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We study the properties of bisqueezed tripartite Gaussian states created by two spontaneous parametric
down-conversion processes that share a common idler. We give a complete description of the quantum correlations
across all partitions, as well as of the genuine multipartite entanglement, obtaining analytical expressions for
most of the quantities of interest. We find that the state contains genuine tripartite entanglement, in addition to the
bipartite entanglement among the modes that are directly squeezed. We also investigate the effect of homodyne
detection of the photons in the common idler mode, and analyze the final reduced state of the remaining two
signal modes. We find that this measurement leads to a conversion of the coherence of the two signal modes
into entanglement, a phenomenon that can be regarded as a redistribution of quantum resources between the
modes. The applications of these results to quantum optics and circuit quantum electrodynamics platforms are
also discussed.
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I. INTRODUCTION

The vacuum in quantum theory is one of the most subtle
concepts in modern physics. The classical picture of a “void”
or “emptiness” does not accurately capture the nature of
this particular state, and new phenomena can be unveiled
by systematically employing quantum mechanics [1]. In
the language of quantum physics, the vacuum state is the
lowest-energy eigenstate of a particular field Hamiltonian.
One can picture the quantum vacuum as a state with some
latent structure (see, e.g., Ref. [2]), which can manifest, for
example, through the conversion of quantum fluctuations into
real excitations when some parameter in the Hamiltonian
is changed (sudden quench, parametric driving, etc.). This
phenomenon is generally known as dynamical Casimir effect
[3], as is typically exemplified by a mirror moving in vacuum
at relativistic speeds [4]. This effect can be demonstrated in
the laboratory by using, for example, superconducting circuits
[5,6]. In these scenarios, abrupt modifications of the boundary
conditions [5] or of the speed of light in a metamaterial [6]
by means of an external pump result in field excitations that
can be amplified and detected. These processes give rise to
two-mode squeezed microwaves which display entanglement
[6] and other forms of quantum correlations [7–9], triggering
the question of their employability as resources for quantum
technologies [10–13].

Recently, it has been reported that a class of three-mode
states can be generated in the laboratory by double pumping
a superconducting resonator [14], with one mode common
to both pumps. This can be regarded as a “double dynamical
Casimir effect,” since now the mirror moves under the action of
two pumps with different frequencies—or, in other words, the
motion of the mirror is a harmonic oscillation with the average
frequency of the pumps modulated due to beating at half-
difference frequency. One starts by considering three modes
a, b, and c, where b is the common mode (conventionally
referred to from now on as idler). The parametric processes

are arranged such that one down-conversion occurs between
modes a, b and the other between modes b and c. This clearly
leads to two-mode squeezing between modes a and b, and
modes b and c, respectively. However, we show that the
resulting tripartite state not only does contain the standard
correlations due to parametric two-mode squeezing, but it also
displays coherence correlations among the modes a and c, even
if these modes are not directly connected by the pumps. The
origin of this coherence is the lack of which-path information
for the photons emitted in the idler. The effect is analogous
to the phenomenon of induced coherence without induced
emission [15,16], with the difference that in quantum optics
the parametric processes use the nonlinearity of an optical
crystal, while in the case of the dynamical Casimir effect the
system is linear and the pump changes either an electrical or
optical length, or a boundary condition. In the following we
will not distinguish between these two cases, as they are both
instances of spontaneous parametric down-conversion, that is,
the decay of a pump photon into a signal photon and an idler
photon, triggered by vacuum fluctuations.

Motivated by these experimental advances, we study here
the entanglement and the coherence of bi-squeezed tripartite
Gaussian states generated by double spontaneous parametric
down-conversions, deriving analytical results confirmed by
numerical calculations. We provide a systematic analysis of
the quantum correlation properties of the aforementioned class
of tripartite Gaussian states. We find that there exists genuine
tripartite entanglement above a threshold value of the initial
squeezing parameter as well as a-b and b-c entanglement, but
no a-c entanglement. We also propose an experiment, similar
to postselection, where we perform homodyne detection on the
common idler mode, and we calculate the covariance matrix
for the remaining signal modes. Surprisingly, it appears that
some of the coherence between modes a and c is converted
into entanglement after the homodyne detection of mode b,
providing an interesting example of redistribution of quantum
resources.
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We finally note that the study of tripartite systems has
been first introduced in physics with the aim of understanding
the fundamental quantum statistical properties of light and
the nonlocal features of quantum physics, but interest in
applications for the development of quantum technologies has
recently witnessed a resurgence. The field is developing fast,
with several experimental platforms being used recently to
generate tripartite states with high efficiency: cascaded para-
metric down-conversion setups employing two [17,18] or three
separate crystals [19], nonlinear waveguides [20], quantum
dots [21], and hybrid systems comprising a Rb-85 hot atom cell
and a nonlinear waveguide [22]. The applications include, for
example, quantum imaging [23], interferometry [24–26], and
quantum computing using networks and cluster states [27–31].
The results presented here are device-independent; therefore,
they can be tested on any of these experimental platforms.

The paper is organized as follows. ln Sec. II we introduce the
essential tools from quantum optics with continuous variables
as well as the covariance matrix mathematical formalism. The
creation of bisqueezed tripartite Gaussian states in systems
driven parametrically by two pumps is then described in
Sec. III. In Sec. IV we study the genuine multipartite entangle-
ment generated, the bipartite entanglement across all reduced
states, and the coherence properties of these states. Section V
demonstrates the creation of entanglement between the signal
modes under a homodyne measurement of the idler. Next, in
Sec. VI we study a few applications of these techniques to
realistic scenarios, such as experiments at low temperatures or
modes with very close frequencies. We discuss our results and
the perspectives of this work in a final conclusions section.
For completeness, we provide details of the derivations in four
Appendixes at the end of the paper.

We use in this work the following conventions: bold
symbols stand for matrices and plain font with underscripts
denote elements of vectors and matrices. In this work Tp stands
for transposition, in order to avoid confusion with temperature,
denoted by T , and time, denoted by t .

II. CONTINUOUS VARIABLES AND GAUSSIAN STATES

In this work we restrict our attention to Gaussian states of
bosonic fields only. Gaussian states are a class of quantum
states that enjoy remarkable properties, in particular when the
transformations involved are linear unitary transformations,
i.e., they are quadratic in the creation and annihilation
operators [32]. In this case, the Gaussian character of the
state is preserved and one can employ techniques from
the covariance matrix formalism [33]. Gaussian states of
bosonic fields naturally occur in many experiments and, when
applicable, offer a convenient description of the state of the
electromagnetic field in the optical or microwave range. In
this section we set the notations and we briefly introduce the
main concepts of covariance matrix formalism, which is a
powerful tool that can be used when considering unitary linear
transformations between Gaussian states of bosonic fields.

A. Symplectic matrices

We start by considering N bosonic modes (e.g., harmonic
oscillators) with annihilation and creation operators an and a

†
n.

These operators satisfy the standard canonical commutation
relations [an,a

†
n′ ] = δnn′ , while all other commutators vanish.

It is convenient to collect all the operators and introduce
the vector X := (a1,a2, . . . ,aN ; a†

1,a
†
2, . . . ,a

†
N ) Tp, where Tp

stands for transpose. For example, we have X2 = a2 or
X2N−1 = a

†
N−1 with this choice of operator ordering. We

notice in passing that the techniques developed below can
be extended in a straightforward fashion to an infinite number
of bosonic operators. This situation occurs, for example, in
quantum field theory in flat and curved space-time [4].

The canonical commutation relations can now be written
as [Xn,X

†
m] = i�nm, where �nm are the elements of the

2N × 2N matrix �, known as symplectic form, which has
the following expression:

i� =
(
1 0

0 −1

)
. (1)

Here 1 are the N × N identity matrices.
Any unitary transformation U = exp[−i H ], with Hermi-

tian generator H quadratic in the creation and annihilation
operators (or, equivalently, in the quadrature operators),
induces a linear transformation on the (collection of) operators
X through the relation U XU † = SX. The unitary operators
in the expression U XU † act on each element of the vector X
independently and S is a symplectic matrix that takes the form
S = exp[−F � H], where F is a real function that needs to
be determined, while H is defined through H = X† H X.

The matrix S is called symplectic since it satisfies S � S† =
� or, equivalently, S† � S = �. We note that det(S) = 1; see,
e.g., Ref. [34].

A symplectic matrix S can always be written, with the
particular choice of operator ordering in X, as

S =
(

α β

β∗ α∗

)
. (2)

The N × N matrices α and β, in the case of quantum fields
and curved space-time, collect the well-known Bogoliubov co-
efficients used extensively in literature [4]. These coefficients
satisfy the well-known Bogoliubov identities [4], which read
α α† − β β† = 1 and α βTp − β αTp = 0 in compact form.

We finally notice that the formal machinery introduced here
is independent of the initial state of the system.

B. Gaussian states

Unitary evolution and transformations, represented by a
unitary operator U , of bosonic systems which are initially in a
state ρi are of great importance in physics. Unitary evolution
leads to a final state ρf through the standard Heisenberg
equation ρf = U † ρi U . If the state ρi is a Gaussian state,
and the unitary U is a linear operator (see above), the Gaussian
character is preserved; therefore, employing the specific results
of Gaussian state formalism becomes very convenient [33].

In general, a state ρ of N bosonic modes is defined by an
infinite amount of degrees of freedom. However, a Gaussian
state ρ of bosonic modes is characterized only by a finite
amount of degrees of freedom. In particular, it is uniquely
defined by the vector d of first moments and the second
moments σnm defined by d := 〈X〉ρ and σnm := 〈{Xn,X

†
m}〉ρ −
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2〈Xn〉ρ〈X†
m〉ρ , respectively; see [33]. Here, all expectation

values 〈O〉ρ of an operator O are defined by 〈O〉ρ := Tr(Oρ)
and {A,B} = AB + BA is the anticommutator of operators A

and B. In this work we ignore the first moments, which can
be safely set to zero without loss of generality. We make this
choice since we are interested in quantum correlations, which
are unaffected by the first moments. Initial vanishing moments
remain zero under symplectic transformations and the second
moments σnm can be conveniently collected into the Hermitian
covariance matrix σ . We notice that a covariance matrix σ

represents a physical state ρ if it satisfies σ + i � � 0 in the
operatorial sense [33]. This amounts to computing the usual
eigenvalues of the matrix σ + i � and checking if they are
positive.

We can now recast the Heisenberg equation ρf = U † ρi U

into a relation between covariance matrices. Let the initial state
ρi be represented by the covariance matrix σ i and the final state
ρf by the covariance matrix σ f . We have already seen that
any quadratic unitary U can be represented by a symplectic
matrix S. Then, the Heisenberg equation ρf = U † ρi U takes
the form σ f = S† σ i S, which reduces the problem of usually
untreatable operator algebra to matrix multiplication of 2N ×
2N matrices.

Williamson’s theorem [35–37] guarantees that any co-
variance matrix σ can be put in diagonal form by a
symplectic matrix. This means that, given a covariance
matrix σ it is always possible to find a symplectic matrix
s such that σ = s† ν⊕ s, where the diagonal matrix ν⊕ =
diag(ν1,ν2, . . . ,νN ; ν1,ν2, . . . ,νN ) is called the Williamson
form of σ and νm � 1 are called the symplectic eigenvalues
of σ . The symplectic eigenvalues {±νm} are obtained as the
eigenvalues of the matrix i �σ . The purity P of the state σ is
given by P = ∏

m νm � 1, and the state is pure if P = 1 (or,
equivalently, νm = 1 for all m).

A 2N × 2N covariance matrix σ is a Hermitian matrix that
can be written in the form

σ =
(

W V

V ∗ W∗

)
, (3)

where the N × N matrices W and V satisfy W = W † and
V = V Tp.

C. Useful properties of the covariance matrix

In this subsection we provide some useful insight on
some properties enjoyed by the elements of the covariance
matrices. We start by introducing the symplectic eigenvalues
νm. These eigenvalues can be written as νm = coth( h̄ ωm

2 kB Tn
),

where Tn is the local temperature of the one-mode reduced
state. The reason that the symplectic eigenvalues have this form
results from the fact that every single-mode reduced state of
a Gaussian state is a thermal state up to local operations [33].
Notice that if a state σ is a thermal state then it coincides with
its Williamson form, i.e., σ ≡ ν⊕.

An important operation is the process of “tracing out”
a particular subsystem. In this language, this operation just
amounts to deleting the rows and columns corresponding to
the system one wishes to trace out [33].

As a useful application, we now show how we can employ
the covariance matrix to compute quantities of interest. Let

〈a†
m am〉ρ be the number expectation value of mode m. Without

loss of generality, let us assume that the first moments vanish,
i.e., 〈X〉 = 0. Then it is easy to show that 〈a†

m am〉ρ = 1
2 [σmm −

1], which highlights the role of the covariance matrix when
computing physically relevant quantities.

D. Entanglement in Gaussian states

The quantitative characterization of entanglement is a
central task in many areas of quantum science. For example,
entanglement is at the core of quantum computation [38,39],
quantum cryptography, and quantum communication [40]. For
two modes in general, and for Gaussian states in particular, the
task has been fully solved in an unambiguous way, and two-
mode entanglement has been completely characterized [33].

It has been shown that every measure of entanglement
for two mode symmetric Gaussian states is a function of
the smallest symplectic eigenvalue of the partial transpose
[33]. This establishes the PPT criterion as the paramount
criterion for two-mode symmetric Gaussian states, i.e., states
for which the determinants of the reduced single modes states
are the same. One starts from the two-mode state σ and
obtains the partial transpose σ̃ as σ̃ = P σ P , where the partial
transposition matrix P takes the form

P =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠. (4)

One then computes the symplectic eigenvalues {ν̃m} of the
partial transpose σ̃ as the eigenvalues of the matrix i � σ̃ .
These eigenvalues come in two pairs of identical eigenvalues
and we denote the smallest one as ν̃−. If ν̃− < 1 then there is
entanglement.

The choice of a particular measure is a matter of con-
venience or of the problem at hand, since all measures are
(decreasing) monotonic functions of ν̃−. We employ here the
negativity N defined as

N := max

[
0,

1 − ν̃−
2 ν̃−

]
, (5)

and the logarithmic negativity EN defined as

EN := max[0,− ln(ν̃−)]. (6)

We can also choose the entanglement of formation for
symmetric states EoF defined as

EoF := max[0,f+(ν̃−) − f−(ν̃−)], (7)

where we have introduced the functions f±(x) :=
(x±1)2

4 x
ln (x±1)2

4 x
for convenience of presentation.

E. Coherence in Gaussian states

The role of quantum coherence in emergent quantum
technologies such as quantum thermodynamics, quantum
metrology, or quantum biology is currently the subject of
intense research—see the recent review [12], and so far there
is no uniquely accepted measure of coherence. Quantum
coherence amounts to superposition with respect to a fixed
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orthonormal basis. A state is maximally incoherent (or mixed)
if it is diagonal in the chosen basis. From here one can already
see that the concept of coherence is linked to a choice of basis;
therefore, when using any measure of coherence one has to be
specific. We choose to employ in the following two measures
of coherence, a bipartite one defined operationally and based
on interferometry and a global one based on entropy. The
meaning of these measures is rather different: the first one
refers only to two modes and characterizes what occurs if
these modes are combined by a beam splitter. The second one
measures how close is the state from a maximally mixed state;
thus it provides a global measure of coherence that cumulates
the information about all the possible correlations.

1. First-order bipartite quantum coherence

Given two modes m and n, we call the correlation 〈a†
m an〉

(first-order) bipartite coherence, sometimes denoted by G(1)
mn =

〈a†
man〉 in optics [41]. This definition applies in general to

any state, and therefore it can be used as well for Gaussian
states. This measure corresponds to a simple interferometric
setup, where we collect the photons in the modes m and
n, add a phase difference between their paths, and let them
interfere. We will witness the formation of an interference
pattern only if the quantity 〈a†

m an〉 is nonzero. This quantity
can be normalized by the power in each mode, and in this
case we recover the standard definition of first-order amplitude
correlation function g(1)

mn from quantum optics applied to modes
m and n, namely

g(1)
mn = 〈a†

m an〉√
〈a†

m am〉〈a†
n an〉

. (8)

Finally, we highlight a connection with many-body physics,
where one often finds useful to employ the so-called single-
particle density matrix ρ(1)

mn, see [42,43], defined as

ρ(1)
mn =

(
〈a†

m am〉 〈a†
m an〉

〈a†
n am〉 〈a†

n an〉

)
. (9)

The single-particle density matrix is an essential tool in the
study of phase localization [44,45] and fragmentation of Bose-
Einstein condensates [46,47]—where the vanishing of the off-
diagonal element is used as a criterion for fragmentation (the
single coherent wave function or order parameter associated
with condensation breaks into a Fock state).

2. Relative entropy of coherence

A measure of quantum coherence C(μ) for N -mode
Gaussian states μ has been recently introduced [48] as C(μ) =
minδ{S(μ||δ)}, where S(μ||δ) = Tr[μ log2 μ] − Tr[μ log2 δ]
is the relative entropy and δ = ⊗n

k=1 δk
th(n̄k) is a tensor product

of reduced thermal states of each mode k. This measure
is thus defined only in terms of the covariance matrix and
displacement vectors. The von Neumann entropy of the system
in terms of the symplectic eigenvalues is given by

S(μ) =
N∑

k=1

[h+(νk) − h−(νk)], (10)

where h±(x) := ( x±1
2 ) ln ( x±1

2 ) and {νk} are the symplectic
eigenvalues of μ, while the mean occupation value is

n̄k = 1

4

(
σ

(k)
11 + σ

(k)
22 + [

d
(k)
1

]2 + [
d

(k)
2

]2 − 2
)
. (11)

Here σ
(k)
ij and [d (k)

i ] are the ij th element of the reduced
correlation matrix and the i first statistical moment of the
k mode, respectively. In this work, the latter will always be
equal to zero. It is possible to obtain an analytical expression
in closed form [48]:

C(σ ) = − S(σ ) +
n∑

k=1

[(n̄k + 1) ln(n̄k + 1) − n̄k ln n̄k]. (12)

F. Example: Two-mode squeezing

To get a clear picture of the covariant matrix formalism, let
us consider a useful example, that of two-mode squeezing. In
the experiments discussed further, two-mode squeezed states
are produced by a single parametric process, i.e., by the
action of each pump acting separately. Let X := (a,b,a†,b†).
The unitary operator that implements two mode squeezing is
U (r) = exp[r (a† b† − a b)] and it is easy to show that in this
(simplified) case its symplectic representation is

S =

⎛
⎜⎜⎜⎝

cosh r 0 0 sinh r

0 cosh r sinh r 0

0 sinh r cosh r 0

sinh r 0 0 cosh r

⎞
⎟⎟⎟⎠. (13)

Notice that we have chosen a special case where the transfor-
mation is real, for the sake of simplicity and without any loss of
generality. We can define the vector X̃ := (ã,b̃,ã†,b̃†) = SX
of new operators. The two-mode squeezing transformation
reduces to its well-known form

ã = cosh r a + sinh r b†,

b̃ = cosh r b + sinh r a†. (14)

In the usual Fock state formalism, the two-mode squeezed
state |ψr〉 of two modes a and b has the form

|ψr〉 =
+∞∑
n=0

tanhn r

cosh r
|n,n〉ab. (15)

In the covariance matrix formalism, we can easily see that the
two-mode squeezed state (15) takes the form

σ =

⎛
⎜⎜⎜⎝

cosh 2r 0 0 sinh 2r

0 cosh 2r sinh 2r 0

0 sinh 2r cosh 2r 0

sinh 2r 0 0 cosh 2r

⎞
⎟⎟⎟⎠. (16)

This explicitly shows how Gaussian states in the Fock state
formalism reduce to simple matrices in the Gaussian state
formalism. In particular, simple analytical formulas are known
for calculating fidelities [49] and distance measures [50].

We now proceed and compute the spectrum {ν̃m} of the ma-
trix i � P σ P , which is the set of the symplectic eigenvalues
of the partial transpose of the state (16). It is easy to show that
they are {ν̃m} = (e2 r ,e2 r ,e−2 r ,e−2 r ). We see that the smallest
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ab bc

FIG. 1. Generic representation of the system of interest and the
measurement configuration. We use a semiabstract representation
for the parametric generation of photons in the three modes a, b,
and c. This can be realized using either one resonator with mode b

as idler common to the two pumps ω
(p)
ab and ω

(p)
bc or two different

nonlinear crystals with idlers aligned with each other. Each mode
can be measured by a homodyne detection scheme using oscillators
(LO)a , (LO)b, and (LO)c. One can either measure the 3 × 3 correlation
matrix σ or one can perform only a q-quadrature measurement in
mode b, to be left with a state σ

(ac)
out|q .

symplectic eigenvalue ν̃− has the expression ν̃− = e−2 r . This
implies that the logarithmic negativity EN reads EN = 2 r;
see [51]. The coherence for two-mode squeezed states can
be calculated as well. In the case of the interference-based
bipartite coherence, we find that 〈ψr |a†b|ψr〉 = 0, which is
a consequence of the peculiar structure of the state in the
number basis Eq. (15). The entropy of coherence however
gives a nonzero result which grows monotonically with r:

C(σ ) = 4[cosh2 r log2 cosh r − sinh2 r log2 sinh r]. (17)

Once more, this underlines the power of the covariance
matrix formalism, where simple analytical expressions can
be obtained for the relevant quantities.

III. GENERATION OF BISQUEEZED TRIPARTITE
GAUSSIAN STATES

We now move to the physical system of interest; see
Fig. 1. This consists of three bosonic modes a,b,c with
frequencies ωa,ωb,ωc, respectively. The three modes are
modulated parametrically by two pump fields at the frequen-
cies ω

(p)
ab and ω

(p)
bc . Systems of this type have been studied

experimentally, both in the optical and in the microwave
frequency range. To encompass all the physical realizations,
we use a semiabstract, device-independent representation [13]
which shows the mode b as common to two parametric
processes (ab) and (bc) occurring in a parametrically device

pumped at ω
(p)
ab and ω

(p)
bc . In practice, this can be realized by

overlapping the paths of the idler photons of two different
optical crystals, by using a single nonlinear crystal in a
multimode cavity (e.g., bismuth borate (BIBO) in a ring
cavity [30], periodically poled KTiOPO4 (PPKTP) with zzz
quasiphase matching [28,31]), or a single superconducting
resonator with double-modulated electrical length [14]. The
total Hamiltonian H for this type of configuration can be
constructed by adding to the harmonic-oscillator Hamiltonian
H0 = h̄ ωa a† a + h̄ ωb b† b + h̄ ωc c†c of the three modes, two
parametric perturbations corresponding to each pump [41].
One obtains the total Hamiltonian H in the form

H = H0 + h̄
(
χ∗

ab eiω
(p)
ab t a b + χ∗

bc eiω
(p)
bc t b c + H.c.

)
. (18)

Here χab and χbc have dimensions of frequencies and describe
the parametric coupling of the pumping fields into the
modes a,b,c, representing the parametric analog of the Rabi
frequency of driven two-level systems. This prescription is
very general, irrespective to the particular physical system
employed or to weather the modulation is done on the boundary
conditions or in the bulk of the material or device (see, e.g.,
Supplemental Material in [6] and [52]). Consider now the
unitary transformation U0(t) = exp[− i

h̄
H0 t]. Assuming that

the frequencies of the pumps ω
(p)
ab and ω

(p)
bc are chosen such that

the energy conservation conditions ω
(p)
ab = ωa + ωb and ω

(p)
bc =

ωb + ωc are satisfied, the Hamiltonian (18) can be transformed
into Heff = U0(t)†HU0(t) + ih̄[dU

†
0 (t)/dt]U0(t), where we

have defined

Heff = h̄(χ∗
ab a b + χ∗

bc b c + H.c.). (19)

The effective Hamiltonian Heff is now time independent and
describes the evolution of the system in a triple rotating frame
(with frequencies ωa,ωb,ωc). Suppose now that the system
is pumped for a finite time τ , as it was done in the time-
domain experiments in previous work [14]. Then, introducing
the two-mode squeezing operators Gab := a† b† + a b and
Gbc := b† c† + b c and the corresponding two-mode squeezing
parameters Rab = −χ∗

ab τ and Rbc = −χ∗
bc τ we get

U = ei [Rab Gab+Rbc Gbc]. (20)

Here we implicitly assume that the resonators or cavities
have a high enough quality factor, ensuring that absolute
values of the parametric coupling is larger than the de-
cay rate. Also, after preparation, the measurement is re-
alized on a time scale smaller than the relaxation time.
These conditions are easily met in the present optical or
superconducting-circuits setups. For example, in the experi-
ments realized with a SQUID-based modulated resonator with
decay rate of 1 MHz [14] the correlations were measured in
time domain, under the double parametric excitation of the
system with 1 μs microwave pulses. Thus, for this system,
the conditions above are easily satisfied for 0 < τ 	 1 μs.
These results can be readily extended to larger time scales and
the signal can be enhanced with the use of higher-Q resonators.
Moreover, we emphasize that the same structure comprising
two two-mode squeezing operators can be recovered also
in frequency space for continuous pumping of systems with
dissipation in the input-output formalism [14].

062324-5



BRUSCHI, SABÍN, AND PARAOANU PHYSICAL REVIEW A 95, 062324 (2017)

To investigate systematically the correlations induced by
this operator, we collect the creation and annihilation operators
of these modes in the vector X = (a,b,c,a†,b†,c†)Tp. We
assume that the initial state is a thermal state σ th at temperature
T , since temperature is always present in any real system.
As mentioned before, in this case the state σ th of the
system coincides with its Williamson form, i.e., σ th = ν⊕ =
diag(νa,νb,νc,νa,νb,νc).

Next, we proceed to construct the final state of interest
ρ, represented by the covariance matrix σ , that we obtain by
applying the operator U to the thermal state σ th. For simplicity,
we assume that the squeezing parameters Rab and Rbc are
both real. This is not a loss of generality: indeed, if the pumps
have nonzero phases, χab = |χab|eiϕab , χbc = |χbc|eiϕbc we can
obtain the evolution U from Eq. (20) with real Rab = −|χab|τ
and Rbc = −|χbc|τ by redefining a → aeiθa , b → beiθb , and
c → ceiθc such that θa + θb = ϕab and θb + θc = ϕbc.

In general, it is possible to compute the state ρ of the
symplectic matrix S representing the operator (20) in the Fock
state formalism. However, the results can be extremely difficult
to manage analytically.

Here we use a recently developed technique [53,54] (see
also [55] for an alternative approach) to obtain a more
convenient representation of the operator (20), based on the Lie
algebra structure of the SL(3,C) group [37]. In Appendix A
we show that it is possible to re-write the operator (20) as

U = ei θac Bac ei rab Gab ei rbc Gbc , (21)

where the real squeezing parameters rab,rbc and phase θac have
the exact expression

rab = ln(cos φ sinh ρ +
√

1 + cos2 φ sinh2 ρ),

rbc = 1

2
ln

(
1 + sin φ tanh ρ

1 − sin φ tanh rho

)
,

θac = arctan

(
tan φ

cosh ρ

)
− φ, (22)

as functions of the new parameters ρ :=
√
R2

ab + R2
bc and

tan φ := Rbc/Rab. Here Bac = i [a c† − c a†] is a beam-
splitter transformation. The result is remarkable, because in
general it is not possible to obtain simple analytical solutions
when trying to factorize an exponential of multiple-mode
operators using the well-known Hausdorff-Baker-Campbell
approach to decoupling exponentials. We emphasize that the
unitary operators (20) and (21) are equivalent, and the final
state obtained under their action is also the same. Equation
(21) is a matter of experimental or theoretical convenience.

We note that an alternative technique to decouple Eq. (20)
has been developed [56]. This yields a global passive operation,
followed by a set of single-mode squeezers, followed by
another global passive transformation. Differently from this,
the decomposition (21) comprises a series of two-mode
squeezers, which also gives a direct operational meaning
as a sequence achievable in experiments. Specifically, the
factorized representation (21) can be used as well as a heuristic
tool in designing experiments, since the bisqueezed Gaussian
state obtained by double parametric pumping can be created
also by pumping first one pair of modes, then another pair,

and finally performing a beam-splitter transformation. For
example, in quantum optics it might be convenient to even
use two different crystals for realizing the two squeezing
operations.

In order to obtain the correlation matrix, we start by
applying a beam splitting Sac(θac) on modes a and c which, in
symplectic geometry, has the form

Sac(θac)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θac 0 sin θac 0 0 0

0 1 0 0 0 0

− sin θac 0 cos θac 0 0 0

0 0 0 cos θac 0 sin θac

0 0 0 0 1 0

0 0 0 − sin θac 0 cos θac

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

Notice that this would be a trivial operation if the state was
the vacuum; however, the initial state is thermal and the beam
splitter can have a nontrivial effect.

We proceed by applying a two-mode squeezing Sab(rab) on
modes a and b and a two-mode squeezing Sbc(rbc) on modes
b and c. These have the form

Sab(rab) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

chab 0 0 0 shab 0

0 chab 0 shab 0 0

0 0 1 0 0 0

0 shab 0 chab 0 0

shab 0 0 0 chab 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

and

Sbc(rbc) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 chbc 0 0 0 shbc

0 0 chbc 0 shbc 0

0 0 0 1 0 0

0 0 shbc 0 chbc 0

0 shbc 0 0 0 chbc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where we have introduced chab := cosh rab, shab := sinh rab,
thab := tanh rab and chbc := cosh rbc, shbc := sinh rbc, thbc :=
tanh rbc for compactness and simplicity of presentation.

The final state, when acting on the thermal state σ th =
diag(νa,νb,νc,νa,νb,νc) as well as all the reduced states, can be
obtained analytically; see Appendix B for the full expressions
of each matrix element. Here we report only the structure of
these states, which is essential for the ensuing calculations.
The three-mode state σ reads

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 0 δ 0 ε 0

0 β 0 ε 0 ζ

δ 0 γ 0 ζ 0

0 ε 0 α 0 δ

ε 0 ζ 0 β 0

0 ζ 0 δ 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)
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The final two-mode σ (ab),σ (bc),σ (ac) and single-mode states
σ (a),σ (b),σ (c) read

σ (ab) =

⎛
⎜⎜⎜⎝

α 0 0 ε

0 β ε 0

0 ε α 0

ε 0 0 β

⎞
⎟⎟⎟⎠, σ (a) =

(
α 0

0 α

)
,

σ (bc) =

⎛
⎜⎜⎜⎝

β 0 0 ζ

0 γ ζ 0

0 ζ β 0

ζ 0 0 γ

⎞
⎟⎟⎟⎠, σ (b) =

(
β 0

0 β

)
,

σ (ac) =

⎛
⎜⎜⎜⎝

α δ 0 0

δ γ 0 0

0 0 α δ

0 0 δ γ

⎞
⎟⎟⎟⎠, σ (c) =

(
γ 0

0 γ

)
. (27)

The reduced two-modes and single-mode covariance matrices
were obtained using the trace-out prescription from Sec. II C,
namely eliminating one, and respectively two, modes from
the three-mode matrix (26). Finally, notice that all reduced
single-mode states are thermal.

IV. CHARACTERIZING BISQUEEZED TRIPARTITE
GAUSSIAN STATES

In this section we present a full description of the
bisqueezed tripartite Gaussian states created by the double
parametric pumping described in the previous section. In
particular, we focus on the entanglement properties, showing
that the state has so-called genuine tripartite entanglement,
and on the phenomenon of induced coherence between modes
a and c due to the indistinguishability of the photons in the
common idler b.

A. Number expectation values

We can now turn to computing the final number expectation
value for all three modes. We have

〈a† a〉 = 1
2 [α − 1],

〈b† b〉 = 1
2 [β − 1],

〈c† c〉 = 1
2 [γ − 1]. (28)

B. Purity of all reduced states

We wish to understand the correlation structure of the
whole state. A rough understanding can be already given by
computing the purity of all the reduced states.

Let us start with the purity Pth = ν2
a ν2

b ν2
c of the initial

global tripartite thermal state, which remains unchanged under
our unitary transformations. We then list the initial purities of
the thermal state P ab

th ,P bc
th ,P ac

th ,P a
th,P

b
th,P

c
th, which read

P
(ab)
th = ν2

a ν2
b , P

(a)
th = ν2

a ,

P
(bc)
th = ν2

b ν2
c , P

(b)
th = ν2

b ,

P
(ac)
th = ν2

a ν2
c , P

(c)
th = ν2

c . (29)
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FIG. 2. Tripartite negativity N (abc), N (a−bc), N (b−ac), and N (c−ab)

vs squeezing parameter r = Rab = Rbc for ωa = 2π × 4.99 GHz,
ωb = 2π × 5 GHz, ωc = 2π × 5.01 GHz, and T = 15 mK.

We now find that the purities of all reduced states of our given
state are

P (ab) = (α β − ε2)2, P (a) = α2,

P (bc) = (β γ − ζ 2)2, P (b) = β2,

P (ac) = (α γ − δ2)2, P (c) = γ 2. (30)

We see that local purities have changed from the values in (29)
to the ones in (30); therefore, we expect some correlations
between the different modes. We proceed to study this in the
next section.

C. Tripartite entanglement

Here we look at the nature of (quantum) correlations in the
tripartite state of interest in this work. We study the global
(genuine) correlations as well as the bipartite correlations
across all bipartite reduced states.

A measure of the tripartite entanglement can be obtained
through a suitable average of the entanglement of all the
bipartitions of the system. For instance, we can consider the
tripartite negativity N (abc) defined by

N (abc) = [N (a−bc) N (b−ac) N (c−ab)]
1
3 , (31)

where N (i−jk) is the negativity of the i − jk bipartition as
provided by the partial transposition with respect to the mode
i. In Fig. 2 we plot all the N (i−jk) and the resulting N (abc).

We notice that there is a need for a certain amount of
squeezing before genuine multipartite entanglement can be
created.

D. Bipartite entanglement and coherence

1. Bipartite entanglement in the “ab” and “bc” subsystems

As previously discussed, we now need to compute the
smallest symplectic eigenvalue ν̃− for each reduced state. This
eigenvalue provides us with a quantification of entanglement.

We start by the reduced state σ (ab) of modes a and b. We
can compute the smallest symplectic eigenvalue ν̃

(ab)
− of the
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FIG. 3. Bipartite negativities of the reduced states N (ac), N (ab),
N (bc), coherence measurement C(ac), and interference-based co-
herence 〈a†c〉 of the a-c reduced state vs squeezing parameter
r = Rab = Rbc for ωa = 2π × 4.99 GHz, ωb = 2π × 5 GHz, ωc =
2π × 5.01 GHz, and T = 15 mK. Note that N (bc) = N (ab) due to
squeezing in each parametric process separately, while N (ac) = 0.

partial transpose and we find

ν̃
(ab)
− = 1

2 [α + β −
√

(α − β)2 + 4 ε2]. (32)

Similarly, for the reduced state σ (bc) of modes b and c we can
compute the smallest symplectic eigenvalue ν̃

(bc)
− of the partial

transpose,

ν̃
(bc)
− = 1

2 [β + γ −
√

(β − γ )2 + 4 ζ 2]. (33)

These eigenvalue can now be used, together with Eqs. (5) and
(7), to compute the negativities N (ab), N (bc) as well as the
entanglement of formation E (ab)

oF , E (bc)
oF in the reduced states

σ (ab) respectively σ (bc).

2. Bipartite entanglement in the “ac” subsystem

Next, we calculate the reduced state σ (ac) of modes a and
c. We can compute the smallest symplectic eigenvalue ν̃

(ac)
− of

the partial transpose and we find

ν̃
(ac)
− = 1

2 [
√

(α + γ )2 − 4 δ2 − |α − γ |]. (34)

It is easy to show that ν̃
(ac)
− � 2 |αγ − δ2|. This, in turn, can

be written as ν̃
(ac)
− � 2

√
P (ac), where P (ac) is the purity of

the final reduced state. Since the purity P of any state, in this
language, satisfies P � 1 we conclude that

ν̃
(ac)
− � 2, (35)

which implies that there can never be any entanglement
between the modes a and c, as expected.

The bipartite negativities N (ij ) between modes i and j ,
where i,j ∈ {a,b,c}, are plotted in Fig. 3. We observe that
while N (bc) = N (ab) is different from zero and grows with the
initial squeezing, the negativity N (ac) is zero for any value of
the initial squeezing—as expected. Next, we proceed to study
the issue of coherence.

3. Bipartite coherence and relative entropy of coherence

We are now ready to discuss some peculiar aspects of the
“ac” subsystem. We proceed to show that, although the modes
a and c have not been directly squeezed and therefore there is
no entanglement between them, we still witness the appearance
of nontrivial bipartite coherence correlations 〈a† c〉 = 0. This
term can be obtained in a simple way as 〈a† c〉 = 1

2 σ31. We
find

〈a† c〉ρ = δ

2
. (36)

The mechanism by which these correlations are established
reminds one of the standard which-way information concepts
from interferometry. In standard interferometry (or each time
we deal with a linear superposition of states) the absence
of information about the path that the photon takes (or,
equivalently, the information about which specific wave
function within the superposition that constitutes tho total wave
function of the particle is “actualized”) results in the formation
of an interference pattern. In this case, given a boson occupying
mode b, we cannot know from which down-conversion process
(corresponding to either pump ωab or ωbc) it originates. The
first-order coherence g(1)

ac of modes a, c can be readily obtained,

g(1)
ac = 〈a† c〉√

〈a† a〉〈c† c〉
, (37)

and using 〈a† a〉 = (α − 1)/2 and 〈c† c〉 = (γ − 1)/2 as deter-
mined from (26) we get

g(1)
ac = δ√

(α − 1)(γ − 1)
. (38)

Finally, the single-particle density matrix ρ(1)
ac is

ρ(1)
ac =

(
〈a† a〉 〈a† c〉
〈c† a〉 〈c† c〉

)
= 1

2

(
α − 1 δ

δ γ − 1

)
. (39)

From Fig. 3 we see that a nonzero degree of bipartite
coherence between a and c exists, and it increases with the
squeezing. Also the relative entropy of coherence C(ac) in
σ (ac) can be calculated from Eqs. (10)–(12), and this quantity
is nonvanishing as well.

This underlines the fundamental difference between the
two-mode correlations produced by a single pump (which
produce entanglement but no bipartite coherence) and those
produced between the extremal modes in the double dynamical
Casimir effect (which have coherence but no entanglement).

between modes a and c is vanishingly small, by measuring
the mode b in a homodyne scheme one can induce a finite
degree of entanglement between modes a and c. This will be
demonstrated in the next section.

V. HOMODYNE MEASUREMENT OF THE COMMON
IDLER AND COHERENCE-TO-ENTANGLEMENT

CONVERSION

In this section we compute the resulting state of modes a and
c after a perfect homodyne detection of mode b. In particular,
we analyze the coherence and entanglement of the resulting
state. In order to reach this goal, we employ the formalism
of homodyne detection developed in Ref. [57]. The technical
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FIG. 4. Negativity N (ac)
out|q , bipartite coherence 〈a† c〉out|q , and

entropy of coherence C
(ac)
out|q vs squeezing parameter r = Rab = Rbc

of the state σ
(ac)
out|q for ωa = 2π × 4.99 GHz, ωb = 2π × 5 GHz,

ωc = 2π × 5.01 GHz, and T = 15 mK.

details of this can be found in Appendix C and we omit them
here in order to focus on correlations between modes a and c

after homodyne detection.
After some lengthy algebra (see also [58]), one has the final

state σ
(ac)
out|q of modes a and c after homodyne detection of the

quadrature q of mode b, which reads

σ
(ac)
out|q =

⎛
⎜⎜⎜⎜⎜⎝

α − ε2

2β
δ − εζ

2β
− ε2

2β
− εζ

2β

δ − εζ

2β
γ − ζ 2

2β
− εζ

2β
− ζ 2

2β

− ε2

2β
− εζ

2β
α − ε2

2β
δ − εζ

2β

− εζ

2β
− ζ 2

2β
δ − εζ

2β
γ − ζ 2

2β

⎞
⎟⎟⎟⎟⎟⎠. (40)

A simple inspection of the state (40) after homodyne detection
allows the identification of the differences with respect to the
reduced state σ (ac). We see that the coherence δ of the latter
is now decreased. In particular, we expect entanglement to be
present in the new state (40) since it contains nonvanishing ele-
ments in the upper-right part of the state. To prove analytically
that there is entanglement requires lengthy formulas, but we
will see later that, in the case of frequencies that are very close
to each other, analytical insight can be gained. The smallest
symplectic eigenvalue ν̃

out|q
− of the partial transpose of the state

(40) can be computed and has a lengthy expression, which we
reproduce in Appendix D.

The computation of the negativity of the state (40) after
homodyne detection is straightforward and follows step by
step what has been done above.

In Fig. 4 we plot the negativity N , the bipartite coherence
〈a†c〉, and the entropy of coherence C as a function of the
squeezing parameter r = Rab = Rbc for typical values of
frequencies and temperature encountered in experiments with
superconducting circuits. The result is that, after this projective
measurement of quadrature q in the common idler mode b, the
entanglement becomes nonzero at the expense of a reduction
in bipartite coherence. In other words, the state has become
more squeezed in the two modes but has lost in interferometric
visibility. In Fig. 5 we also compare 〈a† c〉out|q = 1/2[σ (ac)

out|q]12

with the other elements of the correlation matrix corresponding

�σ out q
�ac �

�13

�σ out q
�ac �
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�11
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FIG. 5. Elements of the state σ
(ac)
out|q as a function of the squeezing

parameter, for the same parameters as in the previous figures.
Here we have [σ (ac)

out|q ]11 = [σ (ac)
out|q ]22 and [σ (ac)

out|q ]13 = [σ (ac)
out|q ]14 =

[σ (ac)
out|q ]24,[σ

(ac)
out|q ]12.

to the state. Note that the entropy of coherence also changes,
but not significantly. This occurs because the entropy of
coherence is a measure of the total coherencelike resources
available (it quantifies globally how different the state is from
a mixed state) but it doesn’t contain any information about
how these resources are distributed between the states forming
the basis (the number of particle eigenstates). In contrast,
the bipartite coherence concentrates on only one resource,
the visibility in an interference experiment realized with two
modes, and ignores the information about the other possible
correlations.

The result can be regarded as a phenomenon of redistribu-
tion of tripartite quantum resources into a bipartite resource
(bipartite entanglement), when one mode is eliminated by
measurement. Similar effects have been studied before with
discrete variables in spin chains, where entanglement can
be localized between two spins by the measurement of the
other spins [59]. With superconducting circuits, in a tripartite
system consisting of two superconducting qubits coupled to
a resonator with only one quanta of excitation present, it was
shown that a null measurement on the number of particles in
the resonator results in the creation of entanglement between
the qubits [60,61], a technique that can be thought of as a
particular form of dissipation engineering [62].

To get a better grasp of this, let us consider a W
state, which is a tripartite state with one excitation dis-
tributed in an equal superposition over three modes, |W〉 =
1/

√
3(|001〉 + |010〉 + |100〉). These states display a different

type of entanglement from GHZ states [63], and their nonlocal
features have been studied intensely [64]. It is easy to check
that bisqueezed tripartite states truncated to the subspace of
at most two excitations have indeed a W structure [14]. If
any of the modes is traced out, the remaining two modes are
entangled with concurrence 2/3. Consider now a measurement
on any of the three modes: if the result is zero, then we have
projected the W state into a maximally entangled Bell state
(1/

√
2)(|01〉 + |10〉), thus increasing the concurrence from

2/3 to 1. However, differently from the case of discrete vari-
ables, in the case of Gaussian states the resulting covariance
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matrix does not depend on the value q measured. This feature
makes it, for example, impossible to distill Gaussian states
with Gaussian operations [65]—in sharp contrast with the case
of discrete variables where this is possible—since we cannot
postselect with respect to the result of the measurement. It
is also worth noting that the homodyne detection scheme
is optimal for achieving the highest degree of entanglement
[66,67].

Testing the prediction of entanglement generation between
the modes a and c through the measurement of mode b can
be done by first setting a q-quadrature (in-phase) homodyne
detection in the b mode—through the adjustment of the phase
of the local oscillator (LO)b—then performing correlation
measurements between the a-c modes. Thus the experimental
realization would require only the addition of an analysis
channel to the present setups used to measure two-frequency
correlations in the dynamical Casimir effect.

VI. APPLICATIONS TO MICROWAVE AND OPTICAL
EXPERIMENTAL SETUPS

The results presented above can be readily applied to exist-
ing experimental platforms such as superconducting circuits
realized with coplanar waveguide resonators terminated by
SQUIDs [5,14] and SQUID arrays [6] as typically designed
for operation as microwave parametric amplifiers (see, e.g.,
Ref. [68] for a review) and to optical systems using pumped
nonlinear crystals [27,31].

We start by noticing that the correlations generated by
double parametric pumping depend sensitively on the initial
temperature. The other relevant parameter for experiments
is the frequency difference between the modes. In order
to discuss the competition between temperature and fre-
quency difference in realistic experimental scenarios, we
find it convenient for simplifying the notations to introduce
the dimensionless frequencies �m as �m := h̄ ωm

kB T
, where

m = a,b,c.
This allows us to rewrite the symplectic eigenvalues νm

as νm = coth(�m/2), with m = a,b,c. Given this redefinition,
we can simplify the notations easily and define the reference
dimensionless frequency � := �b and introduce the shift
in the dimensionless frequencies δ� through � − δ� = �a

and � + δ� = �c. Note that δ�/� � 1. Let us consider
some examples. In superconducting circuits, typical values
for frequencies are ω = 2π × 5 GHz and δω = 2π × 10
MHz at T = 15 mK, while for optical systems we have
typically ω = 2π × 5.64 × 105 GHz (532 nm) and δω =
2π × 0.95 GHz at a temperature T = 300 K. These numbers
translate into � = 15.9 and δ� = 0.04 for superconducting
circuits, while � = 89.8 and δ� = 1.5 × 10−4 for optical
systems. In superconducting circuits, temperatures higher than

15 mK are also relevant due to imperfect thermalization and
nonequilibrium heating effects.

We are therefore interested in the following two scenarios.
(i) The reference dimensionless frequency � is of the order

of unity or smaller and δ�/� 	 1. The three symplectic
eigenvalues are ν± = coth(�/2)[1 ∓ δ�/ sinh(�)] and ν =
coth(�/2) to first order in O(δ�/�).

(ii) The lowest frequency satisfies � − δ� � 1 or, in other
words, the thermal energy available is extremely low compared
to the energy cost of each excitation. This implies that we can
safely set νm = 1 for each mode.

We proceed with the analysis of each scenario.

A. Modes with closely separated frequencies

Let us assume that � is of the order of unity or smaller and
δ�/� 	 1. This occurs in superconducting circuits when the
temperatures are (much) higher than T = 10 mK. This is the
regime where the initial mixedness due to temperature can be
important and the frequencies can be regarded as close enough.

Let us start by noting that in superconducting qubits one
typically has δω/ω = 2 × 10−3 	 1 [14]. Then

ν± = coth

(
�

2

)(
1 ∓ δ�

�

�

sinh �

)
, (41)

where the factor �/ sinh �, in this regime, is a number close
to unity.

In this case, we see that the symplectic eigenvalues ν±
and ν coincide to very good approximation and we ignore
contributions of the order O(δ�/�). We can therefore obtain
the elements of the covariance matrix σ of the final state (26)
which, to lowest order, reduce to

α = ν cosh(2 rab),

β = ν [cosh(2 rab) cosh2(rbc) + sinh2(rbc)],

γ = ν [cosh(2 rab) sinh2(rbc) + cosh2(rbc)],

δ = ν sinh(2 rab) sinh(rbc),

ε = ν sinh(2 rab) cosh(rbc),

ζ = ν cosh2(rab) sinh(2 rbc). (42)

These simplified terms allow us to obtain a better analytical
understanding of our system, since they dramatically reduce
the algebra involved when computing the relevant figures of
merit.

In particular, we can focus on the smallest symplectic
eigenvalues of the reduced states, since they contain all the
necessary information to determine quantum correlations. It is
easy to check that the smallest symplectic eigenvalues ν̃

(ab)
− ,

ν̃
(bc)
− , and ν̃

(ac)
− of the reduced states of modes (ab), (bc), and

(ac), respectively, are

ν̃
(ab)
− = ν

[
1 + 2 sh2

ab + sh2
bc + sh2

ab sh2
bc −

√
4 sh2

ab + 4 sh4
ab + sh4

bc + 4 sh2
ab sh2

bc + 2 sh2
ab sh4

bc + 4 sh4
ab sh2

bc + sh4
ab sh4

bc

]
,

ν̃
(bc)
− = ν

[
1 + sh2

ab + 2 sh2
bc + 2 sh2

ab sh2
bc −

√
sh4

ab + 4
(
1 + sh2

ab

)2
sh2

bc

(
1 + sh2

bc

)]
,

ν̃
(ac)
− = ν

[√
1 + 2 sh2

ab + 2 sh2
bc + sh4

ab + sh4
bc + 2 sh2

ab sh4
bc + sh4

ab sh4
bc − ∣∣sh2

ab − sh2
bc − sh2

ab sh2
bc

∣∣]. (43)
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These smallest symplectic eigenvalues are not always smaller
than one, i.e., it is not always guaranteed that there is
entanglement between the modes in the reduced subsystem.
We see that the conditions ν̃

(nm)
− < 1 for the existence of the

entanglement in the reduced states (ab), (bc), and (ac) are,
respectively,

sh2
ab >

(
ν − 1

2 ν

)2

+ ν − 1

2 ν

[
2 sh2

ab + sh2
bc + sh2

ab sh2
bc

]
,

sh2
bc >

(
ν − 1

2 ν

)2

+ ν − 1

2 ν

[
sh2

ab + 2 sh2
bc + 2 sh2

ab sh2
bc

]
,

(44)

and

1 − ν2

ν2
>

2

ν

∣∣sh2
ab − sh2

bc − sh2
ab sh2

bc

∣∣ + 2 sh2
ab + 2 sh2

bc

+ 2 sh2
ab sh2

bc + 2 sh4
ab sh2

bc. (45)

We notice that the two conditions in (44) are not always
satisfied, which means that there is need for a finite amount of
squeezing before any correlation can be established. This is in
agreement with previous work that has analyzed the interplay
of initial mixedness, due to temperature, and squeezing [69].
The exact value of the squeezings, as a function of the initial
mixedness ν, at which entanglement is created can be found
by looking at the point of saturation of the inequality in these
two conditions.

We finally note that the last condition (45) is never satisfied,
since ν � 1 and the right-hand side is always positive. This
is expected from the form of the final state of modes a and
c. This means that there is never entanglement between these
two modes.

We can also look at the final state (ac) after homodyne
detection in this regime. As anticipated before, we are now
able to show that the state (40) is entangled. We start by noting
that the two reduced states σ

(a)
out|q and σ

(c)
out|q of modes a and c,

and the 2 × 2 correlation block σ
(corr)
out|q , read

σ
(a)
out|q =

(
α − ε2

2β
− ε2

2β

− ε2

2β
α − ε2

2β

)
,

σ
(c)
out|q =

(
γ − ζ 2

2β
− ζ 2

2β

− ζ 2

2β
γ − ζ 2

2β

)
,

σ
(corr)
out|q =

(
δ − εζ

2β
− εζ

2β

− εζ

2β
δ − εζ

2β

)
. (46)

We then introduce the local symplectic invariants a2,b2

and c+ c−, defined as a2 := det(σ (a)
out|q), b2 := det(σ (b)

out|q), and

c+ c− := det(σ (corr)
out|q ). We choose to keep the notation for the

local invariants as in standard reference. The local invariants
a and b here are not to be confused with the mode operators.
We notice that a two-mode entangled state is symmetric if, in
a decomposition of this form, a2 = b2 (see [33]). In our case

we have

a2 = b2 = ν2

(
1 + 2 sh2

bc + 2 sh2
ab sh2

bc

) (
1 + 2 sh2

ab

)
1 + 2 sh2

ab + 2 sh2
bc + 2 sh2

ab sh2
bc

,

c+ c− = − 4 ν2

(
1 + sh2

ab

)
sh2

ab sh2
bc

1 + 2 sh2
ab + 2 sh2

bc + 2 sh2
ab sh2

bc

, (47)

which confirms that we have a symmetric two-mode Gaussian
state. It is known that every two-mode symmetric Gaussian
state is equivalent to a two-mode squeezed state up to local
operations [33]. This implies that we can anticipate squeezing
between modes a and c, which we proceed to compute.

Now we can compute the smallest symplectic eigen-
value ν̃

out|q
− of the partial transpose in order to quantify

the squeezing between the two modes. This can be done
by employing a known relation between the local sym-
plectic eigenvalues, which has the expression 2 (ν̃out|q

− )2 =
�̃ −

√
�̃2 − 4 det(σ (ac)

out|q), where we have introduced �̃ :=
a2 + b2 − 2 c+ c− for convenience of presentation. In our case
this expression simplifies to

(ν̃out|q
− )2 = a2 − c+ c− −

√
(a2 − c+ c−)2 − det

(
σ

(ac)
out|q

)
, (48)

which allows us to immediately find the condition, analogous
to (44) and (45), for the existence of the entanglement in this
case. We have(

1 + sh2
ab

)
sh2

ab sh2
bc

1 + 2 sh2
ab + 2 sh2

bc + 2 sh2
ab sh2

bc

>

(
ν2 − 1

4 ν

)2

. (49)

We can immediately see that, if rab = 0 or rbc = 0, then the
condition (49) is never satisfied and there is no entanglement
in the state (ac) after homodyne detection, as expected.

In Appendix D we provide an explicit expression for the
smallest symplectic eigenvalue ν̃

out|q
− of the partial transpose.

For completeness, we can obtain explicit formulas for the
behavior of the first-order coherence g(1)

ac in this regime. This
can be done using Eq. (38) and the expressions above. We find

g(1)
ac = 2 ν

shab shbc chab√(
ν − 1 + 2 ν sh2

ab

)(
ν − 1 + 2 ν sh2

bc ch2
bc

) .

(50)

B. Low temperatures

We can now investigate the “low enough” temperature
regime. We have seen that � � 1, both in superconducting
circuits and in optical cavities. In particular, � = 15 for
microwaves and � = 84.6 for optical cavities. This implies
that, in both scenarios, coth(�m) ∼ 1 − 2 exp[−�m] which,
for all purposes, is unity. The discussion in this section applies
as long as δ�/� 	 1 as well.

The consequence of these considerations is that we can
safely set ν = 1 in the results of the previous section. This
implies that the symplectic eigenvalues now read, to leading
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order,

ν̃
(ab)
− = 1 + 2 sh2

ab + sh2
bc + sh2

ab sh2
bc −

√
4 sh2

ab + 4 sh4
ab + sh4

bc + 4 sh2
ab sh2

bc + 2 sh2
ab sh4

bc + 4 sh4
ab sh2

bc + sh4
ab sh4

bc,

ν̃
(bc)
− = 1 + sh2

ab + 2 sh2
bc + 2 sh2

ab sh2
bc −

√
sh4

ab + 4
(
1 + sh2

ab

)2
sh2

bc

(
1 + sh2

bc

)
,

ν̃
(ac)
− =

√
1 + 2 sh2

ab + 2 sh2
bc + sh4

ab + sh4
bc + 2 sh2

ab sh4
bc + sh4

ab sh4
bc − ∣∣sh2

ab − sh2
bc − sh2

ab sh2
bc

∣∣, (51)

which also implies that the conditions (44), (45), and (49) for
the existence of entanglement reduce to

sh2
ab > 0,

1 >
1

2

(
1 − th2

ab

) 1 − th2
bc

1 + th2
bc

,

0 >
2

ν

∣∣sh2
ab − sh2

bc − sh2
ab sh2

bc

∣∣
+ 2 sh2

ab + 2 sh2
bc + 2 sh2

ab sh2
bc + 2 sh4

ab sh2
bc,

sh2
ab sh2

bc > 0. (52)

The first two and the last conditions in (52) are always satisfied.
This can be easily explained by the fact that there is no initial
mixedness that competes with the establishment of correlations
between the different modes. In Fig. 2 we see that that these
conditions are always satisfied, which is equivalent to the fact
that the curve for this case is always positive, except at the
origin. For completeness, we can use (28) to find the average
excitation in this low-temperature regime. We find

〈a† a〉 = sh2
ab,

〈b† b〉 = sh2
ab + sh2

bc + sh2
ab sh2

bc,

〈c† c〉 = sh2
bc

(
1 + sh2

ab

)
. (53)

The third condition in (52) is never satisfied, again, as expected.
This implies that in the (ac) state after homodyne there
are genuine correlations irrespective of the amount of initial
squeezing. This is surprising, since one can argue that, after
the application of the two mode squeezing operators on modes
a and b, the reduced state of a is a thermal state with local
temperature Tb determined by

Tb = h̄ ω

kB

1

ln
( 1+sh2

ab+sh2
bc+sh2

ab sh2
bc

sh2
ab+sh2

bc+sh2
ab sh2

bc

) , (54)

which can be derived by equating νb = coth(�b

2 ) = 2 〈b† b〉 +
1; see (53). This concludes our analysis of the low-temperature
regime.

We can calculate in the same way the behavior of the first-
order coherence g(1)

ac in this regime, employing Eq. (38) and
the expressions derived so far. In this regime we have to be
careful of how the limits are taken. As long as rab and rbc are
(possibly small) but finite, we find

g(1)
ac = 1 + 1

2

(
1

sh2
ab

+ 1

sh2
bc

1

ch2
ab

)
e−�. (55)

Note that, due to issues that arise in multiparameter pertur-
bation theory, the above formula cannot be applied when rab

or rbc are smaller than e−�. Instead, a case-by-case study

must be performed in order to establish which parameters are
perturbative, and which are not [70].

We emphasize that the induced correlations discussed here
can be regarded as an information-processing resource; in
the case of entanglement this has been known in quantum
information science for a long time, while in the case of
coherence it has been only recently started to be appreciated
[12], opening the way to applications in quantum technologies.
In this subsection we have evaluated these quantities under
experimentally relevant conditions corresponding to initial
mixedness due to finite temperature and with closely separated
mode frequencies.

VII. CONCLUSIONS

We have studied a specific tripartite state of interest
for physical implementations in the laboratory, namely a
bisqueezed state. This state can be obtained by applying
simultaneous two-mode squeezing between two pairs of
modes which share a common third one. We have employed
techniques from continuous variables to compute analytically
most quantities of interest, such as genuine tripartite and
bipartite entanglement, as well as the purity of all subsystems.
We have also analyzed the effect of homodyne detection of
the common mode, which can be of importance within the
development of future technologies. We have found that the
modes acquire squeezing-type quantum correlations (nonzero
entanglement) after the homodyne detection at the expense
of a reduction in bipartite coherence, a phenomenon that can
be seen as a redistribution of quantum resources. Finally. we
analyzed scenarios of relevance for concrete applications, such
as low temperatures or modes with very close frequencies.
These situations occur in experiments with superconducting
circuits as well as in optical setups aimed at developing the
next generation of quantum technologies based on continuous
variables.
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APPENDIX A: BISQUEEZED TRIPARTITE
GAUSSIAN STATES

We start by analyzing the subset {Gab,Gbc,Bac} of all
the possible 21 Hermitian operators that are quadratic in
the creation and annihilation operators of the modes a,b,c

(or, equivalently, in the quadrature operators). Here we have
defined

Gab := a† b† + a b,

Gbc := b† c† + b c,

Bac := i [a c† − c a†]. (A1)

It is easy to check that the operators Gab, Gbc, and Bac form a
closed sub-Lie algebra of the full algebra. In fact [Gab,Gbc] =
−i Bac, [Bac,Gab] = i Gbc, and [Bac,Gbc] = −i Gab.

Squeezing modes a and b at the same time as modes b

and c, with parameters Rab and Rbc respectively can be done
through the unitary operator

U = ei [Rab Gab+Rbc Gbc]. (A2)

It has been shown, see [53], that the operator (A2) can be
written as

U = ei θac Bac ei rab Gab ei rbc Gbc , (A3)

where the real functions rab, rbc, and θac depend on Rab and
Rbc.

It is possible to find rab, rbc, and θac as functions of Rab

and Rbc. To do this we introduce

U (x) := ei [Rab Gab+Rbc Gbc] x, (A4)

where we notice that U (1) just coincides with the operator (A2)
we are interested in. We then use the techniques introduced in
[53], which prescribe to perform differentiation with respect
to x on the left and right side of (A4) and then multiply both
sides on the right by U †(x). We obtain the main differential
equation

Rab Gab + Rbc Gbc = θ̇ac Bac + ṙab ei ,θac Bac Gab e−i θac Bac

+ ṙbc ei θac Bac ei rab Gab Gbc

× e−i rabGab e−i θac Bac , (A5)

which provides us with the functions rab(x), rbc(x), and θac(x),
as a function of Rab, Rbc, and x. Notice that the dot stands for
derivative with respect to x. Finally, we need to set x = 1
in order to find the parameters rab, rbc, and θac that we are
looking for.

Using the fact that

ei rab Gab Gbc e−i rab Gab = cosh rab Gbc + sinh rab Bac,

ei rbc Gbc Bac e−i rbc Gbc = cosh rbc Bac − sinh rbc Gab,

ei rab Gab Bac e−i rab Gab = cosh rab Bac + sinh rab Gbc,

ei θac Bac Gab e−i rac Bac = cos θac Gab − sin θac Gbc,

ei θac Bac Gbc e−i rac Bac = cos θac Gbc + sin θac Gab, (A6)

we obtain the main differential equations

ṙab cos θac + ṙbc sin θac cosh rab = Rab,

−ṙab sin θac + ṙbc cos θac cosh rab = Rbc,

θ̇ac + ṙbc sinh rab = 0. (A7)

Let us introduce

ρ :=
√

R2
ab + R2

bc,

tan φ := Rbc

Rab

. (A8)

We can now rewrite the main differential equations (A7) as

ṙab = ρ cos(φ + θac),

ṙbc cosh rab = ρ sin(φ + θac),

θ̇ac + ṙbc sinh rab = 0. (A9)

Combining the equations in (A9) we obtain

θ̇ac cot(φ + θac) = −ṙab tanh rab, (A10)

which can be written as d
d x

ln sin(φ + θac) = − d
d x

ln cosh rab.
This gives the following important relation:

sin(φ + θac) = sin φ

cosh rab

, (A11)

where we have used the initial conditions rab(x = 0) = 0 and
θac(x = 0) = 0. Notice also that φ is defined in terms of Rab

and Rbc and does not depend on x.
Using this equation we obtain the first important relation

sinh rab = cos φ sinh(ρ x), (A12)

which immediately allows us to find

sin(φ + θac) = sin φ√
1 + cos2 φ sinh2(ρ x)

. (A13)

Finally, combining all equations we obtain ṙbc =
ρ

sin φ

1+cos2 φ sinh2(ρ x)
, which leads to

rbc = 1

2
ln

[
1 + sin φ tanh(ρ x)

1 − sin φ tanh(ρ x)

]
. (A14)

We are finally in the position to obtain the desired relations
between rab, rbc, and θac. All we need to do is set x = 1 in the
main relations (A12), (A13), and (A14), and invert them. We
find

rab = ln(cos φ sinh ρ +
√

1 + cos2 φ sinh2 ρ),

rbc =1

2
ln

(
1 + sin φ tanh ρ

1 − sin φ tanh ρ

)
,

θac = arctan

(
tan φ

cosh ρ

)
− φ. (A15)

Next, we can make the following checks. Let Rbc = 0, which
implies ρ = Rab and φ = 0. Then rab = Rab, rbc = 0, and
θac = 0 as expected. Now let Rab = 0, which implies ρ = Rbc

and φ = π/2. Then rab = 0, rbc = Rbc, and θac = 0, again, as
expected.

062324-13



BRUSCHI, SABÍN, AND PARAOANU PHYSICAL REVIEW A 95, 062324 (2017)

APPENDIX B: ELEMENTS OF THE COVARIANCE MATRIX OF THE FINAL STATE

Here we reproduce the entries of the final state (26), given that the initial state is thermal, with Williamson form σ th =
diag(νa,νb,νc,νa,νb,νc) . The algebra necessary to obtain them is straightforward, although cumbersome and not illuminating.
For this reason we present the final results only. We have

α := [νa + (νc − νa) sin2 θac] cosh2 rab + νb sinh2 rab,

β := νb cosh2 rab cosh2 rbc + [νa + (νc − νa) sin2 θac] sinh2 rab cosh2 rbc − (νc − νa)

2
sin(2 θac) sinh rab sinh(2 rbc)

+ [νc − (νc − νa) sin2 θac] sinh2 rbc,

γ := [νc − (νc − νa) sin2 θac] cosh2 rbc − (νc − νa)

2
sin2 θac sinh rab sinh(2 rbc) + νb cosh2 rab sinh2 rbc

+ [νa + (νc − νa) sin2 θac] sinh2 rab sinh2 rbc,

δ := − 1

2
(νc − νa) sin(2 θac) cosh rbc cosh rab + 1

2
[νb + νa + (νc − νa) sin2 θac] sinh(2 rab) sinh rbc,

ε := 1

2
sinh(2 rab) cosh rbc [νb + νa + (νc − νa) sin2 θac] − (νc − νa)

2
sin(2 θac) sinh rbc cosh rab,

ζ := 1

4
[−2 (νc − νa) cosh(2 rbc) sin(2 θac) sinh rab + (νa + 2 νb + νc) cosh2 rab sinh(2 rbc)

− (νc − νa) cos(2 θac) (sinh2 rab − 1) sinh(2 rbc)]. (B1)

APPENDIX C: COVARIANCE MATRIX AFTER HOMODYNE DETECTION

In this Appendix we derive the expression of the covariance matrix of modes a and c after the homodyne detection of mode b.
We start by adapting our vectors and covariance matrices to the notation used in [57]. In particular, we need to change

the basis of the vector of operators X, and consequently the covariance matrix, from the one we employed in this work to
X = (qa,pa,qc,pc,qb,pb)Tp, where qa = a + a† and pa = −i(a − a†) are the position and momentum quadratures of mode a

and analogous formulas hold for modes b and c. We choose b as the last mode since it is the one we intend to measure. The linear
operator K which implements this change of basis is given by the (proportional to) unitary matrix

K =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0
−i 0 0 i 0 0
0 0 1 0 0 1
0 0 −i 0 0 i

0 1 0 0 1 0
0 −i 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎠, (C1)

and then the three-mode state of interest in the new basis is given by σ ′ = K σ K †. This has the expression

σ ′ = 2

⎛
⎜⎜⎜⎜⎜⎝

α 0 δ 0 ε 0
0 α 0 δ 0 −ε

δ 0 γ 0 ζ 0
0 δ 0 γ 0 −ζ

ε 0 ζ 0 β 0
0 −ε 0 −ζ 0 β

⎞
⎟⎟⎟⎟⎟⎠. (C2)

Now, we can conveniently structure the state σ ′ matrix as

σ ′ =
(

A C

CT B

)
, (C3)

which will prove convenient when applying the formalism of homodyne measurement. Note that A and B would be the reduced
ac and b states, respectively, while C contains all the correlations among the ac and b subsystems. If we perform a perfect
homodyne detection of a linear combination of the quadratures qb, pb, and xθ = (cos θqb + sin θpb), the resulting two-mode (ac)
state is [57]

σ
(ac)
out|θ = A − C (π θ Bπ θ )−1 CT , (C4)
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where the matrices A, C, and B, can be read out of Eq. (C3) and π θ is the projector associated to a measurement of xθ :

π θ =
(

cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
. (C5)

Note that θ = 0 and π/2 correspond to the particular cases analyzed in [57], namely the projectors of the quadratures qb and pb,
respectively. The inverse in Eq. (C4) needs to be understood as a Moore-Penrose pseudoinverse. As expected, the reduced ac

state A is modified by the projective measurement as long as there are some correlations with mode b, which are codified in the
matrix C. Note that for the sake of simplicity we are considering that the measurement is perfect—that is, the efficiency is 1.

As a straightforward application of Eq. (C4), we obtain the matrix σ
(ac)
out|θ in the notation of [57]. We find

σ
(ac)
out|θ = 2

⎛
⎜⎜⎜⎜⎜⎝

α − ε2 cos2 θ
β

− ε2 sin 2θ
2β

δ − εζ cos2 θ

β
− εζ sin 2θ

2β

− ε2 sin 2θ
2β

α − ε2 sin2 θ
2β

− εζ sin 2θ

2β
δ − εζ sin2 θ

β

δ − εζ cos2 θ

β
− εζ sin 2θ

2β
γ − ζ 2 cos2 θ

β
− ζ 2 sin 2θ

2β

− εζ sin 2θ

2β
δ − εζ sin2 θ

β
− ζ 2 sin 2θ

2β
γ − ζ 2 sin2 θ

β

⎞
⎟⎟⎟⎟⎟⎠, (C6)

which we transform back to original basis and obtain

σ
(ac)
out|θ =

⎛
⎜⎜⎜⎜⎜⎝

α − ε2

2β
δ − εζ

2β
− e2iθ ε2

2β
− e2iθ εζ

2β

δ − εζ

2β
γ − ζ 2

2β
− e2iθ εζ

2β
− e2iθ ζ 2

2β

− e−2iθ ε2

2β
− e−2iθ εζ

2β
α − ε2

2β
δ − εζ

2β

− e−2iθ εζ

2β
− e−2iθ ζ 2

2β
δ − εζ

2β
γ − ζ 2

2β

⎞
⎟⎟⎟⎟⎟⎠. (C7)

A lengthy computation indicates that the resulting symplectic eigenvalues do not depend on the value of θ . Moreover, the same
happens with the symplectic eigenvalues of the partial transpose and the average number of photons. As a consequence, both the
entanglement and the coherence are independent of θ . Therefore, in the main text we restrict ourselves to the analysis of σ

(ac)
out|q ,

which corresponds to θ = 0:

σ
(ac)
out|q =

⎛
⎜⎜⎜⎜⎜⎝

α − ε2

2β
δ − εζ

2β
− ε2

2β
− εζ

2β

δ − εζ

2β
γ − ζ 2

2β
− εζ

2β
− ζ 2

2β

− ε2

2β
− εζ

2β
α − ε2

2β
δ − εζ

2β

− εζ

2β
− ζ 2

2β
δ − εζ

2β
γ − ζ 2

2β

⎞
⎟⎟⎟⎟⎟⎠. (C8)

APPENDIX D: SMALLEST SYMPLECTIC EIGENVALUE OF THE PARTIAL TRANSPOSE
AFTER HOMODYNE DETECTION

We reproduce the full expression of the smallest symplectic eigenvalue ν̃
out|q
− of the partial transpose of the state of modes a

and c after homodyne detection of the modes b, and its counterpart for extremely close frequencies (i.e., νa = νb = νc ≡ ν). We
have

(ν̃out|q
− )2 = α2 + γ 2 − 2 δ2 − (α ε2 − 2 δ ε ξ + γ ξ 2)

2 β

− 1

2 β

√
−4 β (α γ − δ2)(α β γ − β δ2 − γ ε2 + 2 δ ε ξ − α ξ 2) + [α2 β + β (γ 2 − 2 δ2) − α ε2 + ξ (2 δ ε − γ ξ )]2,

(ν̃out|q
− )2 = 1 + 2 sh2

ab + 2 sh2
bc + 10 sh2

ab sh2
bc + 8 sh4

ab sh2
ab

1 + 2 sh2
ab + 2 sh2

bc + 2 sh2
ab sh2

bc

− 4 sh2
ab sh2

bc

√
1 + 3 sh2

ab + 2 sh2
bc + 8 sh2

ab sh2
bc + 2 sh4

ab + 10 sh4
ab sh2

bc + 4 sh6
ab sh2

bc

1 + 2 sh2
ab + 2 sh2

bc + 2 sh2
ab sh2

bc

. (D1)
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