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We experimentally demonstrated an all-fiber-based unidimensional continuous-variable quantum key distri-
bution (CV QKD) protocol and analyzed its security under collective attack in realistic conditions. A pulsed
balanced homodyne detector, which could not be accessed by eavesdroppers, with phase-insensitive efficiency
and electronic noise, was considered. Furthermore, a modulation method and an improved relative phase-locking
technique with one amplitude modulator and one phase modulator were designed. The relative phase could
be locked precisely with a standard deviation of 0.5° and a mean of almost zero. Secret key bit rates of
5.4 kbps and 700 bps were achieved for transmission fiber lengths of 30 and 50 km, respectively. The protocol,
which simplified the CV QKD system and reduced the cost, displayed a performance comparable to that of a
symmetrical counterpart under realistic conditions. It is expected that the developed protocol can facilitate the

practical application of the CV QKD.
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I. INTRODUCTION

The unconditional security of a quantum key distribution
(QKD) relies on quantum physics phenomena, for instance, the
uncertainty principle and the quantum noncloning theorem.
Various QKD protocols exist, which can generally be catego-
rized as discrete-variable or continuous-variable (CV) QKD
protocols [1-3]. The CV protocol promises higher key rates
at a relatively short distance; this protocol encodes the key
into continuous-spectrum quantum observables and utilizes
homodyne detectors instead of single-photon detectors. As a
result of continuous efforts from scientists and engineers, CV
QKD theory and technology have developed rapidly over the
past decade [4-24].

To promote the wide application of CV QKD, numerous
approaches to further simplification have been proposed.
For example, switching from squeezed-state to coherent-
state protocols, from Gaussian-modulation to non-Gaussian-
modulation coherent-state protocols, and from symmetrical to
asymmetrical coherent-state protocols has been proposed. The
recently proposed asymmetric unidimensional (UD) coherent-
state protocol allows the sender, Alice, to use one modulator
instead of two, thereby reducing the complexity and cost
of Alice’s apparatus [25]. Almost simultaneously to this
development, UD CV QKD was realized experimentally with
a continuous laser beam modulated in phase quadrature using
one phase modulator [26]. However, the method employing
one phase modulator only on Alice’s side is not suitable for
experiments involving pulsed laser beams. To achieve a UD
Gaussian distribution with pulsed laser beams in the phase
space, Alice should use a single-amplitude modulator instead;
however, this leads to the problem of phase locking. To lock
the relative phase, one amplitude and two phase modulators
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were used in previous CV QKD experiments with a pulsed
laser [27]. The amplitude modulator and phase modulator on
Alice’s side were employed to modulate the test pulses used
to lock the relative phase, while the phase modulator on the
side of the receiver, Bob, was utilized to lock the relative phase
using the feedback voltage.

In this paper, we analyze the security of the UD CV
QKD protocol under realistic conditions, and experimentally
demonstrate the protocol in a pulsed light regime with
a single-amplitude modulator. To this end, we design an
improved phase-locking method, which utilizes one amplitude
modulator on Alice’s side, one phase modulator on Bob’s side,
and a digital proportional-integral-derivative (PID) feedback
control technique. The relative phase can be locked precisely
with a standard deviation of 0.5° and a mean of almost 0°.
Further, the UD modulation can occur in either the amplitude
or phase quadrature, depending on the locked phase on Bob’s
side. The experimental results show that the performance of
the UD protocol is comparable to those achievable using the
symmetrical counterpart. Such an asymmetrical basis switch
decreases the amount of information for the public declaration
of Bob’s measurement bases, while facilitating Alice’s key
sifting.

In Sec. II, the security of the UD CV QKD protocol
under realistic conditions is analyzed using the entanglement-
based (EB) scheme. Section III describes our all-fiber-based
experimental setup designed to implement the UD protocol,
and details the UD-modulation method and the improved
relative phase-locking technique. Section IV presents the
experimental results and analysis. Finally, Sec. V presents the
conclusions.

II. UD PROTOCOL UNDER REALISTIC CONDITIONS

A. UD protocol model under realistic conditions

The prepare-and-measure scheme and the EB scheme
of the UD protocol are illustrated in Figs. 1(a) and 1(b),
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FIG. 1. UD protocol schemes. (a) Prepare-and-measure scheme.
(b) EB scheme.

respectively. In the prepare-and-measure scheme, the sender
(Alice) produces a series of coherent states using a pulsed
laser source, and then distributes the coherent states with
modulation variance V), utilizing the amplitude modulator.
These states are sent to the remote, trusted party (Bob) through
a phase-sensitive channel with transmittance 7, , and excess
noise &y, ,, where x and y represent the amplitude and phase
quadratures, respectively. Bob then measures the modulated
states using a pulsed balanced homodyne detector (PBHD)
with detection efficiency 1 and electronic noise V,. Under
realistic conditions, it is assumed that the eavesdropper (Eve)
is unable to access Bob’s apparatus [14].

In CV QKD, the relative phase between the signal and
local oscillator (LO) pulses should be locked using the phase
modulator inside Bob’s apparatus. The fundamental principle
of relative phase locking is that the phase of the LO beam is
delayed by a phase modulator, to which a feedback voltage
is applied in real time. Thus the phase of the signal beam
could be any value during transmission. It can be inferred that
the dimension is in neither amplitude nor phase quadrature
without relative phase locking, as shown in Fig. 2(a). Thus it
is also supposed that 7 is unrelated to the relative phase or is
phase insensitive under realistic conditions.

When the relative phase is locked to 0, the states lie only
along the direction r with angle 6, as depicted in Fig. 2(b).
When the relative phase is locked to zero, the states will be in
amplitude quadrature x, as illustrated in Fig. 2(c). Similarly,
when the relative phase is locked to 7 /2, the states will be
in phase quadrature y, as shown in Fig. 2(d). Thus it can be
inferred that the modulated quadrature does not depend on
the amplitude modulator on Alice’s side, but on the relative
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FIG. 2. Modulated coherent states of UD protocol in phase space
(a) without relative phase locking and with relative phase locked to
(b) 8, (c) zero, and (d) 7 /2.

phase locked using the phase modulator on Bob’s side. Without
loss of generality, the modulated dimension in amplitude
quadrature is used in the following discussion.

It is well known that a protocol in the prepare-and-measure
scheme can be equivalent to a protocol in the EB scheme,
which allows the explicit description of the modes [3]. The
UD protocol in the EB scheme is illustrated in Fig. 1(b), where
an Einstein-Podolsky-Rosen (EPR) source on Alice’s side is
used. In pulsed laser source experiments, an EPR source is
equivalent to a two-mode squeezed vacuum state p4p, with
variance V in shot noise units. Note that the variances in this
paper are all normalized to shot noise units. The Gaussian state
paB, 1s completely determined by its covariance matrix yag,,
with the following form:

_ VI VV2—lo, |
YABy, = V? 7, To. VI ) (D
where
1 0 1 0
1= |:O 1j| and o, = [0 _1]. 2)

Then the mode By is squeezed using » = In+/V, resulting
in the covariance matrix y4g, which is given by

14 0 VVvE—1 0
0 1% 0 — B
=S (I &S0 = Yo 3
Yas = ( Q)yasy( Q) TUZIY 0 V2 0 3)
0 -5 0 1
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where
e 0 VA

SQ = = . 4
oofs LY b e
In the EB scheme, mode S has a variance of V2 in the
amplitude quadrature and a variance of 1 in phase quadrature.
It is equivalent to the Gaussian modulation of coherent states
with variance Vj; = V2 — 1 in amplitude quadrature and no
modulation in phase quadrature in the prepare-and-measure
scheme. After transmission through the channel characterized

by efficiency T , and excess noise & ,, the covariance matrix
vas, achieves the following form:

1% 0 JT.LVIVZ—1) 0

B 0 v 0 c,
VAR JTVOVI=T) 0 TV 4 sume) O |

0 c, 0 vE

®)

where xiinex = (1 — Ty)/T, + &, is the total noise added
relative to the channel input in amplitude quadrature and
(1 —T,)/T, is the noise due to losses. T, and &, can be
determined based on the public amplitude quadratures and
Vf ! is the output variance of mode B) in the phase quadrature.
As the phase quadrature is not modulated, the correlation
C, between Alice and Bob in phase quadrature is unknown.
Further, V' in the phase quadrature should be measured by
randomly switching the detection bases to 7r /2. The unknowns

J

1% 0
0 1%

nT.VVZI—1) 0

0 Cy /1

YAB =

where Xt = Xlinex + Xnhom/ Ty 1 the total noise added between
Alice and Bob relative to the channel input in the amplitude
quadrature, and xhom = (1 — n)/n + V,/n is the total noise
introduced by the realistic PBHD relative to Bob’s input in the
amplitude quadrature.

B. Secret key rate under collective attack

In the calculations presented in this section, a collective
attack from Eve is considered to determine the lower bound of
the secret key rate Al. The expression for calculating A/ in
the case of reverse reconciliation is

Al = Blsp — XBE» (10)

where 1,45 is the Shannon mutual information between Alice
and Bob, B is the reverse reconciliation efficiency, and xpg
is the maximum information accessed by Eve bounded by
the Holevo quantity. I4p can be calculated directly using
Shannon’s equation as follows:

1%
Iip = —log,—= an

2 VAlB’

where V4 is the amplitude quadrature variance for Alice,
being the first diagonal element of matrix y, describing mode

nTx(V2 + Xtot)
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Vf‘ and C, are bounded by the Heisenberg uncertainty
principle, which can be expressed in terms of covariance
matrices as

vap +i2 >0, (6)

where

N=2 0 1
QL= v and w= . (7
.

Fortunately, it has been proven that there exists a VyB ! region
in which the protocol is secure for any C, bounded by the
Heisenberg uncertainty principle. As C, is not estimated, the
pessimistic value C¥ corresponding to the minimum secret key
rate should be considered [25].

In the EB scheme, the detector can be modeled as a beam
splitter with transmission n and a perfect PBHD. The electronic
noise V, of the PBHD can be modeled by a thermal state pg,
with variance Vy entering the other input port of the beam
splitter; Vy is given by

Vv =1+V, /(1 =n). ®)

The thermal state pg, could be considered as the reduced
state obtained from a two-mode squeezed vacuum state pg,q -
Then the covariance matrix y4p characterizing the state psp
after the beam splitter is given by

ST V(VI—1) 0

0 Cy /i
0

0 NV 4+ V(1 —n)

(

A. Further, V4 p is the conditional variance in amplitude
quadrature and is the first diagonal element of the conditional
matrix y4 g, which is given by

yaip = va —oap(XysX)M o)y, (12)

where

1 o]
x:[o 0}, (13)

Y4, VB, and o, p are all submatrices of the covariance matrix
yap and appear in the decomposition of matrix y4 g in Eq. (14);
and MP represents the Moore-Penrose matrix inverse.

YA  OaB
YaB=| : (14
Oap VB
Eve’s accessible information can be calculated using
xse = S(pe) — S(p’), 15)

where S(p) is the von Neumann entropy of the quantum state p.
For an n-mode Gaussian state p, this entropy can be calculated
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using the symplectic eigenvalues of the covariance matrix y
characterizing p as follows:

)\.,‘ —1
S(p)—ZG( 5 ) (16)
where G(x) = (x 4+ 1)log,(x + 1) — xlog,x. Usually, the
symplectic eigenvalues of a covariance matrix y with N modes
can be calculated by finding the absolute eigenvalues of matrix
iQy.

As states pap, g and ,of\‘f{HE are pure, S(pr) = S(pap,) and
S(pprp) = S(pE) [14]. The entropy S(p4p) can be calculated
from the symplectic eigenvalues X » of the covariance matrix
Yas,. Similarly, the entropy S(px%;) can be determined from
the symplectic eigenvalues A3 45 of the covariance matrix
Yapy- Matrix y.py characterizing state p)%, after Bob’s
projective measurement can be determined using the following
equation:

Vﬁﬁﬁ = VYARH — UARH;B(XVBX)MPU/ZRH;B- (17)

Matrices yaru, V5, and oary: g appear in the decomposition
of matrix yarys, i.€.,

YARH OARH;B
YARHB = |: T j| (18)
OARH:B VB

which can be obtained by rearranging the lines and columns of
matrix yagry describing state papry. Specifically, yapry can
be obtained by applying a beam splitter transformation Sg, g,
to modes By and Ry, as follows:

YABRH = [1 @ Spr, ® 1][]0131 &) ]/RUH][I @ Spr, @ I]T,

(19)
where
Sl «/1—171j|
S = . 20
=5 e

III. IMPLEMENTATION OF UD CV QKD PROTOCOL

A. Experimental setup of UD protocol

Figure 3 depicts the all-fiber-based experimental setup de-
signed by the authors. A 1550-nm continuous laser beam was
generated by a narrow-bandwidth fiber laser on Alice’s side
and modulated into 80-dB high-extinction-ratio light pulses us-
ing two cascaded 40-dB high-extinction-ratio Mach-Zehnder
(MZ) amplitude modulators (MXER-LN-10, Photline) [28].
The modulated pulse width was 100 ns and the repetition rate
was 500 kHz. An asymmetric 10:90 polarization-maintaining
(PM) fiber coupler was used to split the pulses into signal
and local pulses. In the signal path, Alice used the single-MZ
amplitude modulator to encode the information. The method
of realizing the UD Gaussian modulation is described in detail
in Sec. III B.

To realize a long-distance transmission of the signal and
local pulses together and without interference through a
single-mode (SM) fiber tens of kilometers in length, time
and polarization multiplexing were adopted. To realize time
multiplexing, an 80-m-long PM fiber was used in the signal
path on Alice’s side; this fiber allowed the signal pulses to
follow the local pulses through the long transmission fiber
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with a delay of approximately 400 ns. On Bob’s side, another
80-m-long PM fiber was employed to cause the signal pulses
and local pulses to arrive simultaneously at the 50:50 PM fiber
coupler before the PBHD. To realize polarization multiplexing,
the signal and LO pulses were inserted into a PM fiber
combiner perpendicular to each other on Alice’s side and
separated by a PM fiber splitter on Bob’s side. The polarization
isolation degree was 30 dB. Thus the total isolation degree in
the long transmission fiber, which included an 80-dB high-
extinction-ratio isolation degree and the 30-dB polarization
isolation degree, was 110 dB. The LO-pulse intensity was
107 photons per pulse, and the mean intensity of the signal
pulses was several photons per pulse. Thus the isolation degree
was sufficient to prevent leakage of the LO pulses into the
signal pulses.

The variable attenuator on Alice’s side was used to tune the
signal beam’s quadrature variance, while the phase modulator
on Bob’s side was used to lock the relative phase between
the signal and LO paths. The 10:90 SM fiber coupler and
detector 1 were employed to recover the clock signal. Thus
Alice and Bob could share the synchronous clock signal.
As the beam polarization could be rotated because of the
stress-induced birefringence of the fibers after transmission
over a long distance, a dynamic polarization controller (DPC)
was used to rotate the polarization of the combined signal
and LO pulses back to linear polarization. The 10:90 PM
fiber coupler and detector 2 were utilized to ensure that
the intensity of the LO pulses was maximized; in this case,
the LO pulses output by the DPC were linearly polarized.
The quadratures of the signal pulses were measured by the
PBHD [29,30].

A quantum random number generator (QRNG) 1 on Alice’s
side was used to generate random Gaussian numbers, which
were then utilized to modulate the coherent states. QRNG 2 on
Bob’s side provided the random number to switch the detection
bases randomly. Two optical 1.25-Gbps (gigabits per second)
small form-factor pluggable fiber switches located on each side
created a bidirectional classical communication link between
Alice and Bob. The classical channel was mainly used for
synchronization, parameter estimation, reverse reconciliation,
privacy amplification, etc.

B. UD protocol modulation method

The obvious difference between the UD and symmetrical
coherent-state protocols is that there is no phase modulator on
Alice’s side in the UD protocol. Consequently, the modulation
method is also significantly different, especially the method
used to lock the relative phase. In the symmetrical coherent-
state protocol, Alice randomly prepared a coherent state cen-
tered on two numbers (x4, y4) from a Gaussian distribution.
Essentially, Alice randomly modulated the intensity r> from
a central x2(2) distribution using an amplitude modulator and
randomly modulated the phase 6 from a uniform distribution
in [0,27) with a phase modulator [27]. The numbers (7,0) in
spherical coordinates map to the numbers (x4,y4) in rectan-
gular coordinates. Meanwhile, in the UD protocol, there is no
phase modulator; thus Alice should modulate the amplitude
r according to a Gaussian distribution using the amplitude
modulator.
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FIG. 3. Experimental setup. AM: amplitude modulator; SM: single mode; PM fiber: polarization-maintaining fiber; DAQ: data acquisition
card; QRNG: quantum random number generator; DPC: dynamic polarization controller; PBHD: pulsed balanced homodyne detector.

For an MZ amplitude modulator, the output optical power
I,y can be expressed in terms of the input optical power I;, as

Ty = ]inT{COS[n(V - Vmax)/VJr] + 1}/2’ (21)

where 7 is the maximum transmission coefficient of the
modulator considering the intrinsic insertion loss, V is the
modulation voltage applied to the modulator, Vi, is the
voltage corresponding to the maximum transmission, and V;
is the half-wave voltage. The minimum transmission voltage
Vinin satisfies Vipin = Vinax + V.

In Fig. 4, the green dashed curve represents the output
intensity I, versus V, where I;,T has been normalized to 1
and Vi« has been set to —V,;. The red solid curve represents
the output amplitude E,, versus V. The relation between them
can be written as

Eou = |Ein|VT cos[T(V — Vinx)/2Ve e, (22)

where Ej, is the amplitude of the input beam and 0 is the
phase of the output beam. It is obvious that the period of
the red solid curve is twice that of the green dashed curve.

1.0

g
n
T

out & Iout

(=
(=]
T

Normalized E

Voltage (V)

FIG. 4. Intensity and amplitude output of amplitude modulator
versus modulated voltage.

In the symmetrical coherent-state protocol, only the voltages
from Viax to Viin are needed. However, as there is no phase
modulator on Alice’s side in the UD protocol, the voltages
from —V; to V, are necessary.

To modulate the states obeying a Gaussian distribution
in one dimension, a data group Z following a Gaussian
distribution centered at zero should first be prepared. The Box-
Muller method can be used to transform the random numbers
generated by QRNG 1 into numbers following a Gaussian
distribution. The modulation voltage can be calculated using
the transformation equation, Eq. (23), obtained from Eq. (22):

2V,
V =2 arccos Z + Vi, (23)
T

where Z should satisfy Z = Eom/(|Ein|«/7) and 0 = 0.
Note that there is a phase jump from —V,; to V, at V.
Thus the amplitude modulator also causes phase modulation
from6 + 0to 6 + m. When using the UD protocol in amplitude
quadrature, this phase modulation can change the amplitude
quadratures of the states from positive to negative.

C. Relative phase-locking method

The pulses sent by Alice are mainly divided into two
parts: data pulses that carry information, which are usually
modulated into a Gaussian distribution as described earlier, and
test pulses that are used for relative phase locking. To lock the
relative phase between the signal pulses and LO pulses in the
symmetrical coherent-state protocol, one amplitude modulator
and two phase modulators are used. One phase modulator is
on Alice’s side, whereas the other is on Bob’s side. On Alice’s
side, the test pulses are first modulated into the same amplitude
via the amplitude modulator under applied voltages Via.x. The
test pulses are then modulated, using the phase modulator,
into three states, that is, ¥, ¥, and 13, with phases of 6 + 0,
0 4+ 2m/3, and 6 + 47 /3 and phase-modulation voltages of
Vi, Vo, and V3, respectively. Here, 0 is the current relative
phase. Bob measures the amplitude quadratures x1, x, and x3
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of the test pulses, and calculates the relative phase using the following equations:

PHYSICAL REVIEW A 95, 062330 (2017)

2 1
r= §(f12+)7§+f32) X = ;;(xil+x52+"'+xm), (24)
and
L . |
& = arccos 3—(2x1 — X —X3)| when sin(0) = 3 (X3 —%) >0, 6el0,n]
r —/3r
o . |
6 = — arccos 3—(2x1 —X» —X3)| when sin(f) = 5 (F3— %) <0, 6¢e (-0, (25)
r —/3r

where r is the amplitude of the test pulses and ¥; (i = 1,2,3)
is the mean of the quadratures [27]. To prevent shot noise
from influencing the quadrature measurement precision, in
our experiment, thousands of test pulses were measured to
determine the mean in each data block. Further, high-intensity
test pulses were utilized. The drifting period of the relative
phase was several seconds, and the time during which the data
in each block were acquired was tens of microseconds. Thus
the relative phase was approximately constant in each block.
After calculating the relative phase, the feedback voltage
V(0) = V.0 /7 was fed back to the phase modulator on Bob’s
side to lock the relative phase. This relative phase-locking
method is called the compensation method.

However, in the UD protocol, there is only one amplitude
modulator on Alice’s side and one phase modulator on Bob’s
side. To lock the relative phase in this protocol, a more
elaborate method was designed. On Alice’s side, all the
test pulses were modulated into the same amplitude using
an amplitude modulator with an applied voltage Vi.x to
minimize the influence of the shot noise. On Bob’s side, the
test pulses were modulated using the phase modulator into
three states, /1, ¥», and 13, with phases 6 4 0, 6 4 27 /3, and
0 + 4 /3 and modulation voltages of Vi + V,,, V, + V,, and
V3 + V,, respectively. We first added the modulation voltages
(V1,V,,V3) and bias voltage V; using a computer, and then
applied the sums of the voltages (Fig. 5, short green solid
lines) to the phase modulator during the test pulses. The bias
voltage (Fig. 5, black solid lines) in each block was a constant
value. For example, in the (k 4 1)th block, the bias voltage was
Vi (6;), where 6, is the accumulated relative phase 6" at the kth
block. Note that 0’ is the relative phase of the signal and LO

Test Data
Voltage pulses pulses
A
I/up T 7 Y
V27[
nida —___
0 V. , ’ = ,
SNACE) V6., V,(0,)
7V2/T
V[(IH' -

-+t (k-1thblock ! kthblock ! (k+1)thblock: -

Time

FIG. 5. Sums of modulated voltages and bias voltages applied to
phase modulator on Bob’s side.

(

pulses when no bias voltage is applied on the phase modulator.
The sums of the voltages could complete not only the test pulse
modulation, but also the feedback process. Note that, during
the time occupied by the data pulses, the modulated voltages
Vz /2 used to switch the detection bases were randomly added
to the bias voltage (Fig. 5, red dashed lines).

During the compensation-locking process, the feedback
voltage can be expressed as

Va
V) = ;9k = K0k, (26)

where K, is the coefficient of the proportional term. Usually,
the V(6;) of the kth block is fed back to the (k + 1)th block,
introducing a residual steady-state error. To improve the phase
locking, the equation used to calculate the feedback voltage
can be extended to

k
V(O = Kpb+ K1 )60+ Kp@ —b-). (27)

i=1

where K; and Kp are the coefficients of the integral and
derivative terms, respectively. The integral term accelerates
the movement of the process toward a set phase and eliminates
the residual steady-state error that would occur if a pure
proportional controller were used. The derivative term predicts
the system behavior, and thus improves the settling time and
stability of the system. It is obvious that the modified method,
usually called the digital PID method, will improve the relative
phase locking compared with that achievable if compensation
locking or pure proportional locking were used.

The phase-locking process using the digital PID method
can be described as follows.

(1) First block: The bias voltage V,(6'y) applied on the
phase modulator is set to zero, and the initial accumulated
relative phase 6 is also zero. The relative phase 6; can be
calculated using the test pulses of the first block and Eq. (25).
Then the accumulated relative phase 6] can be calculated
via 6] = 6;+ 6,. The feedback voltage V(6;), which will
be fed back to the second block, can be calculated using
Eq. (27). The bias voltage V,(8’1), which will be applied on
the phase modulator at the second block, can be calculated
from V;,(68'1) = V;,(8'0) + V(6)).

(2) Second block: V,(6'1) is applied on the phase modula-
tor at the second block. The relative phase 6, can be calculated
using the test pulses of the second block and Eq. (25). The
accumulated relative phase 0; can then be calculated via
0) = 6] + 0,. The feedback voltage V(6,), which will be fed
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FIG. 6. Locked relative phase over 100 s.

back to the third block, can be calculated using Eq. (27). The
bias voltage V,(6',), which will be applied on the third block,
is V(0'2) = Vp(0)) + V(62).

(3) kth block: The bias voltage V;,(6'x_1) is applied on the
phase modulator at the kth block. The relative phase 6; can be
calculated using the test pulses of the kth block and Eq. (25).
The accumulated relative phase 6, can then be calculated via
0; = 6,_, + 0k. The feedback voltage V (6 ), which will be fed
back to the (k 4+ 1)th block, can be calculated using Eq. (27).
The bias voltage V;,(6'x), which will be applied on the (k + 1)th
block, is V;(0'x) = Vi (0,_,) + V(6).

As time passes, 6 will randomly drift. Thus the bias voltage
applied on the phase modulator V,(6") will randomly drift and
eventually exceed one of the output voltage bounds V,, or
Viow Of the data acquisition card (shown in Fig. 5). Thus the
following method of adding or subtracting V», is applied. If
V,(0')islarger than Vs, Va, is subtracted, and 8’ is replaced by
anew corresponding value 8’ = 0’ — 2. In contrast, if V,(6")
is smaller than —V,,, V5, is added, and 6’ is replaced by a
new corresponding value 6’ = 6’ + 2m. Through application
of this procedure, the relative phase remains stably locked for
a long period of time.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 6 presents the relative phase resulting from applica-
tion of the improved phase-locking method, recorded in real
time for 100 s. Each point represents the relative phase of a
data block, which was the unit used to calculate the relative
phase, each having a duration of 10 ms. Evidently, the relative
phase can be locked to within approximately +0.5° (standard
deviation) and the mean is 6.5x1074°. It is obvious that the
relative phase fluctuates slightly and the residual steady-state
error due to phase locking is almost zero.

One important step in achieving the secret key is calibrating
the experimental parameters carefully. In our experiment, the
efficiency of the PBHD was 65% and the electronic noise
was 0.03. A reverse reconciliation efficiency of 95.2% was
achieved [31]. The transmission efficiency 7, and excess
noise &, were evaluated in real time based on the public
amplitude quadratures.
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FIG. 7. Variances of excess noise and phase quadrature V}? over
1 h and transmission lengths of 30 and 50 km.

Figure 7 presents the excess noise values at 30 and 50 km
obtained with V), = 2.8. When the transmission length is
30 km, the excess noise is approximately 0.01. Further,
when the transmission length is 50 km, the excess noise is
approximately 0.02. To obtain each excess noise point, a burst
of data including 10000 blocks was used, where each block
contained 5 K points of data. Thus a total of 50 M points were
collected, of which 10 M points were from test pulses, 10 M
points were utilized to evaluate the excess noise, 10 M points
were employed to evaluate VVBl , and 20 M points were used to
extract the secret key.

In our experiment, we randomly switched the bases of the
data pulses in each block in order to measure the variance of
the phase quadrature VVB using QRNG 2, as shown in Fig. 7.
The relation between VyBl and VyB provided in Eq. (28) can be

used to evaluate VyB 1, where
V=gVl v —m=n(V) —1)+1+V.. (28)

After Vy‘E"1 is determined, Eqgs. (6) and (10) can be applied
to calculate Cy and A7 [25].
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FIG. 8. Secret key rate versus modulation variance curves corre-
sponding to transmission lengths of 30 and 50 km.

062330-7



XUYANG WANG, WENYUAN LIU, PU WANG, AND YONGMIN LI

10’

I £=0.03, 7= 100%
. £=003, 7=65%
107 £=0.025, 7= 100%
- - -£=0.025, 1=65%
£=0.02, 7= 100%
——-e=0.02, = 65%
£=001, 7= 100%
—e= £=001, 7= 65%

Secret key rate (bits/pulse)
<

" " 1 "
0 50 100 150
Distance (km)

FIG. 9. Secret key rate versus transmission distance curves
corresponding to different amounts of excess noise.

Although it is not necessary to evaluate T, or &, in some
situations, such as the prediction of the best variance shown in
Fig. 8 and analysis of the secret key rate versus distance shown
in Fig. 9, it is very useful to assume that T, = T, and &, = &,.
In these scenarios, VyB‘ can be calculated using

vfl =14 T,s,. (29)

In the experiment, we assumed that 7, = 7, = T and used
the equation VyB' =1+ Ty¢, to calculate &; this value was
found to be approximately the same as ¢,, but sometimes
slightly smaller.

By assuming that 7, = T and &, = &, the best modulation
variances VAZ (represented as circles) were calculated, as
shown in Fig. 9. The figure indicates that, when the trans-
mission length is 30 km and the excess noise is 0.01, V,‘Z
is 2.8 (green circle). The secret key rate is 0.027 bits/pulse,
corresponding to a bit rate of 5.4 kbps when the repetition rate
is 500 kHz and 40% quadratures are used to calculate the secret
key rate. In addition, V,ﬁ, is 2 (red circle) when the excess noise
is 0.02 and the transmission length is 50 km, corresponding to
a secret key bit rate of 760 bps. As the tops of the V), curves
are flat, it is possible to adjust V), without decreasing the secret
key rate noticeably. In our experiment, V), was set to 2.8 at
a transmission length of 50 km to facilitate comparison with
the results for the 30-km transmission length, yielding a secret
key bit rate of 700 bps.

Figure 9 presents the secret key rate versus distance at
different excess noise levels, assuming that Vf‘ =1+ Tye,.
The solid lines correspond to the scenario in which the
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efficiency of the PBHD on Bob’s side is 100%. The dashed
lines correspond to the realistic condition in which the
calibrated detection efficiency is 65%. From left to right, the
excess noise values are 0.03, 0.025, 0.02, and 0.01, and V; =
2.8. Itis evident that the UD protocol is very sensitive to excess
noise, as is the symmetrical coherent-state protocol. From the
red dashed curve, it is apparent that a maximum distance
greater than 70 km can be achieved with an excess noise
value of 0.025. However, when the transmission distance is
greater, greater excess noise will be obtained. The comparison
of the solid and dashed red curves shows the phenomenon of
noise counteracting noise; thus the transmission length could
be extended because of the realistic efficiency and electronic
noise [32].

V. CONCLUSION

This paper presented a complete experimental demonstra-
tion of an all-fiber-based UD CV QKD system as well as
a security analysis of the UD coherent-state protocol under
realistic conditions. The phenomenon of noise counteracting
noise was observed, enabling the transmission length to be
extended with a phase-insensitive efficiency 7 and electronic
noise V,. Furthermore, a modulation method and an improved
relative phase-locking technique were proposed. The standard
deviation of the locked relative phase was found to be 0.5°.
Secret key bit rates of 5.4 kbps and 700 bps were achieved in
a single-mode fiber at distances of 30 and 50 km, respectively.

Higher secret key rates and longer distances can be expected
following reduction of the excess noise and an increase of
the reconciliation efficiency [33]. Further theoretical analysis
of the protocol will include finite-size effects [34] and
composable security [35]. The UD protocol simplifies the CV
QKD system and reduces the cost. Although the protocol is
more sensitive to the excess noise [25], it displays a comparable
performance to the symmetrical counterpart under realistic
conditions. It is expected that the presented system can find
potential applications in various scenarios, such as in QKD
local area networks, where the transmission distance between
users is usually short and cost is a key concern.
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