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How to effectively construct robust quantum gates for time-varying noise is a very important but still outstanding
problem. Here we develop a systematic method to find pulses for quantum gate operations robust against both low-
and high-frequency (comparable to the qubit transition frequency) stochastic time-varying noise. Our approach,
taking into account the noise properties of quantum computing systems, can output single smooth pulses in the
presence of multisources of noise. Furthermore, our method can be applied to different system models and noise
models and will make essential steps toward constructing high-fidelity and robust quantum gates for fault-tolerant
quantum computation. Finally, we discuss and compare the gate operation performance by our method with that
by the filter-transfer-function method.
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I. INTRODUCTION

To realize practical quantum computation, a set of high-
fidelity universal quantum gates robust against noise in the
qubit system is prerequisite. Constructing control pulses to op-
erate quantum gates which meet this requirement is an impor-
tant and timely issue. Quantum gates in open quantum systems
have been investigated by various methods such as dynamical
decoupling methods [1–6] and optimal control methods
[7–10]. For classical noise, there are many robust control
methods such as composite pulses [11–19], soft uniaxial pos-
itive control for orthogonal drift error (SUPCODE) [20–25], the
sampling-based learning control method [26–28], inhomoge-
neous control methods [29,30], the analytical method [31], the
single-shot pulse method [32], optimal control methods [33–
35], the invariant-based inverse engineering method [36,37],
and filter-transfer-function (FTF) methods [38–41]. However,
in most of these methods [11–34], noise is assumed to be qua-
sistatic, i.e., is time independent within the gate operation time
but can vary between gates. We call these robust control strate-
gies quasistatic-noise (QSN) methods. But this QSN assump-
tion is not always valid [42]. The robust performance of control
pulses obtained by QSN methods under time-dependent noise
(e.g., 1/f α noise) [22,23,25,43] has been investigated, and
it was found that they can still work well for relatively low-
frequency non-Markovian noise (e.g., 1/f α noise with α � 1).

Stochastic time-dependent noise is treated with the FTF
method [38–40], in which the area of the filter-transfer function
in the frequency region, where the noise power spectral
density (PSD) is nonnegligible, is minimized. However, in this
approach only the the filter-transfer function overlapping with
the noise PSD in the preset frequency region is considered, and
the detailed information on the distribution of the noise PSD is
not included in the optimization cost function. Here we develop
an optimal control method in the time domain by choosing the
ensemble average gate infidelity (error) as our cost function for
optimization. As a result, the noise correlation function (CF),
or, equivalently, the detailed noise PSD distribution, appears
naturally in our chosen optimization cost function. Therefore

*goan@phys.ntu.edu.tw

our method can show a more robust performance against noise
in the general case. The idea of our method is simple, and
our method is not limited to particular system models, noise
models, or noise CFs. We demonstrate our robust control
method for classical noise in this paper, but our method can be
easily generalized to the case of quantum noise by replacing
the ensemble average for classical noise with the trace over the
degrees of freedom of the quantum noise (environment) [41].
In other words, our method can be applied to systems with both
classical noise and quantum noise present simultaneously.

II. ENSEMBLE AVERAGE INFIDELITY
AND OPTIMIZATION METHOD

We first introduce our robust control method here and then
compare it with the QSN method and the FTF method. We
consider a total Hamiltonian H(t) = HI (t) + HN (t), where
HI (t) is the ideal system Hamiltonian and HN (t) is the noise
Hamiltonian. If a system is ideal, i.e.,HN (t) = 0, then its prop-
agator is UI (t) = T+ exp[−i

∫ t

0 HI (t ′)dt ′] (throughout this
paper we set h̄ = 1), where T+ is the time-ordering operator.
However, in reality, there may be many sources of noise present
in the system, so HN (t) = ∑

j βj (t)HNj
(t), where βj (t) is

the strength of the j th stochastic time-varying noise (TVN)
and HNj

(t) is the corresponding system coupling operator
term. The propagator for a realistic system is then U (t) =
UI (t)T+ exp[−i

∫ t

0 H̃N (t ′)dt ′]. Here H̃N (t) = �jβj (t)Rj (t) is
the noise Hamiltonian in the interaction picture transformed by
UI (t) and Rj (t) ≡ U

†
I (t)HNj

(t)UI (t). Suppose that UT is our
target gate and the gate operation time is tf . The gate infidelity
(error) I for an n-qubit gate can be defined as

I ≡ 1 − 1

4n
|Tr[U †

T U (tf )]|2, (1)

where Tr denotes a trace over the n-qubit system state
space. If the noise strength is not too strong, we can
expand the propagator U (tf ) in terms of H̃N (t) by Dyson
series [44] into the form U (tf ) = UI (tf )[I + �1 + �2 + · · · ],
where the first two terms of �j are �1 = −i

∫ tf
0 H̃N (t ′)dt ′

and �2 = − ∫ tf
0 dt1

∫ t1
0 dt2H̃N (t1)H̃N (t2). Substituting the ex-

panded U (tf ) into I in Eq. (1), the expanded infidelity I
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(see Appendix A) takes the form

I = J1 + J2 + ε + O
(
H̃m

N,m � 3
)
, (2)

J1 ≡ 1 − 1

4n
|Tr[U †

T UI (tf )]|2, (3)

J2 ≡ − 1

2n−1
Re[Tr(�2)] − 1

4n
|Tr(�1)|2. (4)

Here J1 is the definition of gate infidelity for the ideal system,
J2 is the lowest-order contribution of the noise to the gate
infidelity, ε (detailed form shown in Appendix A) denotes
an extra contribution that is correlated to J1 and the Dyson
expansion terms �j , and O(H̃m

N,m � 3) represents other
higher-order terms excluding ε. If the noise strength is not
too strong such that |�j+1| � |�j |, the extra contribution ε

will become negligible when J1 is getting small (see discussion
in Appendix A). The symbol Re in Eq. (4) denotes taking the
real part of the quantity it acts on. Because noise βj (t) is
stochastic, we denote the ensemble average of the infidelity
over the different noise realizations as

〈I〉 = J1 + 〈J2〉 + 〈ε〉 + 〈
O

(
H̃m

N,m � 3
)〉
. (5)

Here

〈J2〉 =
∑
j,k

∫ tf

0
dt1

∫ t1

0
dt2Cjk(t1,t2)

Tr[Rj (t1)Rk(t2)]

2n−1

−
∑
j,k

∫ tf

0
dt1

∫ tf

0
dt2Cjk(t1,t2)

Tr[Rj (t1)]Tr[Rk(t2)]

4n
,

(6)

where Cjk(t1,t2) = 〈βj (t1)βk(t2)〉 is the CF for noise βj (t1) and
βk(t2). The first-order noise term proportional to Re[Tr(�1)]
vanishes due to the fact that Tr(�1) is purely imaginary
rather than the assumption of 〈βj (t)〉 = 0 (see Appendix A).
If different sources of noise are independent, Cjk(t1,t2) = 0
for j �= k, and if the noise Hamiltonian HN (t) is traceless, the
second term in Eq. (6) vanishes. The ideal HamiltonianHI (t) is
a function of the control field �(t), that is, HI (t) = HI (�(t)),
and the control field �(t) is chosen to be a function of a
set of control parameters [a1,a2, . . . ]. Then UI (t) and each
term of the ensemble average infidelity 〈I〉 in Eq. (5) is also a
function of the control parameter set [a1,a2, . . . ]. Our goal is to
search the optimal parameter set [a1,a2, . . . ], which minimizes
the ensemble average infidelity 〈I〉. If the noise strength or
fluctuation is not large, then the dominant noise contribution
to 〈I〉 is from 〈J2〉 as the higher-order terms 〈O(H̃m

N ,m � 3)〉
can be neglected (see Appendix B). J1 can generally be made
sufficiently small that the extra term 〈ε〉 in 〈I〉 of Eq. (5) can
be safely ignored. So we concentrate on the minimization of
〈I〉 ∼= J1 + 〈J2〉 to obtain the optimal control parameter set.
We, however, use the full-order ensemble average infidelity 〈I〉
(described later) to examine the performance of the optimal
control parameter set found in this way.

We use two-step optimization to achieve this goal. The
first step is called the J1 optimization, in which J1 is the cost
function. The gate infidelities J1 in an ideal unitary system
with gate-operation controllability and a sufficient number
of control parameters can be made as low as one wishes,

limited only by the machine precision of the computation. So
using an ensemble of random control parameter sets as initial
guesses, we obtain after the J1 optimization an ensemble of
optimized control parameter sets, all with very low values
of J1. The second step is called the J1 + 〈J2〉 optimization.
We take J1 + 〈J2〉 as a cost function and randomly choose
some optimized control parameter sets in the first optimization
step as initial guesses to run the optimal control algorithm.
After the J1 + 〈J2〉 optimization, we obtain an ensemble of
control parameter sets with low values of J1 + 〈J2〉 and then
choose the lowest one as the optimal control parameter set.
The purpose of using the two-step optimization is to improve
the optimization efficiency. If we run J1 + 〈J2〉 optimization
directly from an ensemble of random control parameter sets,
we need more optimization iterations to achieve the goal,
and the success rate is relatively low compared with the
two-step optimization. Besides, the J1 + 〈J2〉 optimization
enables us to know separately the optimized values of J1 and
〈J2〉. When 〈J2〉 can be minimized to a very small value as
in the case of static or low-frequency noise, one has to use
a small time step for simulation to make J1 smaller than
〈J2〉. However, for high-frequency noise, 〈J2〉 is hard to be
minimized to a very small value, and one can instead choose
a suitable larger time step to make J1 just one or two orders of
magnitude smaller than 〈J2〉, substantially saving optimization
time, especially for multiqubits and multiple sources of noise.
We use the gradient-free and model-free Nelder-Mead (NM)
algorithm [45] in both the J1 and the J1 + 〈J2〉 optimization
steps. However, the NM algorithm may be stuck in local traps
in the J1 + 〈J2〉 parameter-space topography. To overcome this
problem, we use the repeating-NM algorithm in the J1 + 〈J2〉
optimization step. The control parameter set from the first
J1 + 〈J2〉 optimization may lie in a local trap. Therefore, we
add random fluctuations to this control parameter set and try
to pull it out of the trap. Then we use this shifted control
parameter set as an initial guess to run the second J1 + 〈J2〉
optimization. We repeat the same procedure many times until
the values of J1 + 〈J2〉 can no longer be improved (reduced)
and then output the corresponding control parameter set. Our
optimization method employing the gradient-free and model-
free NM algorithm is quite general, capable of dealing with
different forms or structures of the ideal system Hamiltonian
HI (t), control field �(t), noise Hamiltonian HN (t), and noise
CF Cjk(t1,t2) for a few qubit systems.

The ensemble infidelity 〈I〉 we use to show robust
performance of the gate as the noise strength varies is
calculated using the full evolution of the total system-noise
Hamiltonian and many realizations of the noise without any
other approximation. By inputting the optimal control param-
eter set obtained by the optimization strategy into the total
system-noise Hamiltonian H(t) = HI (t) + HN (t) to obtain
numerically the full propagator for a single noise realization,
we can calculate the gate infidelity I using Eq. (1) for the
noise realization. The procedure is repeated for many different
noise realizations. Then we take an ensemble average of the
infidelities over the different noise realizations to obtain 〈I〉.

In principle, we could deal with any given form of the noise
correlation function (or, equivalently, the noise PSD) to insert
into Eq. (6) for the J1 + 〈J2〉 optimization. But as a particular
example, we choose the Ornstein-Uhlenbeck (OU) process
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βOU(t) to simulate stochastic TVN [46]. Studying the influence
of and developing robust strategies against time-dependent
noise is an important subject of research in quantum control
problems both theoretically and experimentally [38–40,42,43].
If the initial noise βOU(t = 0) is a normal distribution with zero
mean and with standard deviation σOU, then the noise CF of
the OU process βOU(t) is

COU(t1,t2) = σ 2
OU exp (−γOU|t1 − t2|) (7)

with the noise correlation time τ ∼ (1/γOU), and the corre-
sponding noise PSD is Lorentzian

SOU(ω) = 2σ 2
OUγOU(

γ 2
OU + ω2

) . (8)

Lorentzian PSDs of spin noise resulting in a fluctuating mag-
netic field at the location of the qubits in InGaAs semiconduc-
tor quantum dots have been measured experimentally [47,48].
Generally, a small γOU corresponds to low-frequency or
quasistatic noise; a large γOU corresponds to high-frequency
noise. The noise βOU(t) can be simulated through the for-
mula βOU(t + dt) = (1 − γOUdt)βOU(t) + σOU

√
2γOUdW (t),

where W (t) is a Wiener process [46]. Figures 1(c), 1(d),
and 1(e) show the different realizations of the noise βOU(t) with
σOU = 10−3 for different values of γOU/ω0 = 10−7, 10−3, and
10−1, respectively, where ω0 is the typical system frequency.
We note here that the particular choice of the OU noise should
by no means diminish the value of our work or the power of our
method. Any given or experimentally measured well-behaved
noise PSD or noise CF can be dealt with. We demonstrate
later that our method can also work effectively for another
form of noise PSD different from that for OU noise when we
compare the performance of our method with that of the FTF
method. The reason for using the OU noise in the system-noise
Hamiltonian here is that it is relatively easy to simulate its
stochastic noise realizations in the time domain. Therefore,
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FIG. 1. J1 + 〈J2〉 versus (a) γZZ for Z noise (σZZ = 10−3, σXX =
0) and (b) γXX for X noise (σXX = 10−3, σZZ = 0). The J1 + 〈J2〉
values are obtained using the optimal control parameter sets of the
Hadamard gate from the IDG strategy (blue triangles), QSN strategy
(red circles), and TVN strategy (yellow squares). Ten realizations
of OU noise βOU(t) with σOU = 10−3 for γOU/ω0 equal to (c) 10−7,
(d) 10−3, and (e) 10−1.

we can calculate the full-order ensemble average infidelity
〈I〉 to show that our J1 + 〈J2〉 optimization, which minimizes
the second-order noise contribution to the average infidelity
〈I〉, can indeed work rather well for not too strong a noise
fluctuation.

III. RESULTS AND DEMONSTRATIONS

A. Comparison with the quasistatic-noise method

1. Single-qubit gates

We demonstrate as an example the implementation of
single-qubit gates in the presence of TVN using our method.
The ideal system Hamiltonian for the qubit is

HI (t) = ω0
Z

2
+ �X(t)

X

2
, (9)

where X and Z stand for the Pauli matrices, ω0 is the qubit
transition frequency, and �X(t) is the control field in the X

term. The noise Hamiltonian is written as

HN (t) = βZ(t)ω0
Z

2
+ βX(t)�X(t)

X

2
. (10)

We call βZ(t) the Z noise and βX(t) the X noise
and assume that they are independent OU noises with
CFs CZZ(t1,t2) = σ 2

ZZ exp (−γZZ|t1 − t2|) and CXX(t1,t2) =
σ 2

XX exp (−γXX|t1 − t2|) as the form of Eq. (7). We choose the
control pulse as a composite sine pulse expressed as

�X(t) =
kmax∑
k=1

ak sin

(
mkπ

t

tf

)
, (11)

where the set of the strengths of the single sine pulses is the
control parameter set [ak] = [a1,a2, . . . ,akmax ] and {mk} is a
set of integers, chosen depending on the nature of the system
Hamiltonians and the target gates as well as the properties
of the noise models. For each control pulse, we choose the
number of control parameters kmax to range from 8 to 20 in our
calculations.

We define below three optimization strategies, namely, the
ideal-gate (IDG) strategy, QSN strategy, and TVN strategy.
The IDG strategy is to perform the first-step optimization
(J1 optimization) only and to show the performance of an
IDG pulse in the presence of noise. The TVN strategy is
our proposed method described earlier above, in which the
actual γZZ and γXX values are used in the noise CFs of the
cost function 〈J2〉 for the second-step optimization. The QSN
strategy uses the same optimization procedure as the TVN
strategy, but with γZZ = γXX = 0 for the noise CFs in the
cost function 〈J2〉. Thus it is regarded to represent the QSN
methods. We choose the gate operation time tf = 20/ω0.
After the optimizations of the Hadamard gate, we plot the
corresponding J1 + 〈J2〉 values obtained from these three
strategies versus γZZ in Fig. 1(a) for Z noise and versus
γXX in Fig. 1(b) for X noise. For low-frequency (quasistatic)
noise (γZZ = γXX = 10−7ω0), the performances of the TVN
strategy and the QSN strategy are about the same but they
are several orders of magnitude better in infidelity J1 + 〈J2〉
value than the IDG strategy, which does not take the noise into
account at all. As the noise goes from low frequency to high
frequency (γZZ = γXX = 10−1ω0), the TVN strategy taking
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FIG. 2. J1 + 〈J2〉 values versus γZZ for Z noise (σZZ = 10−3,
σXX = 0) and versus γXX for X noise (σXX = 10−3, σZZ = 0)
obtained from the IDG strategy (blue triangles), QSN strategy (red
circles), and TVN strategy (yellow squares) for the phase gate shown
in (a) and (b) respectively, and for the π/8 gate in (c) and (d),
respectively.

account of the TVN information in the cost function gets better
and better (from a factor-level to an order-of-magnitude-level)
improvement in J1 + 〈J2〉 values than the QSN strategy, in
which noise is assumed to be quasistatic. In addition to the
Hadamard gate, we perform calculations for other quantum
gates, namely, the phase gate, π/8 gate and controlled-NOT

(CNOT) gate, in the fault-tolerant universal set, in terms of
which any unitary operation can be expressed to arbitrary
accuracy. The J1 + 〈J2〉 values versus γZZ and versus γXX

obtained from the three strategies are shown in Figs. 2(a)
and 2(b), respectively, for the phase gate and in Figs. 2(c)
and 2(d), respectively, for the π/8 gate. Their performances
are similar to those in Figs. 1(a) and 1(b) of the Hadamard
gate. The optimization results for the two-qubit CNOT gate are
presented in Sec. III A 2.

Next, we take the optimal control parameter sets of the
Hadamard gate from these three strategies to show their robust
performance against Z noise, X noise, and Z & X noise at a low
frequency (γZZ = γXX = 10−7ω0) in Figs. 3(a), 3(b), and 3(c),
respectively, and at a high frequency (γZZ = γXX = 10−1ω0)
in Figs. 4(a), 4(b), and 4(c). For low-frequency noise and for
low noise strength (σXX < 10−1, σZZ < 10−1), one can see
in Fig. 3 that the full-order ensemble average infidelity 〈I〉
scales for the IDG strategy as the second power of the noise
standard deviation (σZZ , σXX) but scales for the TVN and QSN
strategies as the fourth power. This implies that 〈I〉 ∼= 〈J2〉 for
the IDG strategy, but the TVN and QSN strategies can nullify
the contribution from 〈J2〉 for the low-frequency (quasistatic)
noise and the dominant contribution to 〈I〉 comes from the
next-higher-order term, i.e., 〈I〉 ∼= 〈O(H̃4

N )〉. In this case, our
method, the TVN strategy, still performs slightly better than
the QSN strategy. For a gate error (infidelity) less than the
error threshold of 10−2 of surface codes [49] required for
fault-tolerant quantum computation (FTQC), the Hadamard
gate of the TVN strategy can be robust to σZZ ∼ 30% for

σZZ
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FIG. 3. Robust performance of the Hadamard gate of the IDG
strategy (blue triangles), QSN strategy (red circles), and TVN strategy
(yellow squares) for low-frequency (γZZ = γXX = 10−7ω0) (a) Z

noise, (b) X noise, and (c) Z & X noise. The corresponding optimal
control pulses of the TVN strategy for (d) Z noise, (e) X noise, and
(f) Z & X noise. The number of control parameters kmax = 10 for
�X(t) in (d)–(f).

low-frequency Z noise (i.e., against noise fluctuation, with
a standard deviation up to about 30% of ω0/2), robust to
σXX ∼ 20% for X noise [i.e., against noise fluctuation, with
a standard deviation up to about 20% of �X(t)/2 ], and
robust to σZZ = σXX ∼ 10% for Z and X noise as shown
in Figs. 3(a), 3(b), and 3(c), respectively. The corresponding
optimal control pulses of the TVN strategy are shown in
Figs. 3(d), 3(e), and 3(f), respectively.

For the high-frequency noise shown in Fig. 4, the full-order
ensemble average infidelity 〈I〉 scales as the second power
of the noise standard deviation (σZZ , σXX) for all three
strategies and noises. This indicates that for high-frequency
noise 〈J2〉 is not nullified completely but is only minimized.
Even in this case, the TVN strategy still has over two
orders of magnitude improvement in 〈I〉 compared with the
IDG strategy and over one order of magnitude improvement
compared with the QSN strategy for Z noise at low noise
strengths as shown in Fig. 4(a). For 〈I〉 � 10−2 less than the
FTQC error threshold of the surface codes, the Hadamard
gate implemented by our optimal control pulse shown in
Fig. 4(d) can be robust to σZZ ∼ 20% for Z noise. On the
other hand, for the high-frequency X noise, 〈I〉 obtained by
the QSN strategy has values even slightly higher than those
by the IDG strategy. The improvement in 〈I〉 by the TVN
strategy over the other two strategies is less than one order of
magnitude. To improve the gate performance, we increase the
degrees of freedom for optimization by adding a control term
�Y (t)Y/2 and its accompanying Y -noise term βY (t)�Y (t)Y/2
to the Hamiltonian. We choose, for simplicity, γYY = γXX and
σYY = σXX and use the same optimal procedure as for the
TVN strategy. The improvement in 〈I〉 of the TVN strategy
with an additional Y control compared with the TVN strategy
is over a half-order of magnitude. As a result, the Hadamard
gate with the optimal control pulses of the TVN strategy with
an additional Y control shown in Fig. 4(e) can be robust to
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FIG. 4. Robust performance of the Hadamard gate of the IDG
strategy (blue triangles), QSN strategy (red circles), and TVN strategy
(yellow squares) for high-frequency (γZZ = γXX = 10−1ω0) (a) Z

noise, (b) X noise, and (c) Z & X noise. For the TVN strategy
with an additional Y control (green pentagrams) in (b), γYY = γXX =
10−1ω0 and σYY = σXX, and in (c), γYY = γZZ = γXX = 10−1ω0 and
σYY = σXX = σZZ . Optimal control pulses of the TVN strategy (d)
for Z noise and of the TVN strategy with an additional Y control
and accompanying Y noise (e) for X noise and (f) for Z & X noise.
The number of control parameters kmax = 10 for �X(t) in (d) and
kmax = 20 for both �X(t) and �Y (t) in (e) and (f).

σXX = σYY ∼ 20% for 〈I〉 � 10−2. Note that the optimization
algorithm seems to find control pulses with stronger strengths
to suppress the Z noise but searches weaker control pulses to
minimize the X-noise cost function since the system coupling
operator term of the X noise is proportional to the control field
�X(t) in our noise model. So for the case with the Z noise
and X noise simultaneously present, there is a trade-off in
the control pulse strength for the cost function optimization
between the Z noise and the X noise. Consequently, the
ensemble infidelity of the Z & X noise does not reach a low
value as in the case with only Z noise or X noise. Thus one can
see in Fig. 4(c) that the improvement in 〈I〉 of the TVN strategy
over the IDG strategy is just near one order of magnitude, and
only a half-order compared with the QSN strategy. A similar
trade-off also takes place for the TVN strategy with additional
Y control, although it performs slightly better than the TVN
strategy with only the �X(t) control field. Nevertheless, the
Hadamard gate implemented with the optimal pulse obtained
by the TVN strategy with additional Y control shown in
Fig. 4(f) can still be robust to σZZ = σXX = σYY ∼ 6% for
〈I〉 � 10−2.

2. Two-qubit gates

Next, we demonstrate that our method can find control
pulses for high-fidelity two-qubit CNOT gate operations in the
presence of multiple sources of high-frequency noise. The
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FIG. 5. Robust performance of CNOT gates in the IDG strategy
(ω0tf = 100, blue triangles), QSN strategy (ω0tf = 100, red circles),
and TVN strategy (ω0tf = 100, yellow squares; and ω0tf = 20, pur-
ple pentagrams) for high-frequency (γZZ1 = γZZ2 = γXX1 = γXX2 =
γJJ = 10−1ω0) (a) Z noise, (b) X & J noise, and (c) Z & X &
J noise. The optimal control pulses �X1 (t) (thick dotted blue line),
�X2 (t) (thin solid red line), and J (t) (thick dash-dotted green line) of
the TVN strategy (ω0tf = 100) for (d) Z noise, (e) X & J noise, and
(f) Z & X & J noise. The numbers of control parameters kmax = 16,
16, and 8 for �X1 (t), �X2 (t), and J (t), respectively, in (d) and (f);
kmax = 12, 12, and 6 for �X1 (t), �X2 (t), and J (t), respectively, in (e).

two-qubit Hamiltonian is chosen as

HI (t) = ω0
Z1

2
+ �X1 (t)

X1

2
+ ω0

Z2

2
+ �X2 (t)

X2

2

+ J (t)
Z1Z2

2
, (12)

where Zj and Xj denote Pauli’s matrix operators for qubit
j,�Xj

(t) is the control field applied to qubit j , and J (t) is the
two-qubit coupling strength. We assume that OU noise can be
present in each of the five terms, and σZZ1, σZZ2, σXX1, σXX2,
and σJJ are, respectively, the corresponding standard deviation
σOU, and γZZ1, γZZ2, γXX1, γXX2, and γJJ are, respectively,
the corresponding γOU. We choose the control fields �X1 (t)
and �X2 (t) as composite sine pulses and the two-qubit control
J (t) as a composite sine pulse with a constant shift.

The robust performance of the CNOT gate using the
three strategies for high-frequency (γZZ1 = γZZ2 = γXX1 =
γXX2 = γJJ = 10−1ω0) Z noise, X & J noise, and Z & X & J

noise are shown in Figs. 5(a), 5(b), and 5(c), respectively. The
corresponding optimal control pulses of the TVN strategy for
an operation time tf = 100/ω0 are shown in Figs. 5(d), 5(e),
and 5(f), respectively. For ω0tf = 100, our method (the TVN
strategy) in the case of Z noise and the case of X & J noise
shows a one order of magnitude improvement in 〈I〉 values
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compared with the QSN strategy for low noise strength, but
only a half-order improvement in the case of Z & X & J noise.
This is because in the case of the Z & X & J noise, there is
a trade-off in the control pulse strength for the cost function
optimization between the Z noise and the X & J noise, similar
to that in the single-qubit case. The robust performance can be
improved by reducing the gate operation time tf , for example,
from tf = 100/ω0 to tf = 20/ω0, to decrease the duration
of the influence of the noises. This is shown by the purple
pentagrams in Figs. 5(a) and 5(c). In the case of X & J noise
in Fig. 5(b), only a slight improvement is observed in the
tf = 20/ω0 case, because when the operation time decreases,
it is hard to make the strengths of the control fields �

j

X(t) and
J (t) all low as in the tf = 100/ω0 case. For high-frequency
noise and for the FTQC error threshold 〈I〉 � 10−2 of the
surface codes, the CNOT gate with operation time tf = 20/ω0

can be robust to σZZ1 = σZZ2 ∼ 10% for Z noise, robust to
σXX1 = σXX2 = σJJ ∼ 10% for X & J noise, and robust to
σZZ1 = σZZ2 = σXX1 = σXX2 = σJJ ∼ 3% for Z & X & J

noise by our method.
We describe briefly the computational resources and com-

putation time in our calculations. In the case of Z & X &
J noise, we use 40 control parameters in a parameter set to
run the two-step optimization for the two-qubit CNOT gate and
choose 100 initial random guesses of the parameter sets for
the first-step optimization and 10 parameter sets obtained in
the first-step optimization as initial guesses for the second-step
optimization. We use a total of 60 2-GHz-CPU cores and it
takes about 2 days to obtain the control pulses and robust
performance calculations in Fig. 5(c). These resources and
time spent constructing robust high-fidelity CNOT gates against
five sources of high-frequency noise are quite acceptable.

B. Comparison with the filter-transfer-function method

In this subsection, we compare our method with the FTF
method [38–40]. The cost function 〈J2〉 in Eq. (6) can be
transformed to the frequency domain as

〈J2〉 =
∑

j

1

2π

∫ ∞

−∞

dω

ω2
Sj (ω)Fj (ω), (13)

where Sj (ω) is the noise PSD for the j th noise, and Fj (ω) is
the corresponding filter-transfer function. The cost function
of the j th noise for optimization in the FTF method is
defined as Aj ≡ ∫ ωc

ωL
Fj (ω)dω [38–40]. The region [ωL,ωc]

of the integration of the cost function Aj is determined by
the nonnegligible region of the noise PSD. In order to make
comparisons with our method, we use the same form of control
pulse, the same number of control parameters, and the same
optimal procedure except, for the FTF method, changing the
cost function from J1 + 〈J2〉 to J1 + Aj in the second step
of the two-step optimization. We call this procedure the FTF
strategy. Then we apply the IDG strategy, FTF strategy, and
TVN strategy to find the high-fidelity Hadamard gate for a
one-qubit system with single Z noise. To demonstrate the
advantage of our method over the FTF method, we choose
the noise PSD for Z noise to contain a high-frequency
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FIG. 6. The behavior of [Fz(ω)/(2πω2)] obtained using the
optimal control parameter sets from the IDG strategy (thick dotted
blue line), FTF (thin dash-dotted red line) strategy, and TVN strategy
(thick solid yellow line) for the noise PSD S(ω) with (a) γ = 0.1ω0,
(b) γ = 0.3ω0, and (c) γ = 0.5ω0 is shown in (d), (e), and (f)
respectively. (g) The corresponding 〈J2〉 values.

distribution as

S(ω) = σ 2

[
2γ

γ 2 + ω2
+ γ

γ 2 + (5γ − ω)2
+ γ

γ 2 + (5γ + ω)2

]
,

(14)

which has two peaks, at ω = 0 and ω = 5γ . As the value
of γ increases, the dominant distribution associated with the
second peak of the PSD S(ω) moves to a high-frequency region
in which the FTF method may not work very effectively. We
demonstrate that our method, including the detailed noise PSD
distribution in the cost function, can still in this case suppress
the gate error coming from S(ω), a PSD different from that
in the OU noise model used previously. The lower limit ωL

of the integral of the cost function Az for the FTF strategy is
chosen to be 0, and the upper limit ωc is chosen to be 1ω0,
2ω0, and 3ω0 to enclose the dominant distribution of S(ω) [see
Figs. 6(a), 6(b), and 6(c)] for γ = 0.1ω0, 0.3ω0, and 0.5ω0,
respectively. For the single Z noise considered here, the in-
fidelity from Eq. (13) is 〈J2〉 = ∫ ∞

−∞ dωS(ω)[Fz(ω)/(2πω2)].
The improvement of 〈J2〉 can be analyzed through the overlap
of S(ω) with [Fz(ω)/(2πω2)] [35]. If the control pulses
can make [Fz(ω)/(2πω2)] small in the dominant distribution
region of S(ω), then 〈J2〉 can be significantly improved
(reduced). We plot [Fz(ω)/(2πω2)] evaluated by the optimal
control parameter sets obtained from the above three strategies
for three values, γ = 0.1ω0, 0.3ω0, and 0.5ω0 of S(ω), in
Figs. 6(d), 6(e), and 6(f), respectively. The corresponding
〈J2〉 values are shown in Fig. 6(g). By taking the case
of γ = 0.3ω0 as an example, the function [Fz(ω)/(2πω2)]
of the TVN strategy shows apparent drops near the two
peaks of the noise PSD at ω = 0 and ω = 1.5ω0, but the
function for the FTF strategy and the IDG strategy does not.
Thus, an improvement of about one order of magnitude in
〈J2〉 of the TVN strategy over the other two strategies is
observed. In short, as the range of dominant distribution of
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the PSD increases [e.g., from Fig. 6(a) to Fig. 6(c)], the TVN
strategy, including the detailed noise information (CF) in the
optimization cost function [35], can suppress the dominant
infidelity contribution more effectively than the FTF strategy.
Furthermore, the concatenation method is used to construct
control pulses against two different noncommuting noises in
the FTF method [39,40]. But using the concatenation method
to deal with the case of multicontrols, multiple sources of
noise, and multiqubits may be very complicated. On the
other hand, our method can find robust control pulses for
high-fidelity CNOT gates that involve three control knobs and
up to five sources of high-frequency noise as demonstrated in
Fig. 5.

IV. CONCLUSION

To conclude, our two-step optimization method can provide
robust control pulses of high-fidelity quantum gates for
stochastic TVN. Besides, our method is quite general and can
be applied to different system models, noise models, and noise
CFs (PSDs). If the system is very clean, i.e., quantum noise
is very weak, the method presented in this paper can be used
directly to find control pulses for high-fidelity gates in the
presence of time-varying classical noises. For example, the
decoherence (dephasing) time is rather long in quantum-dot

electron spin qubits in purified silicon [50,51] compared to
those in GaAs [52,53], that is, quantum noise coming from
the coupling to the environmental spins is very weak, and
the dominant gate error is due to the electric classical control
noise [51]. We present the results for quantum-dot electron
spin qubits in purified silicon elsewhere. Our method will take
essential steps toward constructing high-fidelity and robust
quantum gates for FTQC in realistic quantum computing
systems.
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APPENDIX A: DERIVATION OF EQS. (2)–(4)

We present the derivation of Eqs. (2)–(4) and discuss the
role of the extra term ε in Eq. (2). Substituting the total system
propagator in the Dyson expansion U (tf ) = UI (tf )(I + �1 +
�2 + · · · ) into the infidelity definition I of Eq. (1), we obtain

I = J1 − 2

4n
Re{Tr[U †

T UI (tf )]
 · Tr[U †
T UI (tf ) · (�1 + �2 + · · · )]} − 1

4n
|Tr[U †

T UI (tf ) · (�1 + �2 + · · · )]|2. (A1)

The first term J1 on the right-hand side of Eq. (A1) is the gate infidelity for the ideal system defined in Eq. (3). Then we define
the error shift matrix Uε of the ideal propagator UI (tf ) at time tf from the target gate UT up to a global phase φ as

UI (tf ) = eiφUT (I + Uε). (A2)

Note that when the gate infidelity J1 for the ideal system is made small, the matrix elements of Uε also become small. Substituting
the expression of UI (tf ) of Eq. (A2) back into Eq. (A1), we obtain

I = J1 +
{
− 1

2n−1
Re[Tr(�1)]

}
+ J2 + ε(Uε,�j ) + O

(
H̃m

N,m � 3
)
, (A3)

where J2 is defined in Eq. (4),

ε(Uε,�j ) = − 1

2n−1
Re{Tr[Uε(�1 + �2 + · · · )]} − 2

4n
Re{Tr[Uε]
 · Tr[�1 + �2 + · · · ]}

− 2

4n
Re{Tr[Uε(�1 + �2 + · · · )] · Tr[�1 + �2 + · · · ]
} − 2

4n
Re{Tr[Uε]
 · Tr[Uε(�1 + �2 + · · · )]}

− 1

4n
|Tr[Uε(�1 + �2 + · · · )]|2, (A4)

and O(H̃m
N,m � 3) denotes other higher-order terms without

containing Uε . The first-order noise term, −Re[Tr(�1)]/2n−1,
in Eq. (A3) actually vanishes. Because the noise Hamiltonian
HN is Hermitian [with βj (t) being real], Tr[HN (t ′)] is a real
number. Thus the first-order term proportional to the real part
of Re[Tr(�1)], with Tr(�1) = −i

∫ tf
0 Tr[HN (t ′)]dt ′, vanishes.

This result, no first-order noise contribution to I, is similar
to that in Ref. [32]. This is also the reason why there is no
first-order noise contribution to the ensemble average 〈I〉 of
Eq. (5). Equations (2)–(4) can then be easily obtained from
Eq. (A3) with the identification of ε = ε(Uε,�j ).

We discuss below the properties and the role of ε =
ε(Uε,�j ) in Eq. (2) or in Eq. (A3). The extra contribution
ε = ε(Uε,�j ) to the gate infidelity, with the detailed form
shown in Eq. (A4), is related to the error shift matrix Uε and all
Dyson expansion terms �j . As noted earlier, if J1 is small, then
the matrix elements of Uε are also small. Moreover, if the noise
strength is not too strong such that |�j+1| � |�j |, then the
extra contribution ε = ε(Uε,�j ) is also small. Therefore when
running the optimization for a low noise strength, for which
the higher-order term O(H̃m

N,m � 3) becomes negligible (see
Appendix B), the extra contribution ε can be omitted as J1 is
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minimized to a small number. Consequently, one can focus on
the optimization of only J1 + 〈J2〉.

The advantage of introducing J1 and ε in our method is
to enable more degrees of freedom in control parameters
for optimization. There are actually no J1 and ε contribu-
tions to the gate infidelity expression of the robust control
method of SUPCODE [20,21] and the filter-transfer-function
method [39,40]. In these methods, J1, or, equivalently, the error
shift matrix Uε , is set exactly to 0 by imposing some constraints
on the control parameters. In contrast, our method can tolerate
some error in Uε and thus have more degrees of freedom in
control parameters as long as J1 and the extra contribution 〈ε〉
to the gate infidelity 〈I〉 are made just smaller than 〈J2〉. This
advantage of having more degrees of freedom for optimization
plays an important role in finding better control pulses as the
number of qubits, the number of controls, and the number of
noise sources increase.

APPENDIX B: ESTIMATION OF HIGHER-ORDER
CONTRIBUTIONS

Here we estimate the contributions of higher-order terms
O(H̃m

N,m � 3) and discuss when they can be neglected. We
express the higher-order terms as O(H̃m

N,m � 3) = ∑
p�3 Jp,

where Jp denotes the pth-order noise term of the gate
infidelity. Detailed forms of the first two lowest-order terms in
O(H̃m

N,m � 3) are

J3 = − 1

2n−1
Re[Tr(�3)] − 2

4n
Re{Tr(�1)Tr(�2)
}, (B1)

J4 = − 1

2n−1
Re[Tr(�4)] − 1

4n
|Tr(�2)|2

− 2

4n
Re{Tr(�1)Tr(�3)
}, (B2)

where

�q = (−i)q
∫ tf

0
dt1

∫ t1

0
dt2 . . .

×
∫ tq−1

0
dtqH̃N (t1)H̃N (t2) . . . H̃N (tq) (B3)

is the qth-order Dyson expansion term. To make an estimation
of the magnitude of �q , we take the Z-noise model for the

single-qubit gate operations in Sec. III A 1 as an example.
Substituting the noise Hamiltonian H̃N (t) = βZ(t)RZ(t) with
RZ(t) = U

†
I (t)[ω0Z/2]UI (t) in the interaction picture into �q ,

we obtain

�q = (−i)q
∫ tf

0
ω0dt1

∫ t1

0
ω0dt2 . . .

∫ tq−1

0
ω0dtq

×{βZ(t1)βZ(t2) . . . βZ(tq)}{R̄Z(t1)R̄Z(t2) . . . R̄Z(tq)},
(B4)

where R̄Z(t) = U
†
I (t)[Z/2]UI (t). Since UI (t) is

unitary, its matrix elements |UI,jk(t)| � 1 for all j and
k. Consequently, |R̄Z,jk(t)| < 1 for all j and k, so
|{R̄Z(t1)R̄Z(t2) . . . R̄Z(tq)}jk| < 1 for all j and k. Taking
the strength of βZ(t) to be about its standard deviation
σZZ , we estimate the noise strength contribution to be
|{βZ(t1)βZ(t2) . . . βZ(tq)}| ≈ (σZZ)q . The time integral
contribution {∫ tf

0 ω0dt1
∫ t1

0 ω0dt2 . . .
∫ tq−1

0 ω0dtq} can be
estimated to be ∼(ω0tf )q/q!. By combining the above
estimations, the magnitude of |�q,jk| is of the order of
∼ (ω0tf σZZ)q/q!. Then substituting the estimated value of
|�q,jk| into J2 in Eq. (4), J3 in Eq. (B1), and J4 in Eq. (B2),
we obtain the magnitude ratios J3/J2 ∼ (ω0tf σZZ)/3 and
J4/J2 ∼ (ω0tf σZZ)2/12. The single-qubit gate operation
time in Sec. III A 1 is ω0tf = 20. If we choose the noise
fluctuation σZZ = 10−3, then the ratio J3/J2 ∼ (6 × 10−3)
and J4/J2 ∼ (3 × 10−5), and thus the higher-order terms
O(H̃m

N,m � 3) can be safely neglected. If, however,
σZZ ∼ 10−1, then ω0tf σZZ ∼ 2. In this case, J3/J2 ∼ 2/3
and J4/J2 ∼ 1/3, so the higher-order terms O(H̃m

N,m � 3)
cannot be neglected. Comparing our estimation with the
results of the full-Hamiltonian simulation, one finds that the
ensemble average of the gate infidelity 〈I〉 of the IDG strategy
scales as the second power of σZZ (because 〈J2〉 dominates)
for small σZZ until σZZ ∼ 10−1 in Fig. 3(a) for low-frequency
noise γZZ = 10−7ω0 and in Fig. 4(a) for high-frequency
noise γZZ = 10−1ω0. This is consistent with our estimation.
In other words, if σZZ is considerably smaller than 10−1,
O(H̃m

N,m � 3) can be ignored. Therefore, even in the case
where the full-Hamiltonian simulation is not available, we
can use this estimation method to determine the criterion for
neglecting the higher-order terms O(H̃m

N,m � 3).
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