′

Y by nF − 1 (nK − 1). From that we see that the new
number of independent stabilizers m′

X + m′
Y + m′

Z + m′
I =

M + N − 2. (Recall that nF + nK = N .) From this it follows
that we always obtain a full set of linear independent stabilizers
for one projection step, and applying this argument repeatedly
means that we always have a sufficient number of linear
independent stabilizers to uniquely describe the resulting
state.

APPENDIX D: FIVE-QUBIT CLUSTER-RING CODE

In the following we provide the recurrence relations of the five-qubit cluster-ring code. This quantum error correction
code is very interesting because of its small size and error detecting properties. The five-qubit cluster-ring code is able to
correct single-qubit phase-flip and bit-flip errors. The resource state for its measurement-based implementation is a graph state
(see Fig. 16), stabilized by the following operators:

Z X Z I I Z

Z Z X Z I I

Z I Z X Z I

Z I I Z X Z

Z Z I I Z X

X Z Z Z Z Z. (D1)
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From (D1) we easily find the initial sets of auxiliary operators K1 and F1. Hence, Theorems 1 and 2 imply that

Kn+1 = {F ⊗ K1 ⊗ id ⊗ id ⊗ K2 : K1 ∈ Kn,K2 ∈ Kn,F ∈ Fn} ∪ {K1 ⊗ F ⊗ K2 ⊗ id ⊗ id : K1 ∈ Kn,K2 ∈ Kn,F ∈ Fn}
∪ {id ⊗ K1 ⊗ F ⊗ K2 ⊗ id : K1 ∈ Kn,K2 ∈ Kn,F ∈ Fn} ∪ {id ⊗ id ⊗ K1 ⊗ F ⊗ K2 : K1 ∈ Kn,K2 ∈ Kn,F ∈ Fn}
∪ {K1 ⊗ id ⊗ id ⊗ K2 ⊗ F : K1 ∈ Kn,K2 ∈ Kn,F ∈ Fn}, (D2)

Fn+1 = {K1 ⊗ K2 ⊗ K3 ⊗ K4 ⊗ K5 : ∀ 1 � i � 5 : Ki ∈ Kn}. (D3)

Hence, the recurrence relations above can be used to concatenate the five-qubit cluster-ring code with any other quantum tasks
proposed within this paper.

APPENDIX E: GRAPH-STATE REPRESENTATION OF THE RESOURCE STATE FOR A GENERALIZED SHOR CODE

Recall that the stabilizers of a [m1,m2]-generalized Shor code are given by

{Z ⊗ (X⊗m2 )(j ) : 1 � j � m1} (E1)

∪
{

X ⊗
m1−1⊗
k=0

Z(ik+m2k) : 1 � ik � m2

}
. (E2)

Now, we transform the stabilizers (E1) and (E2) to graph state stabilizers by applying local unitaries. First, we observe that not
all obtained stabilizers are linear independent. Hence, we need to find a subset of stabilizers which is linear independent. For
stabilizers of type (E1) we have

Z X . . . X I . . . . . . . . . . . . I

Z I . . . I X . . . X I . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z I . . . . . . . . . . . . I X . . . X

,

where each block of X operators is of length m2. This yields m1 linear independent stabilizers of type (E1). To find linear
independent stabilizers of type (E2) we use Lemma 4. According to Lemma 4 we find that the stabilizers

X Z I . . . . . . I Z I . . . . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X Z I . . . . . . I Z I . . . . . . I . . . I . . . . . . I Z

X Z I . . . . . . I I Z I . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X Z I . . . . . . I I . . . . . . I Z . . . Z I . . . . . . I

X I Z I . . . I Z I . . . . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X I . . . . . . I Z Z I . . . . . . I . . . Z I . . . . . . I

which are of type (E2) and linear independent. Hence, we observe that we have 1 + m1(m2 − 1) + m1 = 1 + m1m2 linear
independent stabilizers as required to completely describe the resulting graph state. To summarize, the stabilizers of the resource
state are given by

Z X . . . . . . . . . X I . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Z I . . . . . . . . . I X . . . . . . . . . X . . . I . . . . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X . . . . . . . . . X

X Z I . . . . . . I Z I . . . . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X Z I . . . . . . I Z I . . . . . . I . . . I . . . . . . I Z

X Z I . . . . . . I I Z I . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X Z I . . . . . . I I . . . . . . I Z . . . Z I . . . . . . I

X I Z I . . . I Z I . . . . . . I . . . Z I . . . . . . I

. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X I . . . . . . I Z Z I . . . . . . I . . . Z I . . . . . . I

.

For convenience, we define X′ = X ⊗ ⊗m1−1
k=0 Z(ik+m2k) where all ik are set to 1 (observe that this is the first stabilizer having

an X on the input qubit in the previous expression). In order to obtain a graph state, we apply a Hadamard gate to the output
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qubits ik + m2k where each ik = 2, . . . ,m2 for all k. This yields the stabilizers

Z X Z . . . . . . Z I . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Z I . . . . . . . . . I X Z . . . . . . Z . . . I . . . . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X Z . . . . . . Z

X Z I . . . . . . I Z I . . . . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X Z I . . . . . . I Z I . . . . . . I . . . I . . . . . . I X

X Z I . . . . . . I I X I . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X Z I . . . . . . I I . . . . . . I X . . . Z I . . . . . . I

X I X I . . . I Z I . . . . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X I . . . . . . I X Z I . . . . . . I . . . Z I . . . . . . I

.

Next, we multiply all F -type stabilizers (except X′), i.e., the lower three blocks in the previous expression, with X′ and replace
them. Hence, we end up with the stabilizers

Z X Z . . . . . . Z I . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Z I . . . . . . . . . I X Z . . . . . . Z . . . I . . . . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X Z . . . . . . Z

X Z I . . . . . . I Z I . . . . . . I . . . Z I . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I I . . . . . . . . . I I . . . . . . . . . I . . . Z I . . . I X

I I . . . . . . . . . I Z X I . . . I . . . I . . . . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I I . . . . . . . . . I Z I . . . I X . . . I . . . . . . . . . I

I Z X I . . . I I . . . . . . . . . I . . . I . . . . . . . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I Z I . . . I X I . . . . . . . . . I . . . I . . . . . . . . . I

.

We immediately observe that specific output particles (first column X stabilizer) have m1 edges. Furthermore, each of those
output qubits has m2 − 1 edges to the remaining output qubits. The final graph state is shown in Fig. 17.

APPENDIX F: CONCATENATED SHOR CODE

We also investigated the concatenation of a variant of the Shor code. The stabilizers can be obtained by repeatedly applying
the rules of the resource state of the phase-flip code as its function is to switch bases and implement a bit-flip code. The resource
state is obtained from three concatenations of that code, which is equivalent to concatenating the Shor code once. Its local Clifford
equivalent graph state is depicted in Fig. 18.
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