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We generalize the recently proposed resource theory of coherence (or superposition) [T. Baumgratz et al., Phys.
Rev. Lett. 113, 140401 (2014); A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016)] to the setting where
not just the free (“incoherent”) resources, but also the manipulated objects, are quantum operations rather than
states. In particular, we discuss an information theoretic notion of the coherence capacity of a quantum channel
and prove a single-letter formula for it in the case of unitaries. Then we move to the coherence cost of simulating
a channel and prove achievability results for unitaries and general channels acting on a d-dimensional system;
we show that a maximally coherent state of rank d is always sufficient as a resource if incoherent operations are
allowed, and one of rank d2 for “strictly incoherent” operations. We also show lower bounds on the simulation
cost of channels that allow us to conclude that there exists bound coherence in operations, i.e., maps with nonzero
cost of implementing them but zero coherence capacity; this is in contrast to states, which do not exhibit bound
coherence.
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I. INTRODUCTION

Since its discovery, quantum mechanics has provided a
mathematical framework for the construction of physical the-
ories. Indeterminism, interference, uncertainty, superposition,
and entanglement are concepts of quantum mechanics that
distinguish it from classical physics and that have become
resources in quantum information processing.

Quantum resource theories aim at capturing the essence of
these traits and quantifying them. Recently, quantum resource
theories have been formulated in different areas of physics
such as the resource theory of athermality in thermodynamics
[1–6] and the resource theory of asymmetry [7,8]. Further-
more, general structural frameworks of quantum resource
theories have been proposed [9].

Resource theories using concepts of quantum mechanics
have been developed since the appearance of the theory of
entanglement [10–12]. Very recently, Baumgratz et al. [13],
following earlier work by Åberg [14], have made quantum
coherence itself, i.e., the concept of superposition

|ψ〉 =
∑

i

ψi |i〉,

the subject of a resource theory; see also [15].
The present paper is concerned with this resource theory

of coherence, and here we briefly recall its fundamental
definitions, as well as some important coherence measures; for
a comprehensive review, see [16]. Let {|i〉 : i = 0, . . . ,d − 1}
be a particular fixed basis of the d-dimensional Hilbert space
H; then all density matrices in this basis are “incoherent,” i.e.,
those of the form δ̃ = ∑d−1

i=0 δi |i〉〈i|. We denote by � ⊂ S(H)
the set of such incoherent quantum states.
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The definition of coherence monotones requires the identi-
fication of operations that are incoherent. These map the set of
incoherent states to itself. More precisely, such a completely
positive and trace-preserving (CPTP) map is specified by a
set of Kraus operators {Kα} satisfying

∑
α K†

αKα = 1 and
Kα�K†

α ⊂ � for all α. A Kraus operator with this property
is called incoherent; we call it strictly incoherent if both K

and K† are incoherent [17,18]. We distinguish two classes of
incoherent operations (IOs):

(i) incoherent completely positive and trace-preserving
quantum operations (nonselective maps) T , which act as
T (ρ) = ∑

α KαρK†
α (note that this formulation implies the

loss of information about the measurement outcome); and
(ii) quantum operations for which measurement outcomes

are retained, given by ρα = 1
pα

KαρK†
α occurring with prob-

ability pα = Tr KαρK†
α . The latter can be modeled as a

nonselective operation by explicitly introducing a new register
to hold the (incoherent) measurement result:

T̃ (ρ) =
∑

α

KαρK†
α ⊗ |α〉〈α|.

Here, we have made use of the convention that in the
composition of systems, the incoherent states in the tensor
product space are precisely the tensor products of incoherent
states and their probabilistic mixtures (convex combinations)
[14]. An operation that can be written with strictly incoherent
Kraus operators is called a strictly incoherent operation (SIO).

We define also the maximally coherent state in a d-
dimensional system by |�d〉 = 1√

d

∑d−1
i=0 |i〉, from which every

state in dimension d can be prepared [13,17,19]. Note that the
definition of a maximally coherent state is independent of a
specific measure for the coherence [13,20].

A list of desirable conditions for any coherence measure,
i.e., a functional from states to nonnegative real numbers, is
also presented [13]:

(1) C(ρ) = 0 for all ρ ∈ �;
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(2) monotonicity under nonselective incoherent maps,
C(ρ) � C(T (ρ));

(3) (strong) monotonicity under selective incoherent maps,
C(ρ) �

∑
α pαC(ρα); and

(4) convexity,
∑

i piC(ρi) � C(
∑

i piρi).
The first two are definitely required to speak of a coherence

measure, the third is sometimes demanded axiomatically but
often is really more of a convenience, and convexity should be
thought of as nice if present but not absolutely necessary.

Among the most important examples are the following three
measures: For pure states ϕ = |ϕ〉〈ϕ|, the entropy of coherence
is defined as

C(ϕ) := S(�(ϕ)), (1)

where � is the dephasing (i.e., coherence-destroying) map
�(ρ) = ∑

i |i〉〈i|ρ|i〉〈i|; for mixed states, it is extended by the
convex hull construction to the coherence of formation [13,14],

Cf (ρ) := min
∑

i

piC(ψi) s.t. ρ =
∑

i

piψi. (2)

Finally, the relative entropy of coherence [13,14]

Cr (ρ) := min
σ∈�

D(ρ‖σ ) = S(�(ρ)) − S(ρ), (3)

with the relative entropy D(ρ‖σ ) = Tr ρ(log2 ρ − log2 σ ).
Both Cr and Cf satisfy all of properties 1 through 4 above.

In the present paper, we expand our view from states
as coherent resources to operations, showing how to extract
pure-state coherence from a given operation (Sec. II) and how
to implement operations using coherent states as a resource
(Sec. III). We briefly discuss the case of qubit unitaries as
an example in Sec. IV, then conclude in Sec. V, where
we observe that in operations, there is bound coherence,
something that does not exist for states. Most generally, we
propose a definition for the rate of conversion between two
channels using only incoherent operations and present many
open questions about this concept.

II. COHERENCE-GENERATING CAPACITY AND
COHERENCE POWER OF TRANSFORMATIONS

The free operations in our resource theory are the incoherent
ones (IOs), which means that, in some sense, any other CPTP
map represents a resource. How do we measure it? or, better,
How do we assess its resource character? In the present section,
we focus on how much pure-state coherence can be created
asymptotically, using a given operation T : A −→ B a large
number of times, when incoherent operations are free.

The most general protocol for generating coherence must
use the resource T and incoherent operations according to
some predetermined algorithm, in some order. We may assume
that the channels T are invoked one at a time; and we can
integrate all incoherent operations between one use of T and
the next into one incoherent operation, since the IO is closed
under composition. Thus, a mathematical description of the
most general protocol is the following: One starts by preparing
an incoherent state ρ0 in A ⊗ A0, then lets T act, followed
by an incoherent transformation, I1 : B ⊗ A0 −→ A ⊗ A1,
resulting in the state

ρ1 = I1((T ⊗ id)ρ0).

Iterating, given state ρt in A ⊗ At , obtained after the action
of t realizations of T and suitable incoherent operations, we
let T act and the incoherent transformation It+1 : B ⊗ At −→
A ⊗ At+1, resulting in the state

ρt+1 = It+1((T ⊗ id)ρt ).

At the end of n iterations, we have a state ρn in A ⊗ An, and
we call the above procedure a coherence generation protocol
of rate R and error ε, if |An| = 2nR and the reduced state
ρAn

n = TrA ρn has a high fidelity with the maximally coherent
state,

〈�2nR |ρAn

n |�2nR 〉 � 1 − ε.

The maximum number R such that there exist coherence-
generating protocols for all n, with the error going to 0 and rates
converging to R, is called the coherence-generating capacity
of T and denoted Cgen(T ).

Theorem 1. For a general CPTP map T : A −→ B,

Cgen(T ) � sup
|ϕ〉∈A⊗C

Cr ((T ⊗ id)ϕ) − C(ϕ), (4)

where the supremum over all auxiliary systems C and pure
states |ϕ〉 ∈ A ⊗ C. Furthermore,

Cgen(T ) � sup
ρ on A⊗C

Cr ((T ⊗ id)ρ) − Cr (ρ), (5)

where now the supremum is over mixed states ρ in A ⊗ C.
If T is an isometry, i.e., T (ρ) = VρV † for an isometry V :

A ↪→ B, the lower bound is an equality and can be simplified:

Cgen(V ·V †) = sup
|ϕ〉∈A⊗C

C((V ⊗ 1)ϕ(V ⊗ 1)†) − C(ϕ)

= max
|ϕ〉∈A

C(V ϕV †) − C(ϕ). (6)

This result, the main one in the present section, should be
compared to the formula, similar in spirit, for the entangling
power of a bipartite unitary [21,22]. Furthermore, the above
formulas for the coherence-generating capacity are related
to the coherence power (with regard to the relative entropy
measure)

Pr (T ) = max
ρ on A

Cr (T (ρ)) − Cr (ρ), (7)

investigated by García Díaz et al. [23] and Bu et al. [24]. Let us
also introduce the same maximization restricted to pure input
states,

P̃r (T ) = max
|ϕ〉∈A

Cr (T (ϕ)) − C(ϕ). (8)

Note that the only difference from our formulas is that we allow
an ancillary system C of arbitrary dimension. If we consider,
for a general CPTP map T , the extension T ⊗ idk and

P (k)
r (T ) := Pr (T ⊗ idk), P̃ (k)

r (T ) := P̃r (T ⊗ idk), (9)

then we have

Cgen(V ·V †) = sup
k

P̃ (k)
r (V ·V †) = P̃r (V ·V †), (10)

and in general,

sup
k

P̃ (k)
r (T ) � Cgen(T ) � sup

k

P (k)
r (T ). (11)
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Proof. We start with the lower bound, Eq. (4): For a given
ancilla C and |ϕ〉 ∈ A ⊗ C, let R = Cr ((T ⊗ id)ϕ) − C(ϕ).
For any ε,δ > 0, we can choose, by the results in [17], a
sufficiently large n such that

�
⊗
nC(ϕ)+nδ�
2

IO�−→≈ ϕ⊗n,

ρ⊗n IO�−→≈ �
⊗�nCr (ρ)−nδ�
2 ,

with ρ = (T ⊗ id)ϕ, and where ≈ refers to approximation of
the target state up to ε in the trace norm. We only have to
prove something when R > 0, which can only arise if T is
not incoherent, meaning that there exists an initial state |0〉
mapped to a coherent resource σ = T (|0〉〈0|), i.e., Cr (σ ) > 0.
In the following, assume that R > 2δ. Now, we may assume
that n is large enough so that with R0 = C(ϕ)+δ

Cr (σ ) + δ,

σ⊗
nR0� IO�−→≈ �
⊗
nC(ϕ)+nδ�
2 .

The protocol consists of the following steps.
Step 0: Use 
nR0� instances of T to create as many copies

of σ and convert them into �
⊗
nC(ϕ)+nδ�
2 (up to the trace

norm ε).
Steps 1–k: First, convert 
nC(ϕ) + nδ� of the already

created copies of �2 into n copies of ϕ; then apply T to each
of them to obtain ρ = (T ⊗ id)ϕ and convert the n copies of
ρ to �

⊗�nCr (ρ)−nδ�
2 , incurring an error of 2ε in the trace norm

in each repetition. Repeat.
At the end of the protocol, we have (k − 1)n(R − 2δ) +

nC(ϕ) copies of �2, up to trace distance O(k2ε), using the
channel a total of kn + nR0 times; i.e., the rate is � (R −
2δ) k−1

k+R0
, which can be made arbitrarily close to R by choosing

δ small enough and k large enough (which in turn can be
effected by sufficiently small ε).

For the upper bound, Eq. (5), consider a generic protocol
using the channel n times, starting from ρ0 (incoherent) and
generating ρ1, . . . ,ρn step by step along the way, such that ρn

has fidelity � 1 − ε with �⊗nR
2 . By the asymptotic continuity

of Cr [17, Lemma 12], Cr (ρn) � nR − 2δn − 2, with δ =√
ε(2 − ε), so we can bound

nR − 2δn − 2 � Cr (ρn) =
n−1∑
t=0

Cr (ρt+1) − Cr (ρt )

�
n−1∑
t=1

Cr ((T ⊗ id)ρt ) − Cr (ρt ),

where we have used the fact that ρ0 is incoherent and that
ρt+1 = It+1((T ⊗ id)ρt ), with an incoherent operation It+1,
which can only decrease the relative entropy of coherence.
However, each term in the right-hand sum is of the form
Cr ((T ⊗ id)ρ) − Cr (ρ) for a suitable ancilla C and a state
ρ in A ⊗ C. Thus, dividing by n and letting n → ∞, ε → 0
shows that R � supρ on A⊗C Cr ((T ⊗ id)ρ) − Cr (ρ).

For an isometric channel T (ρ) = VρV †, note that the initial
state ρ0 in a general protocol is, without loss of generality,
pure and that T maps pure states to pure states. The incoherent
operations It map pure states to ensembles of pure states,
so that following the same converse reasoning as above, we
end up upper bounding R by an average of the expressions

Cr ((T ⊗ id)ρ) − Cr (ρ), with pure states ρ, i.e., Eq. (6), since
we also have Cgen(T ) � C((T ⊗ id)ϕ) − C(ϕ) from the other
direction. The fact that no ancillary system is needed is an
elementary calculation. Indeed, for a pure state |ϕ〉 ∈ A ⊗ C,

C((T ⊗ id)ϕ) − C(ϕ)

= S((� ◦ T ⊗ �)ϕ) − S((� ⊗ �)ϕ)

= S((� ◦ T ⊗ id)ρ) − S((� ⊗ id)ρ)[
with ρ = (id ⊗ �)ϕ =

∑
i

piϕi ⊗ |i〉〈i|
]

=
∑

i

pi(S(�(T (ϕi))) − S(�(ϕi)))

� max
|ϕ〉∈A

S(�(T (ϕi))) − S(�(ϕi)),

and we are done. �
Remark. We do not know, at this point, whether the

suprema over the ancillary systems in the upper and lower
bounds in Eq. (11) are necessary in general, i.e., it might be
that Pr (T ) = P (k)

r and/or P̃r (T ) = P̃ (k)
r ; note that the latter is

the case for unitaries, even though it seems unlikely in general
(cf. [21] and [22]). We do know, however, that Pr is convex
and nonincreasing under the composition of the channel with
IOs [23, Corollaries 1 and 2].

It should be appreciated that even the calculation of Pr (T )
appears to be a hard problem. The investigation of further
questions, such as the additivity of Pr , P̃r , or Cgen, may depend
on making progress on that problem.

Remark. The same reasoning as used in the proof of
Theorem 1, replacing Cr with Cf , shows that

Cgen(T ) � sup
ρ on A⊗C

Cf ((T ⊗ id)ρ) − Cf (ρ)

= sup
k

Pf (T ⊗ idk),
(12)

with the coherence of formation power given by Pf (T ) :=
maxρ Cf (T (ρ)) − Cf (ρ). Despite the fact that Cf (ρ) �
Cr (ρ), since the upper bound is given by a difference of
two coherence measures, it might be that for certain channels,
bound, (12), is better than bound (5), and vice versa for others.

Since the suprema over k of the coherence powers of T ⊗
idk play such an important role in our bounds, we introduce
notation for them,

Pr (T ) := sup
k

Pr (T ⊗ idk), (13)

Pf (T ) := sup
k

Pf (T ⊗ idk), (14)

P̃r (T ) := sup
k

P̃r (T ⊗ idk), (15)

and call them the complete coherence powers with respect to
the relative entropy of coherence and coherence of formation,
respectively. For these parameters, and the coherence gener-
ation capacity of isometries, we note the following additivity
formulas.
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Proposition 2. For any CPTP maps T1 : A1 −→ B1 and
T2 : A2 −→ B2,

Pr (T1 ⊗ T2) = Pr (T1) + Pr (T2),

Pf (T1 ⊗ T2) = Pf (T1) + Pf (T2).

Furthermore, for isometries Ti(ρ) = ViρV
†
i ,

P̃r (Ti) = P̃r (Ti) = Cgen(Ti)

and

P̃r (T1 ⊗ T2) = P̃r (T1) + P̃r (T2).

In other words, the coherence-generating capacity of isome-
tries is additive.

Proof. For X ∈ {r,f }, any ancillary system C, and any
state ρ,

CX((T1 ⊗ T2 ⊗ idC)ρ) − CX(ρ)

= CX((T1 ⊗ T2 ⊗ idC)ρ) − CX

((
T1 ⊗ idB2 ⊗ idC

)
ρ
)

+CX

((
T1 ⊗ idB2 ⊗ idC

)
ρ
) − CX(ρ)

= CX

((
T2 ⊗ idA1C

)
σ
) − CX(σ )

+CX

((
T1 ⊗ idB2C

)
ρ
) − CX(ρ)

� PX(T2) + PX(T1),

where we have introduced the state σ = (T1 ⊗ idB2 ⊗ idC)ρ.
By taking the supremum of the left-hand side over all ancillae
C and all states ρ, we obtainPX(T1 ⊗ T2) � PX(T1) + PX(T2);
since the opposite inequality is trivial, using tensor product
ancillae and tensor product input states and employing the
additivity of Cr and Cf [17], we have proved the equality.

In the case of isometries, Eq. (6) in Theorem 1 already
shows that P̃r (Ti) = P̃r (Ti) = Cgen(Ti). For the tensor product,
we again have trivially P̃r (T1 ⊗ T2) � P̃r (T1) + P̃r (T2), by
using tensor product input states. To get the opposite inequality,
we proceed as above: For any pure state |ϕ〉 ∈ A1 ⊗ A2,

C((T1 ⊗ T2)ϕ) − C(ϕ)

= C((T1 ⊗ T2)ϕ) − C
((

T1 ⊗ idB2

)
ϕ
)

+ C
((

T1 ⊗ idB2

)
ϕ
) − C(ϕ)

= C
((

idA1 ⊗ T2
)
ψ

) − C(ψ)

+ C
((

T1 ⊗ idB2

)
ϕ
) − C(ϕ)

� P̃r (T2) + P̃r (T1) = P̃r (T2) + P̃r (T1),

with the (pure) state ψ = (T1 ⊗ idB2 )ϕ, and we are done. �

III. IMPLEMENTATION OF CHANNELS:
COHERENCE COST OF SIMULATION

We have seen that a CPTP map can be a resource for
coherence because one can use it to generate coherence
from scratch, in the form of maximally coherent qubit states.
True to the resource paradigm, we immediately have to ask
the opposite question: Is it possible to create the resource
using pure coherent states and only incoherent operations?
Here we show that the answer is generally yes, and we
define the asymptotic coherence cost Csim(T ) as the minimum

rate of pure-state coherence necessary to implement many
independent instances of T using only IOs otherwise.

We start by recalling the implementation of an arbitrary uni-
tary operation U = ∑d−1

ij=0 Uij |i〉〈j | by means of an incoherent
operation with Kraus operators {Kα} and using the maximally
coherent state |�d〉 = 1√

d

∑d−1
i=0 |i〉 as resource [25, lemma

2]. Since it is important for us that the implementation is
in fact by means of a strictly incoherent operation, and for
self-containedness, we include the proof.

Proposition 3 (Chitambar/Hsieh [25]). Consuming one
copy of �d as a resource, any unitary U = ∑d−1

i,j=0 Uij |i〉〈j |
acting on Cd can be simulated using strictly incoherent
operations.

Proof. We essentially follow [25]; see also [13] for the qubit
case. Let the Kraus operators have the following form:

Kα =
d−1∑
i,j=0

Uij |i〉〈j | ⊗ |α〉〈i+α mod d|.

It is easy to see that these Kraus operators satisfy Kα�K†
α ⊂

�, and that they are indeed strictly incoherent, for all
α = 0,1, . . . ,d − 1. Furthermore, with the notation q = i + α

mod d,

d−1∑
α=0

K†
αKα =

d−1∑
α=0

d−1∑
i,j,k,l=0

UijU
∗
kl|jq〉〈iα||kα〉〈lp|

=
d−1∑
α=0

d−1∑
i,j,k,l=0

UijU
∗
klδi,k|jq〉〈lp|

=
d−1∑
α=0

d−1∑
i,j,l=0

UijU
∗
il|jq〉〈lq|

=
d−1∑
α=0

d−1∑
j,l=0

δj,l|jq〉〈lq| = 1.

Now, let |φ〉 = ∑d−1
k=0 φk|k〉; then

Kα(|φ〉 ⊗ |�d〉) = 1√
d

U |φ〉 ⊗ |α〉.

Thus, under this incoherent operation, and tracing out the
ancilla afterwards, the system will be in the desired state
U |φ〉〈φ|U † with certainty. �

Now we pass to the general case of CPTP maps, which
extends the above result for unitaries, with two different
protocols.

Theorem 4. Any CPTP map T : A −→ B can be imple-
mented by incoherent operations, using a maximally coherent
resource state �d , where d = |B|.

Proof. Let T (ρ) = ∑
α KαρK†

α be a Kraus decomposition
of T , with Kraus operators Kα : A −→ B. The idea of the
simulation is to use teleportation of the output of T , which
involves a maximally entangled state 
D in B ′ ⊗ B ′′, a
Bell measurement on system B ⊗ B ′ with outcomes jk ∈
{0,1, . . . ,d − 1}2, and unitaries Ujk in B ′′. The unitaries Ujk

can be written as Ujk = ZjXk , with the phase and cyclic
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shift unitaries

Z =

⎛⎜⎜⎜⎝
1

ω

. . .
ωd−1

⎞⎟⎟⎟⎠,

X =

⎛⎜⎜⎝
0 1
1 0

. . .
. . .
1 0

⎞⎟⎟⎠,

where ω = e
2πi
d is the dth root of unity. This scheme can be

reduced to a destructive (hence incoherent) positive operator-
valued measure (POVM) in A ⊗ B ′ with outcomes jkα,
followed by the application of the incoherent(!) Ujk . In detail,
the probability of getting outcome jk is

Pr{jk | σ } = Tr 
(jk)(Kα ⊗ 1)σ (Kα ⊗ 1)†,

where σ is a state in A ⊗ B ′ and the

|
(jk)〉 = (1 ⊗ ZjXk)|
d〉
are the Bell states. We can define the POVM elements Mjkα =
(Kα ⊗ 1)†
(jk)(Kα ⊗ 1), so that

Tr((T ⊗ id)σ )
(jk) =
∑

α

Tr (Kα ⊗ 1)σ (Kα ⊗ 1)†
(jk)

=
∑

α

Tr σ (K†
α ⊗ 1)
(jk)(Kα ⊗ 1)

= Tr

[
σ

(∑
α

(K†
α⊗1)
(jk)(Kα⊗1)

)]

= Tr

(∑
α

σMjkα

)
= Tr σMjk,

with Mjk = ∑
α Mjkα . This leads to a new equivalent scheme

in which, given a state ρ in A and a maximally entangled state
in B ′ ⊗ B ′′, we can apply the measurement Mjk to A ⊗ B ′
with outcomes jk and unitaries Ujk acting on B ′′. Formally,
let us define the Kraus operators of the protocol by letting

Ljkα := [〈
(jk)|(Kα ⊗ 1)]AB ′ ⊗ UB ′′
jk . (16)

It can be checked readily that they satisfy the normalization
condition ∑

jkα

L
†
jkαLjkα =

∑
jkα

Mjkα ⊗ 1 = 1 ⊗ 1.

Applying the Kraus operators Ljkα throughout the system we
get

Ljkα|φ〉A|�d〉B ′B ′′ = 〈
(jk)|(Kα|φ〉)(1 ⊗ Ujk)|�d〉
= 〈
(jk)|Kα|φ〉|�(jk)〉

= 1

d
Kα|φ〉.

Hence,
∑

jkα Ljkα(ρ ⊗ 
d )L†
jkα = ∑

α KαρK†
α = T (ρ), and

the proof is complete. �

Theorem 5. Any CPTP map T : A −→ B can be imple-
mented by strictly incoherent operations and a maximally
coherent state �d , where d � |A||B|.

Proof. The channel T is, first, a convex combination of
extremal CPTP maps Tλ, each of which has at most |A|
Kraus operators [26]: T = ∑

λ pλTλ. Clearly, we only have
to prove the claim for the Tλ. Because of the bound on the
Kraus operators, each Tλ has a unitary dilation Uλ : A ⊗ B →
B ⊗ A, such that Tλ(ρ) = TrA Uλ(ρ ⊗ |0〉〈0|B)U †

λ , with a fixed
incoherent state |0〉 ∈ B.

As the Uλ act on a space of dimension d = |A||B|, we can
invoke the simulation according to Proposition 3. �

Remark. Comparing Theorems 4 and 5, we note that the
latter always consumes more resources, but it is guaranteed
to be implemented by strictly incoherent operations, a much
narrower class than the incoherent operations.

We leave it an open question whether the resource con-
sumption in Theorem 4 can be achieved by strictly incoherent
operations or whether there is a performance gap between
incoherent and strictly incoherent operations. Note that these
two classes, incoherent operations and strictly incoherent
operations, are distinct as sets of CPTP maps, although it is
known that they induce the same possible state transformations
of a given state into a target state for qubits [27] and for
pure states in arbitrary dimension [28] (correcting the earlier
erroneous proof of the claim in [19]; the SIO part of the
pure-state transformations is due to [17]). However, for the
distillation of pure coherence at rate Cr (ρ) [17], IOs are needed
and it remains unknown whether SIOs can attain the same
rate. Crucially, any destructive measurement, i.e., any POVM
followed by an incoherent state preparation, is an IO, but the
only measurements allowed under SIOs are of diagonal, i.e.,
incoherent, observables.

The results so far have been about the resources required
for the exact implementation of a single instance of a channel,
in the worst case. It is intuitively clear that some channels
are easier to implement in the sense that fewer resources are
needed; e.g., for the identity of any incoherent channel, no
coherent resource is required.

In the spirit of the previous section, we are interested in the
minimum resources required to implement many independent
instances of T .

Definition 6. An n-block incoherent simulation of a channel
T : A −→ B with error ε and coherent resource �d (in space
D) is an incoherent operation I : An ⊗ D −→ Bn, such that
T ′(ρ) := I(ρ ⊗ �d ) satisfies

ε � ‖T ′ − T ⊗n‖�

= sup
|φ〉∈An⊗C

‖(T ′ ⊗ idC)φ − (T ⊗n ⊗ idC)φ‖1.

Here, C is an arbitrary ancillary system; the error criterion
of the simulation is known as the diamond norm [29] or
completely bounded trace norm [30]; see also [31].

The rate of the simulation is 1
n

log2 d, and the simulation
cost of T , denoted Csim(T ), is the smallest R such that there
exist n-block incoherent simulations with the error going to 0
and the rate going to R as n → ∞.

The best general bounds we have on the simulation cost are
contained in the following theorem.
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Theorem 7. For any CPTP map T : A −→ B,

Cgen(T ) � Csim(T ) � log2 |B|. (17)

Furthermore,

Csim(T ) � max{sup
k

Pr (T ⊗ idk), sup
k

Pf (T ⊗ idk)}, (18)

where we recall the definitions of the relative entropy co-
herence power, Pr (T ) = maxρ Cr (T (ρ)) − Cr (ρ), and of the
coherence of formation power, Pf (T ) = maxρ Cf (T (ρ)) −
Cf (ρ).

Proof. We start with Eq. (17): The upper bound is a direct
consequence of Theorem 4. The lower bound follows from the
fact that T is implemented using maximally coherent states at
rate R = Csim(T ) and incoherent operations. The generation
of entanglement, on the other hand, uses T and some more
incoherent operations. Since incoherent operations cannot
increase the amount of entanglement, the overall process of
simulation and generation cannot result in a rate of coherence
of more than R.

Regarding Eq. (18), the idea is that for ε > 0 and n large
enough, since the simulation implements a CPTP map T ′ that
is within the diamond norm ε from T ⊗n, using incoherent op-
erations and �

⊗n(R+ε)
2 as a resource. Applying the simulation

to state ρ⊗n results in (T ′ ⊗ idkn)ρ⊗n ≈ ((T ⊗ idk)ρ)⊗n, hence
we have an overall incoherent operation:

�
⊗n(R+ε)
2 ⊗ ρ⊗n IO�−→ (T ′ ⊗ idkn)ρ⊗n.

By monotonicity of CX (X ∈ {r,f }) under the IO and
CX(�2) = 1, this means that

n(R + ε) � CX((T ′ ⊗ idkn)ρ⊗n) − CX(ρ⊗n),

where we have used the additivity of Cr and Cf [17]. Since
this holds for all ρ, we obtain

n(R + ε) � PX(T ′ ⊗ idkn)

� PX(T ⊗n ⊗ idkn) − nκXε − 4

� nPX(T ⊗ idk) − nκXε − 2,

invoking in the second line Lemma 8 below, with κr =
4 log2 |B| and κf = log2 |B| + log2 k, and in the third line a
tensor-power test state. Since ε can be made arbitrarily small,
and n as well as k arbitrarily large, the claim follows. �

Here we state the technical lemma required in the proof of
Theorem 7.

Lemma 8. The relative entropy coherence power and the
coherence of formation power are asymptotically continuous
with respect to the diamond norm metric in channels. To be
precise, for T1,T2 : A −→ B with 1

2‖T1 − T2‖� � ε,

|Pr (T1 ⊗ idk) − Pr (T2 ⊗ idk)| � 4ε log2 |B| + 2g(ε), (19)

|Pf (T1 ⊗ idk) − Pf (T2 ⊗ idk)| � ε(log2 |B|+log2 k) + g(ε),

(20)

where g(x)= (1+x)h2( x
1+x

)= (1+x) log2(1+x)−x log2 x.

Proof. For the first bound, observe

|Pr (T1 ⊗ idk) − Pr (T2 ⊗ idk)|
� max

ρAC
|Cr ((T1 ⊗ idk)ρ) − Cr ((T2 ⊗ idk)ρ)|

= max
ρAC

∣∣S(BC)(�T1⊗�)ρ − S(BC)(T1⊗idk)ρ

− S(BC)(�T2⊗�)ρ + S(BC)(T2⊗idk)ρ

∣∣
= max

ρAC

∣∣S(B|C)(�T1⊗�)ρ − S(B|C)(T1⊗idk)ρ

− S(B|C)(�T2⊗�)ρ + S(B|C)(T2⊗idk)ρ

∣∣
� max

ρAC

∣∣S(B|C)(�T1⊗�)ρ − S(B|C)(�T2⊗�)ρ |

+ |S(B|C)(T1⊗idk )ρ − S(B|C)(T2⊗idk )ρ

∣∣
� 2(2ε log2 |B| + g(ε)),

where in the first line we insert the same variable ρAC to
maximize Pr (Tj ⊗ idk) and note that, in this case, the term
Cr (ρ) cancels; then, in the second line, we use the definition
of the relative entropy of coherence, and in the third we use the
chain rule S(BC) = S(B|C) + S(C) for the entropy, allowing
us to cancel matching S(C) terms; in the fourth line we
invoke the triangle inequality and, finally, the Alicki-Fannes
bound for the conditional entropy [32] in the form given in
[33, Lemma 2].

For the second bound, we start very similarly:

|Pf (T1 ⊗ idk) − Pf (T2 ⊗ idk)|
� max

ρAC
|Cf ((T1 ⊗ idk)ρ) − Cf ((T2 ⊗ idk)ρ)|

� ε(log2 |B| + log2 k) + g(ε),

where the last line comes directly from the asymptotic
continuity of the coherence of formation [17, Lemma 15].
We close the proof expressing our belief that it is possible to
prove a version of Eq. (20) where k does not appear on the
right-hand side. �

Remark. As a consequence, while for a channel T that is
close to an incoherent operation (in the diamond norm), or
in fact close to a maximally incoherent operation (MIO), the
coherence-generating capacity Cgen(T ) is also close to 0, we
do not know at the moment whether the same holds for the
simulation cost Csim(T ).

IV. QUBIT UNITARIES

In this section, we take a closer look at qubit unitaries, for
which we would like to find the coherence-generating capacity
and simulation cost. To start our analysis, we note that a general
2 × 2 unitary has four real parameters, but we can transform
unitaries into each other at no cost by preceding or following
them with incoherent unitaries, i.e., combinations of the bit
flip σx and diagonal (phase) unitaries (e

iα 0
0 eiβ). This implies

an equivalence relation among qubit unitaries up to incoherent
unitaries. A unique representative of each equivalence class is
given by

U = U (θ ) =
(

c −s

s c

)
, (21)
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FIG. 1. Plot of Cgen(U (θ )) = P̃r (U (θ )) as a function of θ ∈ [0, π

4 ]
(solid blue line) and comparison with h2(cos2 θ ) (dashed red line),
which is the coherence generated by an incoherent input state.
In particular, for θ ≈ 0, the ratio between the two functions is
unbounded. The angle θ is plotted as a fraction of π .

where c = cos θ and s = sin θ and with 0 � θ � π
4 , so that

c � s � 0.
One can calculate Cgen(U (θ )) using the formula from

Theorem 1. Clearly, by choosing the test state ϕ to be pure
incoherent,

Cgen(U (θ )) = P̃r (U (θ ))

� h2(c2) = −c2 log2 c2 − s2 log2 s2,
(22)

with h2(x) = −x log2 x − (1 − x) log2(1 − x) the binary en-
tropy. Perhaps surprisingly, however, this is in general not
the optimal state [34, corollary 5] (see also [23]), mean-
ing that P̃r (U (θ )) is attained in a coherent test state ϕ,
although no closed-form expression seems to be known.
In fact, simple manipulations show that we only need to
optimize C(U (θ )ϕU (θ )†) − C(ϕ) over states |ϕ〉 = U (α)|0〉 =
cos α|0〉 + sin α|1〉, 0 � α � π (i.e., no phases are neces-
sary). The function to optimize becomes h2(cos2(α + θ )) −
h2(cos2 α). Its critical points satisfy the transcendental equa-
tion

sin(2α + 2θ ) ln tan2(α + θ ) = sin(2α) ln tan2 α, (23)

which can be solved numerically. Figure 1 shows that
Cgen(U (θ )) = P̃r (U (θ )) > h2(cos2 θ ) across the whole inter-
val, except at the end points θ = 0, π

4 ; in Fig. 2 we plot the
optimal α for U (θ ).

On the other hand, regarding the implementation of these
unitary channels, all we can say for the moment is that
Csim(U (θ )) � 1, because we can implement each instance of
the qubit unitary using a qubit maximally coherent state �2.
It is perhaps natural to expect that one could get away with
a smaller amount of coherence, but it turns out that with a
two-dimensional resource state this is impossible.

Proposition 9. The only qubit coherent resource state |r〉 ∈
C2 that permits the implementation of U (θ ), 0 < θ � π

4 , is the
maximally coherent state.

Furthermore, any two-qubit incoherent operation I such
that I(ρ ⊗ |r〉〈r|) = U (θ )ρU (θ )† ⊗ σ for general ρ is such

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04
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0.1

θ / π

α*  / 
π

FIG. 2. The optimal value of α attaining Cgen(U (θ )) =
P̃r (U (θ )) = h2(cos2(α + θ )) − h2(cos2 α) as a function of θ ∈ [0, π

4 ].
It is nonzero except at the end points θ = 0, π

4 . Both angles, θ and
α∗, are plotted as fractions of π .

that the state σ left behind in the ancilla is necessarily
incoherent.

Proof. We want to know for which state |r〉 = c′|0〉 + s ′|1〉
the transformation |ψ〉|r〉 IO−→ (U (θ )|ψ〉)|0〉 is possible, for a
general state |ψ〉. Without loss of generality, the incoherent
Kraus operators achieving the transformation have the general
form

K = λ(U (θ ) ⊗ |0〉〈r| + R ⊗ |0〉〈r⊥|), (24)

where |r⊥〉 = s ′|0〉 − c′|1〉 is the vector orthogonal to |r〉. We
now need to find the form of R such that K is incoherent.
For this, we impose incoherence of K when tracing out the
ancillary part, 〈0|AK|0〉A =: T0 and 〈1|AK|1〉A =: T1, where
T0 and T1 must be two-dimensional incoherent operators. We
then obtain that R = s ′T0 − c′T1 and λU = c′T0 + s ′T1. The
latter condition enforces either that T0 ∝ (1 0

0 1) and T1 ∝
(0 −1
1 0 ), or vice versa, or that T0 ∝ (1 −1

0 0 ) and T1 ∝ (0 0
1 1),

or vice versa. From these possibilities, we get four possible
R matrices, which define four different Kraus operators Ki

defined, according to Eq. (24), by Ri matrices as

R1 =
(

c s ′
c′ −s c′

s ′

s c′
s ′ c s ′

c′

)
,

R2 =
(

−c c′
s ′ s s ′

c′

−s s ′
c′ −c c′

s ′

)
,

R3 =
(

−c c′
s ′ −s c′

s ′

−s s ′
c′ c s ′

c′

)
,

R4 =
(

c s ′
c′ s s ′

c′

s c′
s ′ −c c′

s ′

)
,

and the general incoherent Kraus operator is K = λiKi (i =
1,2,3,4). Finally, after imposing

∑
i |λi |2K†

i Ki = 1, we obtain
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the following conditions on Ri and λi :∑
i

|λi |2 = 1,

∑
i

|λi |2R†
i Ri = 1,

∑
i

|λi |2Ri = 0.

It can be verified that these conditions are only fulfilled when
|c′| = |s ′| = 1√

2
, i.e., |r〉 is maximally coherent. �

If the incoherent implementation of the unitary, instead of
mapping two qubits (input and resource state) to one qubit
(output), maps two qubits to two qubits (output plus residual
resource), i.e., I(ρ ⊗ |r〉〈r|) = U (θ )ρU (θ )† ⊗ σ , then, first, σ
has to be the same irrespective of the state ρ. Otherwise we
would be able, by measuring σ , to obtain some information
about ρ without disturbing it. Now consider a pure incoherent
input state ρ = |0〉〈0|, and note that the desired output state
U (θ )|ψ〉 has nontrivial coherence. But now observe that I
takes in a state of coherence rank 2 [17] and produces a product
of a pure state of coherence rank 2 with another state. Since the
coherence rank cannot increase, even under individual Kraus
operators [17], it must be the case that σ is incoherent.

This result might suggest an irreversibility between sim-
ulation and coherence generation for these unitaries, but we
point out that it does not preclude the possibility of simulations
using a higher rank, yet less coherent, resource state (cf. [35],
where the analog is demonstrated for LOCC implementation of
bipartite unitaries using entangled resources) or of a simulation
of many instances of U (θ ) at a cost lower than 1 per unitary.

V. CONCLUSION AND OUTLOOK

We have shown that using a maximally coherent state and
strictly incoherent operations, we can implement any unitary
in a system (using � for a d-dimensional unitary) and, via the
Stinespring dilation, any CPTP map (using �d2 for a channel
acting on a d-dimensional system). By teleportation, we prove
that for incoherent operations and a d-dimensional maximally
coherent state any noisy channel can be implemented.

Vice versa, every incoherent operation gives rise to some
capacity for generating pure coherence by using it asymp-
totically many times, and we have given capacity bounds in
general and a single-letter formula for the case of unitaries.
We also found the additive upper bounds Pr (T ) and Pf (T ) on
the coherence generation capacity Cgen(T ), even though we do
not know whether these numbers are efficiently computable,
due to the presence of the extension ⊗idk , or whether these
extensions are even necessary. It is open at the moment whether
the coherence generation capacity Cgen(T ) itself is additive
for general tensor product channels and, likewise, the lower
bound given in Theorem 1, P̃r (T ) = supk P̃r (T ⊗ idk); at least
for isometric channels, they are.

The coherence-generating capacity is never greater than
the simulation cost, but in general these two numbers will
be different. As an extreme case, consider any CPTP map T

that is not incoherent but is a so-called “maximally incoherent
operation” (cf. [16]), meaning that T (ρ) ∈ � for all ρ ∈ �.

This class was considered in [9], and it makes coherence theory
asymptotically reversible [17], all states ρ being equivalent to
Cr (ρ) maximally coherent qubit states. Such maps exits, even
acting on a single qubit (cf. [36]), correcting Theorem 21 in
[27]. We expect the simulation cost of any such T to be positive,
Csim(T ) > 0. At the same time, Cgen(T ) = 0 by Theorem 1,
because the relative entropy of coherence is an MIO monotone,
and the tensor product of MIO transformations is an MIO.
To obtain an example, we can take any MIO channel for
which there exists a state ρ such that Cf (T (ρ)) > Cf (ρ), since
by Theorem 7, Csim(T ) is lower-bounded by the difference
between the two. (As an aside, we note that this cannot be
realized in qubits, because for qubits, any state transformation
possible under an MIO is already possible under an IO, for
which Cf is a monotone [27,37].) Concretely, consider the
following states in a 2d-dimensional system A, which could
be called coherent flower states, since their corresponding
maximally correlated states (cf. [17] and [38]) are the well-
known flower states [39]. We write them as 2 × 2-block
matrices,

ρd = 1

2d

(
1 U

U † 1

)
, (25)

where U is the d-dimensional discrete Fourier transform
matrix. Via the correspondence between Cr and the relative
entropy of entanglement, and between Cf and the entangle-
ment of formation, respectively, of the associated state, we
know that Cr (ρd ) = 1 and Cf (ρd ) = 1 + 1

2 log2 d [39]. By the
results in [9], however, for every ε > 0 and sufficiently large n,
there exists an MIO transformation T (n) : (C2)⊗n(1+ε) −→ An

with

ρ(n) := T (n)
(
�

⊗n(1+ε)
2

) ε≈ ρ⊗n
d . (26)

By the asymptotic continuity of Cf [17], we have Cf (ρ(n)) �
n(1 + 1

2 log2 d) − nε log2(2d) − g(ε), while of course the

preimage ρ0 = �
⊗n(1+ε)
2 has Cf (ρ0) � n + nε, so for ε small

enough and n large enough, we have a gap,

Csim(T (n)) � n

2
log2 d − nε(2 + log2 d) − g(ε) > 0, (27)

invoking Theorem 7. Thus, while states in the resource theory
of coherence cannot exhibit a bound resource—indeed, it was
observed in [17] that vanishing distillable coherence, Cr (ρ) =
0, implies vanishing coherence cost Cf (ρ) = 0—operations
can have bound coherence, and the gap can be large on the scale
of the logarithm of the channel dimension. We observe that this
effect can only occur for maximally incoherent operations,
which are precisely the ones with Cgen(T ) = 0. We argued
already that MIO channels have zero coherence-generating
capacity; in the other direction, if T is not an MIO, it means that
there exists an incoherent state ρ such that T (ρ) has coherence,
and this can be distilled at rate Cr (T (ρ)) [17]. As MIOs are
closed upon forming tensor products, it also follows that Cgen

does not exhibit superactivation.
This example and the subsequent considerations raise the

question of how our theory would change if we considered
all MIO transformations as free operations. By definition, the
above example—by virtue of being an MIO—has zero MIO
simulation cost, so there is no longer any bound coherence.
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It may still be the case that there is in general a difference
between MIO simulation cost and MIO coherence-generating
capacity, but determining this possibility is beyond the scope
of the present investigation. We only note that Theorem 1 gives
us a single-letter formula for the MIO coherence-generating
capacity, namely,

CMIO
gen (T ) = Pr (T ) = sup

ρ on A⊗C

Cr ((T ⊗ id)ρ) − Cr (ρ), (28)

the complete relative entropy coherence power of T . The
supremum is over all auxiliary systems C and mixed states
ρ in A ⊗ C. Indeed, the upper bound of Eq. (5) still applies,
because Cr is MIO monotone, which is all we needed in the
proof of Theorem 1. For the lower bound, that it is attainable
follows the same idea as the proof of Eq. (4), only we can
now use an arbitrary mixed state ρ in the argument, since its
coherence cost under the MIO equals Cr (ρ) [9,17].

One of the most exciting possibilities presented by the
point of view of channels as coherence resources is the
transformation of channels into channels by means of pre-
and postprocessing a given one by incoherent operations to
obtain a different one. The fundamental question one can ask
here is how efficiently, i.e., at what rate R(T1 →T2) one can

transform asymptotically many instances of T1 into instances
of T2, with an asymptotically vanishing diamond norm error.
To make nontrivial statements about these rates, one would
need to extend some of the various coherence monotones that
have been studied for states to CPTP maps.
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