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Bipartite entanglement in fermion systems
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We discuss the relation between fermion entanglement and bipartite entanglement. We first show that an exact
correspondence between them arises when the states are constrained to have a definite local number parity.
Moreover, for arbitrary states in a four-dimensional single-particle Hilbert space, the fermion entanglement is
shown to measure the entanglement between two distinguishable qubits defined by a suitable partition of this
space. Such entanglement can be used as a resource for tasks like quantum teleportation. On the other hand,
this fermionic entanglement provides a lower bound to the entanglement of an arbitrary bipartition, although in this
case the local states involved will generally have different number parities. Finally, the fermionic implementation
of the teleportation and superdense coding protocols based on qubits with odd and even number parity is discussed,
together with the role of the previous types of entanglement.
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I. INTRODUCTION

Entanglement is a fundamental feature of quantum mechan-
ics, and its quantification and characterization have been one
of the main goals of quantum information theory for the last
decades [1–3]. It is also at the heart of quantum information
processing [4], being recognized as the key ingredient for
quantum-state teleportation [5] and the resource that makes
some pure state-based quantum algorithms exponentially
faster than their classical counterparts [6].

Although entanglement has been extensively studied for
systems of distinguishable constituents, less attention has been
paid to the case of a system of indistinguishable fermions. Only
in recent years has the topic gained increasing strength [7–26].
Mainly two approaches may be recognized in the attempts to
generalize the definition of entanglement to fermion systems:
The first is entanglement between modes [13–17], where the
system and subsystems consist of some collection of single-
particle (SP) modes that can be shared. This approach requires
us to fix some basis of the SP state space and then to specify the
modes that constitute each subsystem. The other approach is
known as entanglement between particles [7–12,18–23,25],
where the indistinguishable constituents of the system are
taken as subsystems and entanglement is defined beyond
symmetrization.

In a previous work [24] we defined an entropic measure
of mode entanglement in fermion systems which is shown
to be a measure of entanglement between particles after an
optimization over bases of the SP state space is performed.
Moreover, when the SP state-space dimension is four and the
particle number is fixed at two, this entanglement measure
reduces to the Slater correlation measure defined in [7]. In the
present work we first show that the entanglement between two
distinguishable qubits is the same as that measured by this
fermionic entanglement entropy when the fermionic states
are constrained to have a fixed local number parity in the
associated bipartition of the SP space. Then we use this
correspondence to show that, in fact, any state of a fermion
system with a four-dimensional SP Hilbert space may be
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seen as a state of two distinguishable qubits for a suitable
bipartition of the SP space, with its entanglement measured
by the fermionic entanglement entropy. On the other hand,
for an arbitrary bipartition involving no fixed local number
parity the fermionic entanglement entropy is shown to provide
a lower bound to the associated bipartite entanglement. As
an application we use these results to show that qubit-based
quantum circuits may be rewritten as mode-based fermionic
circuits if we impose the appropriate restriction to the occu-
pation numbers, recovering reversible classical computation
when the input states are Slater determinants (in the basis of
interest). Two types of fermionic qubit representations, based
on odd- or even-number-parity qubits, are seen to naturally
emerge. Finally, we show that the extra bipartite entanglement
that can be obtained by relaxing this local parity restriction can
in principle be used for protocols such as superdense coding.

The formalism and theoretical results are provided in
Sec. II, while their applications are discussed in Sec. III.
Conclusions are, finally, provided in Sec. IV.

II. FORMALISM

A. Fermionic entanglement entropy and concurrence

We consider a fermion system with a single-particle Hilbert
spaceH. We deal with pure states |ψ〉 which do not necessarily
have a fixed particle number, although the number parity will
be fixed, in agreement with the parity superselection rule [27]:
P |ψ〉 = ±|ψ〉, with P = exp[iπ

∑
j c

†
j cj ] the number parity

operator. Here cj , c
†
j denote fermion annihilation and creation

operators satisfying the usual anticommutation relations

{ci,cj } = 0, {ci,c
†
j } = δij . (1)

In [24] we defined a one-body entanglement entropy for a
general pure fermion state |ψ〉,

SSP(|ψ〉) = Tr [h(ρSP)], (2)

where ρSP
ij = 〈c†j ci〉 ≡ 〈ψ |c†j ci |ψ〉 is the one-body density ma-

trix of the system and h(p) = −p log2 p − (1−p) log2(1−p).
Equation (2) is proportional to the minimum, over all SP bases
of H, of the average entanglement entropy between an SP
mode and its orthogonal complement (which in turn arises
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from a properly defined measurement of the occupation of an
SP mode) and vanishes iff |ψ〉 is a Slater determinant (SD),
i.e., |ψ〉 = c

†
1 . . . c

†
k|0〉. This definition is easily extended to

quasiparticle (qsp) modes, in which case [24]

Sqsp(|ψ〉) = −Tr [ρqsp log2(ρqsp)], (3)

where ρqsp is now the extended one-body density matrix

ρqsp = 1 −
〈(

c
c†

)
(c† c)

〉
=

(
ρSP κ

−κ̄ 1 − ρ̄SP

)
, (4)

with κij = 〈cj ci〉, −κ̄ij = 〈c†j c†i 〉, and (1 − ρ̄SP)ij = 〈cj c
†
i 〉.

Equation (3) vanishes iff |ψ〉 is a quasiparticle vacuum or SD
and satisfies Sqsp(|ψ〉) � SSP(|ψ〉), with Sqsp(|ψ〉) = SSP(|ψ〉)
iff κ = 0.

While Eq. (2) is invariant under unitary transformations
ci → ∑

k Ūkick , UU † = I , which lead to ρSP → U †ρSPU ,
Eq. (4) remains invariant under general Bogoliubov transfor-
mations

ci → ai =
∑

k

Ūkick + Vkic
†
k, (5)

where the matrices U and V satisfy UU † + V V † = 1 and
UV T + V UT = 0 in order that {ai,a

†
i } fulfill the fermionic

anticommutation relations [28]. In this case ρqsp → W †ρqspW ,
with W = (U V

V̄ Ū
) a unitary matrix. In terms of the operators

diagonalizing ρqsp, we then have

1 −
〈(

a
a†

)
(a† a)

〉
=

(
f 0
0 1 − f

)
,

with fkl = fkδkl and fk,1 − fk the eigenvalues of ρqsp.
For an SP space H of dimension 4, ρqsp becomes an 8 × 8

matrix, and it was shown that its eigenvalues for a pure state
|ψ〉 are fourfold degenerate and can be written as [24]

f± = 1 ±
√

1 − C2(|ψ〉)
2

, (6)

where C(|ψ〉) = 2
√

f+f− ∈ [0,1] is called fermionic con-
currence, in analogy with that defined for two-qubits [29].
Equation (3) then becomes an increasing function of C(|ψ〉),
vanishing iff the latter vanishes. This fermionic concurrence
can also be explicitly evaluated: Writing a general even-
number-parity pure state in such a space as

|ψ〉 =
⎛
⎝α0 + 1

2

∑
i,j

αij c
†
i c

†
j + α4c

†
1c

†
2c

†
3c

†
4

⎞
⎠|0〉, (7)

where αij = −αji , i,j = 1, . . . ,4, and |α2
0 | + |α2

4 | +
1
2 tr α†α = 1, then ρSP = αα† + |α4|21, κ = α∗

0α + α4α̃
∗, with

α̃ij = 1
2

∑
k,l εijklαkl (εijkl denotes the fully antisymmetric

tensor), and it can be shown that [24]

C(|ψ〉) = 2|α12α34 − α13α24 + α14α23 − α0α4|. (8)

For two-fermion states (α0 = α4 = 0) it reduces to the Slater
correlation measure defined in [7] and [9], for which κ = 0
and f± become the eigenvalues (twofold degenerate) of ρSP.
An expression similar to (8) holds for an odd-number-parity
state (see [24] and Sec. II E). Moreover, in such SP space the

concurrence and the associated entanglement of formation can
also be explicitly determined for arbitrary mixed states [7,24].

A four-dimensional SP space (which generates an eight-
dimensional state space for each value of the parity P )
then becomes exactly solvable, also being the first nontrivial
dimension since for dimH � 3 any definite-parity pure state
can be written as an SD or quasiparticle vacuum [24], as
verified by (8) [C(|ψ〉) = 0 if one of the SP states is left
empty]. It is also physically relevant, since it can accommodate
the basic situation of two spin-1/2 fermions at two sites or,
more generally, states of spin-1/2 fermions occupying just
two orbital states, as in a double-well scenario. The relevant
SP space in these cases is HS ⊗ HO , with HS the spin space
and HO the two-dimensional subspace spanned by the two
orbital states. In particular, just four SP states are essentially
used in recent proposals for observing Bell violation from
single-electron entanglement [30].

B. Bipartite entanglement as two-fermion entanglement

Let us now consider a system of two distinguishable qubits
prepared in a pure state α+|00〉 + α−|11〉, i.e.,

|ψ〉AB = α+| ↑〉A ⊗ | ↑〉B + α−| ↓〉A ⊗ | ↓〉B, (9)

where |α2
+| + |α2

−| = 1 and the notation indicates a possible
realization in terms of two spin-1/2 particles located at
different sites A and B, with their spins aligned parallel or
antiparallel to a given (z) axis. We can also consider the latter
state as a two-fermion state of a spin-1/2 fermion system with
SP space H = HS ⊗ HO ,

|ψ〉f = (α+c
†
A↑c

†
B↑ + α−c

†
A↓c

†
B↓)|0〉, (10)

with |0〉 the fermionic vacuum. A measurement of spin
“A” or “B” along z can be described in the fermionic
representation by the operators 	Sμ = c

†
SμcSμ, S = A,B,

μ =↑ , ↓, which satisfy 	2
Sμ = 	Sμ and [	Sμ,	S ′μ′] = 0,

with
∑

μ 	Sμ|ψ〉f = |ψ〉f . Furthermore, we can describe any
“local” operator on A or B in terms of Pauli operators if we
define, for S = A,B,

σSx = c
†
S↑cS↓ + c

†
S↓cS↑, (11a)

σSy = −i(c†S↑cS↓ − c
†
S↓cS↑), (11b)

σSz = c
†
S↑cS↑ − c

†
S↓cS↓, (11c)

which verify the usual commutation relations [σSj ,σS ′k] =
2iδSS ′εjkl (εjkl is the antisymmetric tensor), with σ 2

Sj |ψ〉f
= |ψ〉f .

It is also apparent that state (9) is separable iff α+ = 0 or
α− = 0, which is precisely the condition which ensures that
state (10) is an SD. Moreover, the standard concurrence [29]
of state (9) is identical to the fermionic concurrence, (8), of
state (10),

C(|ψ〉AB) = 2|α+α−| = C(|ψ〉f ), (12)

with f± = |α2
±| in (6). Entangled two-qubit states (9), then

correspond to two-fermion states (10) which are not SDs, and
vice versa.
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Such correspondence remains, of course, valid for any
bipartite two-qubit state

|ψ〉AB =
∑
μ,ν

αμν |μ〉A ⊗ |ν〉B, (13)

which in the fermionic representation becomes

|ψ〉f =
∑
μ,ν

αμνc
†
Aμc

†
Bν |0〉. (14)

We now obtain C(|ψ〉AB) = 2|det α| = C(|ψ〉f ), according to
the standard and fermionic [Eq. (8)] expressions. These states
can in fact be taken to the previous Schmidt forms (9) and (10)
(with |α±| the singular values of the matrix α) by means of local
unitary transformations, which in the fermionic representation
become cSμ → ∑

ν Ū S
νμcSν .

Previous considerations remain valid also for general
bipartite states of systems of arbitrary dimension [μ =
1, . . . ,dA, ν = 1, . . . ,dB in (13) and (14)], if the SP space
of the associated fermionic system (of dimension dA + dB) is
decomposed as HA ⊕ HB . The SP density matrix ρSP derived
from state (14) takes, in the general case, the blocked form

ρSP =
(

αα† 0
0 αT ᾱ

)
=

(
ρA 0
0 ρB

)
, (15)

i.e., 〈c†SνcS ′μ〉 = δSS ′ (ρS)μν , where ρA(B) are the local reduced
density matrices TrB(A)|ψ〉AB〈ψ | of state (13) in the standard
basis. Hence, in the fermionic setting ρSP contains the
information of both local states and its diagonalization implies
that of both ρA and ρB . Its eigenvalues will then be those of
these matrices, hence being twofold degenerate and equal to
the square of the singular values of the matrix α (becoming
f± = |α±|2 in the two-qubit case). In the general case, the
entanglement entropy of state (13) can then be written as

E(A,B) = S(ρA) = S(ρB) = 1
2S(ρSP), (16)

which holds for the von Neumann entropy S(ρ) =
−Tr [ρ log2 ρ] as well as for any trace form entropy [31]
S(ρ) = Tr [f (ρ)] [f concave, f (0) = f (1) = 0]. Thus, the
entanglement entropy of the general bipartite state, (13), is
just proportional to the fermionic entanglement entropy [as
defined in (2)] of the associated state, (14). Hence, for any di-
mension there is an exact correspondence between the bipartite
states, (13), and the two-fermion states, (14), with local op-
erators represented by linear combinations of one-body local
fermion operators c

†
SνcSμ (satisfying [c†AμcAν,c

†
Bμ′cBν ′ ] = 0)

and |ψ〉AB entangled iff |ψ〉f is not an SD.
This equivalence holds also for mixed states i.e., convex

combinations of states (13) and (14). The bipartite states will
be separable, i.e., convex combinations of product states [32]
iff the associated fermionic mixed state can be written as a
convex combination of SDs of the form of (14). In particular,
for two-qubit states a four-dimensional SP fermion space
suffices and the standard mixed-state concurrence [29] will
coincide exactly with the fermionic mixed-state concurrence
[7,20–22,24] of mixtures of states (14).

C. Bipartite entanglement as quasiparticle
fermion entanglement

Other fermionic representations of state (13) with similar
properties are also feasible. For instance, in the two-qubit case
we can perform a particle-hole transformation of the fermion
operators with spin down,

c
†
S↑ −→ c

†
S↑, c

†
S↓ −→ cS↓, S = A,B, (17)

such that the aligned state | ↓〉A ⊗ | ↓〉B now corresponds to
the vacuum of the new operators (|0〉 −→ c

†
A↓c

†
B↓|0〉), with the

new c
†
S↓ creating a hole. The remaining states of the standard

basis become one and two particle-hole excitations. We can
then rewrite state (10) as

|ψ̃〉f = (α− + α+c
†
A↑c

†
A↓c

†
B↑c

†
B↓)|0〉, (18)

i.e., as a superposition of the vacuum plus two particle-hole
excitations, with each “side” now having either zero or two
fermions, i.e., an even local number parity (eiπNS = 1 for
S = A,B, NS = ∑

μ c
†
SμcSμ). It is apparent that state (18) is a

quasiparticle vacuum or SD iff α+ = 0 or α− = 0. Moreover,
for state (18) Eq. (8) leads again to C(|ψ̃〉f ) = 2|α+α−|,
implying equivalence, (12), between the bipartite and the
present generalized fermionic concurrrence, invariant under
Bogoliubov (and hence particle-hole) transformations.

The local Pauli operators, (11), now become

σ̃Sx = c
†
S↑c

†
S↓ + cS↓cS↑, (19a)

σ̃Sy = −i(c†S↑c
†
S↓ − cS↓cS↑), (19b)

σ̃Sz = c
†
S↑cS↑ + c

†
S↓cS↓ − 1, (19c)

which verify the same SU(2) commutation relations
[σ̃Sj ,σ̃S ′k] = 2iδSS ′εjkl σ̃Sl , with σ̃ 2

Sj |ψ̃〉f = |ψ̃〉f ∀j . Any lo-
cal operation can be written in terms of these operators, which
now represent local particle-hole creation or annihilation and
counting.

Similarly, we may write the general two-qubit state, (13), as

|ψ̃〉f =
∑
μ,ν

αμν(c†A↑c
†
A↓)nμ (c†B↑c

†
B↓)nν |0〉, (20)

where μ,ν = ± and n− = 0, n+ = 1. This state can be
brought back to the “Schmidt” form, (18), by means of “local”
Bogoliubov transformations cS↑ → uScS↑ + vSc

†
S↓, cS↓ →

uScS↓ − vSc
†
S↑, |u2

S | + |v2
S | = 1, which will diagonalize ρqsp

(see below) and change the vacuum as |0〉 → [
∏

S=A,B (uS −
vSc

†
S↑c

†
S↓)]|0〉. It is again verified that for this state Eq. (8)

leads to C(|ψ̃〉f ) = 2|det α| = 2|α+α−|, with |α±| the
singular values of the matrix α. State (13) is then entangled iff
state (20) is not a quasiparticle vacuum or SD (C(|ψ̃〉f ) > 0).

In this case the extended density matrix ρqsp is to be
considered, with elements 〈c†SνcS ′μ〉 = δSS ′δμνpS , 〈cSνcS ′μ〉 =
δSS ′δν,−μ(−1)nμqS , where pA(B) = |α++|2 + |α+−(−+)|2,
qA(B) = α++α∗

−+(+−) + α+−(−+)α
∗
−−. For the Schmidt

form, (20), ρqsp becomes diagonal [pA(B) = |α+|2, qA(B) = 0].
Reduced states ρA(B) are now to be recovered as particular
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blocks of ρqsp:

ρS = 1

2

(
1 + 〈σ̃Sz〉 〈σ̃Sx〉 − i〈σ̃Sy〉

〈σ̃Sx〉 + i〈σ̃Sy〉 1 − 〈σ̃Sz〉
)

=
(

〈c†S↑cS↑〉 〈cS↓cS↑〉
〈c†Si↑c

†
S↓〉 〈cS↑c

†
S↑〉

)
. (21)

Diagonalization of ρqsp will, nevertheless, still imply that of
ρA and ρB . It is verified that its eigenvalues are f± = |α±|2,
fourfold degenerate, with |α±| the singular values of matrix α.
We then have

E(A,B) = S(ρA) = S(ρB) = 1
4S(ρqsp), (22)

again valid for any trace-form entropy S(ρ) = Tr [f (ρ)]. And
for convex mixtures of states of the form of (20) (whose rank
will be at most 4), the mixed-state fermionic concurrence, as
defined in [24], will again coincide exactly with the standard
two-qubit concurrence.

The same considerations hold for general bipartite
states, (13), of systems of arbitrary dimension if a particle-hole
transformation (or, in general, a Bogoliubov transformation)
is applied to the original fermion operators in (14). In this
case Eq. (22) is valid for entropic functions satisfying f (p) =
f (1 − p) (a reasonable assumption, as p represents an average
occupation number of particle or hole), since ρqsp will have
eigenvalues fk and 1 − fk , now twofold degenerate, with fk

those of the local states ρA(B).
A final remark is that the representations, (11) and (19), of

Pauli operators can coexist independently since

[σSj ,σ̃S ′k] = 0, (23)

∀ j,k, for both S ′ �= S and S ′ = S [SU(2) × SU(2) struc-
ture [33] at each side A or B]. Moreover, the even-local-parity
states, (20), belong to the kernel of operators, (11), while the
odd-local-parity states, (14) (eiπNS = −1), belong to the kernel
of the operators, (19),

σSj |ψ̃〉f = σ̃Sj |ψ〉f = 0, (24)

for S = A,B and j = x,y,z. Hence, the unitary operators
ei

∑
j λj σSj (ei

∑
j λj σ̃Sj ) will become identities when applied to

states |ψ̃〉f (|ψ〉f ). A fermion system with an SP space of
dimension 4 can then accommodate two distinct two-qubit
systems, one for each value of the local number parity, keeping
the total number parity fixed [eiπ(NA+NB ) = 1].

D. Bipartite entanglement with no fermion entanglement

Previous examples show an exact correspondence between
bipartite and fermion entanglement. The representations con-
sidered involve a fixed value not only of the global parity, but
also of the local number parity. It is apparent, however, that
it is also possible to obtain bipartite entanglement from SDs
by choosing appropriate partitions of the SP space, although
in this case the local parity will not be fixed. For instance, the
single-fermion state

|ψ〉f = (αc
†
A↑ + βc

†
B↑)|0〉, (25)

where the fermion is created in a state with no definite position
if αβ �= 0, leads obviously to S(ρsp) = 0 but corresponds to an

entangled state α| ↑〉A ⊗ |0〉B + β|0〉A ⊗ | ↓〉B . However, the
local states on each side have different number parities. The
same occurs with the two-fermion SD (αc

†
A↑ + βc

†
B↑)(α′c†A↓ +

β ′c†B↓)|0〉, which has zero fermionic concurrence but corre-
sponds to the entangled state αβ ′|↑〉A ⊗ |↓〉B − α′β|↓〉A ⊗
|↑〉B + αα′|↑↓〉A ⊗ |0〉B + ββ ′|0〉A ⊗ |↑↓〉B .

Hence, although there is entanglement with respect to the
(A,B) partition, it is not possible to make arbitrary linear
combinations of the eigenstates of ρA or ρB , since they may
not have a definite number parity. While such entanglement
may be sufficient for observing Bell inequalities violation,
as proposed in [30], it can exhibit limitations for other tasks
involving superpositions of local eigenstates, as discussed in
Sec. III. This effect will occur whenever one of the fermions
is created in a state which is “split” by the chosen partition
of the SP space. With the restriction of a fixed number parity
on each “side” an equivalence between bipartite and fermionic
entanglement can become feasible, as discussed next. Note that
such restriction directly implies blocked SP density matrices
ρSP and ρqsp, since all contractions 〈c†AicBj 〉 and 〈c†Aic

†
Bj 〉

linking both sides do not conserve the local parity and will
therefore vanish ∀ i,j .

E. Fermion entanglement as two-qubit entanglement

Let us now return to the two-fermion state, (10). The reason
the two particles become distinguishable is that the “position”
observable allows us to split the SP state space H as the direct
sum of two copies of the spin space HS , H = HSA

⊕ HSB
,

with A〈μ|μ〉B = 〈0|cAμc
†
Bμ|0〉 = 0 for μ =↑ or ↓. The latter

condition ensures in fact that there is just one fermion on
each side (NA(B)|ψ〉f = |ψ〉f ). However, for a more general
two-fermion state, like that considered in the previous section,
it is no longer possible to perform a measurement of the spin
of only one particle by coupling it with position since both
particles may be found at the same site.

But now nothing prevents us from turning back the
argument and stating that if, for an arbitrary state |ψ〉f , it
is possible to split H as H = HA ⊕ HB , where HA and HB

contain just one fermion (NA|ψ〉f = NB |ψ〉f = 1), then we
again recover a system of two distinguishable qubits. The latter
feature leads us to the following important result:

Lemma 1. Let |ψ〉f be an arbitrary pure state of a fermion
system with a four-dimensional SP space H, having a definite
number parity yet a not necessarily fixed fermion number.
Then the entropy, (3), of the corresponding density matrix
ρqsp is proportional to the entanglement entropy between the
two distinguishable qubits, which can be extracted just by
measuring the appropriate observables.

Proof. We start with a general state |ψ〉f with even number
parity, which in this space will have the form of (7). For general
αij , α0, and α4 in (7), the basis of the SP space H determined
by the fermion operators {ci,c

†
i } cannot be split in order to

measure only one particle at each part. This fact remains true
even if α0 = α4 = 0, as α is a general antisymmetric matrix.
However, as proven in [24], it is always possible to find another
basis of H, determined by fermion operators {ai,a

†
i } related to

{ci,c
†
i } through a Bogoliubov transformation, such that state (7)
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can be rewritten as

|ψ〉f = (α+a
†
1a

†
2 + α−a

†
3a

†
4)|0〉, (26)

which is analogous to Eq. (10). Here |α±|2 = f± are just the
distinct eigenvalues, (6), of the extended density matrix ρqsp

determined by state (7), whereas {ai,a
†
i } are suitable quasi-

particle operators diagonalizing ρqsp. The concurrence, (8),
becomes C(|ψ〉f ) = 2|α+α−|.

We then recognize (26) as the Schmidt decomposition, (9),
of a two-qubit state written in the fermionic representa-
tion, (10), since, for instance, the sets {a†

1,a
†
3} and {a†

2,a
†
4} (anal-

ogous to {a†
A↑,a

†
A↓} and {a†

B↑,a
†
B↓}) span subspaces HA and

HB with NA = NB = 1 (NA(B)|ψ〉f = |ψ〉f ). And because
the Schmidt coefficients |α±|2 coincide with the eigenvalues of
ρqsp, we again obtain S(ρA) = S(ρB) = 1

4S(ρqsp) [Eq. (22)],
with the fermionic concurrence coinciding exactly with the
standard one.

The case of general odd-parity states, which in this SP space
are linear combinations of states with one and three fermions,

|ψ〉f =
4∑

i=1

βic
†
i |0〉 + β̃ici |0̄〉, (27)

where |0̄〉 = c
†
1c

†
2c

†
3c

†
4|0〉 and ci |0̄〉 = 1

3!

∑
j,k,l εijklc

†
j c

†
kc

†
l |0〉,

can be treated in a similar way, as they can be converted to even-
parity states of the form of (7) by a particle-hole transformation
of one of the states [i.e., c†1 → c1, |0〉 → c

†
1|0〉, leading to α0 =

β1, α4 = −β̃1, α1j = −βj , and αij = ∑
k εijk1β̃k for i,j =

2,3,4 in Eq. (7)]. They can then be also written in the form (26),
in terms of suitable quasiparticle operators diagonalizing ρqsp,
so that the previous considerations still hold. The concurrence
of the states, (27), given by [24] C(|ψ〉f ) = 2| ∑4

i=1 βiβ̃i |,
again becomes 2|α+α−|. �

Some further comments are in order here. First, just
the subspaces of H generated by {a†

1,a
†
2} and {a†

3,a
†
4} are

defined by (26), since any unitary transformation a
†
1(2) →∑

k=1,2 Uk,1(2)a
†
k (and similarly for a

†
3(4)) will leave it un-

changed (except for phases in α±).
Second, we may also reinterpret state (26) as a two-fermion

state with even local number parity if side A is identified with
operators {a†

1,a
†
2} and side B with {a†

3,a
†
4}, such that each side

has either zero or two fermions (even-number-parity qubits).
Still with even local number parity we may as well rewrite it
in the form of (18), i.e.,

|ψ〉f = (α− + α+ a
†
1a

†
3a

†
2a

†
4)|0〉, (28)

through a transformation a
†
i → ai for i = 3,4, with |0〉 →

a
†
3a

†
4|0〉. Here just the vacuum |0〉 and the completely occupied

state |0̄〉 are defined, since (28) remains invariant (up to a phase
in α+) by any unitary transformation a

†
i → ∑

k Ukia
†
k of the

operators a
†
i .

Finally, if |ψ〉f is a two-fermion state 1
2

∑
ij αij c

†
i c

†
j |0〉,

the previous considerations remain valid for an SP space H
of arbitrary dimension. In this case κ = 0 and it is always
possible to rewrite |ψ〉f as [7]

|ψ〉f =
∑

k

αka
†
ka

†
k̄
|0〉,

where |α2
k | are the eigenvalues of ρsp = αα† and {ak,ak̄}

are suitable fermion operators diagonalizing this matrix,
obtained through a unitary transformation ak(k̄) = ∑

i Ūik(k̄)ci

(satisfying [7] U †αŪ = α′ with α′ a block diagonal matrix
with 2 × 2 blocks αk( 0 1

−1 0)). The SP space can then be
written as HA ⊕ HB , with HA(B) the subspaces spanned by
the sets {a†

k(k̄)}, each containing one fermion. We thus obtain

S(ρA) = S(ρB) = 1
2S(ρSP) [Eq. (16)].

F. Fermion entanglement as minimum bipartite entanglement

We now demonstrate the second general result, con-
cerning the mode entanglement associated with general
decompositions H = HA ⊕ HB of a four-dimensional SP
space. Any many-fermion state can be written as |ψ〉f =∑

μ,ν αμν |μν〉, where μ(ν) labels orthogonal SDs on HA (HB)

and |μν〉 = [
∏

i∈HA
(c†i )n

μ

i ] [
∏

j∈HB
(c†j )n

ν
j ] |0〉 is an SD on H,

with n
μ

i = 0,1 the occupation of SP state i in state μ. The
ensuing reduced states ρA = ∑

μ,μ′(αα†)μμ′ |μ〉〈μ′| and ρB =∑
ν,ν ′(αT ᾱ)νν ′ |ν〉〈ν ′| satisfy Tr[ρA(B)OA(B)]=f 〈ψ |OA(B)|ψ〉f

for any operator depending just on the local fermions
{ci,c

†
i , i ∈ HA(B)}. The entanglement entropy associated with

this bipartition is then [26] E(A,B) = S(ρA) = S(ρB).
In the present case we may have either 2 + 2 bipartitions

(dimHA = dimHB = 2) or 1 + 3 bipartitions (dimHA = 1,
dimHB = 3). In the latter the entanglement is determined just
by the average occupation of the single state of HA [24] and
corresponds to the case where A has access to just one of
the SP states possibly occupied in |ψ〉f . A realization of a
2 + 2 partition is just that of spin-1/2 fermions which can be
at two different sites (one accessible to Alice and the other
to Bob), while a 1 + 3 bipartition could be one where Alice
has access to one site and just one spin direction, i.e., to the
knowledge of the occupation of the SP state A↑. It could also
apply to any asymmetric situation like that where spins are all
up (i.e., aligned along the field direction) but the fermions can
be in four different locations or orbital states, with only one
accessible to Alice.

Lemma 2. Let |ψ〉f be a general definite-number-parity
fermion state in an SP space H of dimension 4, and let H =
HA ⊕ HB be an arbitrary decomposition of H with HA and
HB of finite dimension. The entanglement entropy associated
with this bipartition satisfies

S(ρA) = S(ρB) � 1
4S(ρqsp). (29)

Equation (29) holds for any entropic form S(ρ) = Tr[f (ρ)]
[f concave, f (0) = f (1) = 0].

Hence, the fermionic entanglement represents the minimum
bipartite entanglement that can be obtained in such a space,
which is reached for those bipartitions arising from the normal
form, (26) or (28). The greater entanglement in a 2 + 2
bipartition is obtained at the expense of losing a fixed number
parity in the local reduced states. Note that S(ρqsp) vanishes
only if |ψ〉f is a quasiparticle vacuum or SD in some SP basis,
while S(ρA(B)) does so only when the previous condition holds
in a basis compatible with the chosen bipartition.

We actually show the equivalent majorization [34] relation

λ(ρA(B)) ≺ (f+,f−), (30)
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FIG. 1. Depiction of the eight even-number-parity fermion states
of four single-particle modes, partitioned such that the two modes on
the left of the dashed line belong to Alice, and the two modes on the
right to Bob. In the upper row are the states with odd local number
parity (one fermion for Alice and one fermion for Bob); in the bottom
row, those with even local number parity (Alice and Bob may have
zero or two fermions). The states in the bottom row can be formally
obtained from those in the top row by performing the particle-hole
transformations c

†
A2 ↔ cA2 and c

†
B2 ↔ cB2.

where λ(ρA(B)) denotes the spectrum of ρA or ρB sorted in
decreasing order and f+, f− = 1 − f+ � f+ are the distinct
eigenvalues, (6) (fourfold degenerate), of ρqsp. Equation (30)
is then equivalent to the condition λmax � f+, with λmax

the largest eigenvalue of ρA(B), and implies (29), while (29)
implies (30) if valid for any entropic function f [35].

Proof. Consider first a general even-parity state, (7), and a
2 + 2 decomposition H = HA ⊕ HB , with HA ≡ H12, HB ≡
H34, and Hij the subspace generated by {c†i ,c†j }. Changing to
the notation A1, A2, B1, and B2 for SP states 1, 2, 3, and 4, we
can rewrite (7) as the sum of states of the form of (14) and (20)
(Fig. 1),

|ψ〉f =
∑
μ,ν

βμνc
†
Aμ

c
†
Bν

|0〉 +
∑
μ,ν

β̃μν

(
c
†
A1

c
†
A2

)nμ
(
c
†
B1

c
†
B2

)nν |0〉,

(31)

where μ,ν = 1,2, βμν = αμ,ν+2, nμ = μ − 1, β̃11 = α0,
β̃22 = α4, β̃12 = α34, and β̃21 = α12. The first (second) sum
in (31) is the odd (even) local number-parity component.

After local unitary transformations cSμ → ∑
ν Ū S

νμcSν , S =
A,B, which will not affect the vacuum or the even local parity
component (except for phases in β̃μν , determined by det US),
we can set βμν diagonal. Similarly, after local Bogoliubov
transformations cS1 → uScS1 + vSc

†
S2

, cS2 → uScS2 − vSc
†
S1

,

|u2
S | + |v2

S | = 1, with |0〉 → [
∏

S=A,B (uS − vSc
†
S1

c
†
S2

)]|0〉, we
can set β̃μν diagonal as discussed in Sec. II C. Though
modifying the vacuum, they will not change the form of the
odd-local-parity component except for phases in βμν . Thus,
by local transformations it is possible to rewrite (31) as

|ψ〉f = (
β1c

†
A1

c
†
B1

+ β2c
†
A2

c
†
B2

+ β̃1 + β̃2c
†
A1

c
†
A2

c
†
B1

c
†
B2

)|0〉,
(32)

where |βμ| and |β̃μ| are the singular values of the 2 × 2
matrices β and β̃ in (31). Equation (32) is the Schmidt
decomposition for this partition, with (|β2

1 |,|β2
2 |,|β̃2

1 |, |β̃2
2 |)

the eigenvalues of the reduced density matrices ρA and ρB of
modes (A1,A2) and (B1,B2), respectively.

Now, suppose that λmax = |β2
1 |. We have

|β1|2 � |β1|2 + |β̃2|2 = 〈
c
†
A1

cA1

〉
. (33)

But 〈c†A1
cA1〉 = ∑8

k=1 |WA1,k|2fk , where fk are the eigenvalues
of ρqsp (equal to f+ or f−) and W is the unitary matrix
diagonalizing ρqsp (

∑8
k=1 |WA1,k|2 = 1). Therefore,

f− �
〈
c
†
A1

cA1

〉
� f+. (34)

Equations (33) and (34) imply |β1|2 � f+, which demonstrates
Eq. (30) and hence (29) for a general 2 + 2 bipartition HA ⊕
HB . For λmax equal to any other coefficient the proof is similar.

Moreover, Eq. (34) also shows that the sorted spec-
trum λ(ρA1(A2,B)) = (〈c†A1

cA1〉,1 − 〈c†A1
cA1〉)↓ associated with

the 1 + 3 bipartition HA1 ⊕ HA2,B satisfies λ(ρA1,(A2,B)) ≺
(f+,f−). In the latter S(ρA1 ) is the entanglement between the
SP mode A1 and its orthogonal complement as defined in [24]
and [26], determined by the average occupation 〈c†A1

cA1〉 of
the mode. Hence, Eqs. (29) and (30) hold as well for any 1 + 3
bipartition.

And equality in (29) for all entropic functions is evidently
reached only for those bipartitions arising from the normal
forms (26)–(28): Considering the nontrivial case f+ < 1, if
equality in (29) is to hold for all entropies, necessarily ρA(B)

should be of rank 2 with λ(ρA(B)) = (f+,f−). For a 1 + 3
bipartition, this identity directly implies 〈c†A1

cA1〉 = f+ or f−
and hence a bipartition arising from a normal form (26)–(28),
where A ≡ A1 is one of the SP states of the normal basis. And
for a 2 + 2 bipartition, it implies that the two eigenstates of
ρA with nonzero eigenvalues f± should have the same number
parity, since otherwise Eq. (8) would imply C(|ψ〉f ) = 0 and
therefore f+ = 1, in contrast with the assumption. Hence this
bipartition must arise from a normal form, (26) or (28).

The demonstration of previous results for odd-global-
number-parity states is similar, as they can be rewritten as
even-parity states after a particle-hole transformation. �

Some further comments are also in order. We may rewrite
state (32) as

|ψ〉f = √
p−|ψ−〉f + √

p+|ψ+〉f , (35)

where |ψ−〉f = 1√
p−

(β1c
†
A1

c
†
B1

+ β2c
†
A2

c
†
B2

)|0〉, |ψ+〉f =
1√
p+

(β̃1 + β̃2c
†
A1

c
†
A2

c
†
B1

c
†
B2

)|0〉 are the normalized odd-

and even-local-parity components, and p− = |β2
1 | + |β2

2 |,
p+ = |β̃2

1 | + |β̃2
2 | = 1 − p−. We then see that for the von

Neumann entropy, we obtain

S(ρA) = S(ρB ) = p−S(ρ−
A ) + p+S(ρ+

A ) + S(p), (36)

where the first two terms represent the average of
the entanglement entropies of the odd- and even-local-

parity components [S(ρ−
A ) = −∑

μ

|β2
μ|

p−
log2

|β2
μ|

p−
, S(ρ+

A ) =
−∑

μ

|β̃2
μ|

p+
log2

|β̃2
μ|

p+
] while S(p) = −∑

ν=± pν log2 pν is the
additional entropy arising from the mixture of both local
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parities. We then have 0 � S(ρA) � 2, with the maximum
S(ρA) = 2 reached iff S(ρ±

A ) = 1 and p± = 1
2 .

On the other hand, the fermionic concurrence, (8), of
state (32) is just

C(|ψ〉f ) = 2|β1β2 + β̃1β̃2|. (37)

It then satisfies

|p−C− − p+C+| � C(|ψ〉f ) � p−C− + p+C+, (38)

where C± = C(|ψ±〉f ) = 2(|β̃1β̃2|/p+
|β1β2|/p−) are the concurrences of

the even- and odd-local-parity components. We then see, for
instance, that for maximum bipartite entanglement S(ρA) = 2,
C± = 1 and hence C(|ψ〉f ) can take any value between 0 and
1, according to the relative phase between the even- and the
odd-local-parity components.

Finally, it is obviously possible to rewrite the Schmidt
form, (32), as a two-fermion state by means of suitable
local particle-hole transformations (i.e., cBμ

→ c
†
Bμ

, μ = 1,2,

with |0〉 → c
†
B1

c
†
B2

|0〉). After some relabeling, we obtain the
equivalent form

|ψ〉f = (
β1c

†
A1

c
†
B1

+ β2c
†
A2

c
†
B2

+ β̃2c
†
A1

c
†
A2

− β̃1c
†
B1

c
†
B2

)|0〉,
(39)

where terms with two fermions on the same side side are
added to the form (10). Therefore, all previous considerations,
(35)–(38), can be realized with a fixed total number of
fermions, with expression (37) still valid.

III. APPLICATION

The formalism of the previous sections may now be used
to rewrite a qubit-based quantum circuit as a circuit based on
fermionic modes. It is easy to see by now that any pair of
fermionic modes, say i,j , prepared in such a way that their
total occupation is constrained to Nij = c

†
i ci + c

†
j cj = 1, is

essentially a qubit. Therefore, a collection of n such pairs
of modes constitutes a system of n qubits. Furthermore any
single-qubit operation can be performed on each pair just
by using unitaries in H linking only these two modes, and
these unitaries can always be written in terms of the effective
Pauli operators, (11), i.e., σ

ij
x = c

†
i cj + c

†
j ci , σ

ij
y = i(c†j ci −

c
†
i cj ), σ

ij
z = c

†
i ci − c

†
j cj . The last ingredient for universal

computation is the controlled-NOT (CNOT) gate, which, in
the tensor product space A ⊗ B, can be written as UCNOT =
|0〉〈0| ⊗ I + |1〉〈1| ⊗ σx = exp[−i π

4 (1 − σz) ⊗ (σx − 1)]. In
the fermionic representation, if A is spanned by modes ij

and B by the different modes kl, for states having one fermion
at each pair of modes it can be written as

Uf

CNOT
= exp

[
−i

π

4

(
1 − σ ij

z

)(
σ kl

x − 1
)]

. (40)

Since just an even number of fermion operators c per pair is
involved, its action is not affected by the state of intermediate
pairs. It is then possible to implement any qubit-based quantum
circuit using fermion states.

As an example, in Fig. 2 we show the teleportation protocol
adapted to be implemented using an entangled fermion state as
resource and a two-mode state to be teleported. Alice has the

FIG. 2. Teleportation protocol with the present fermionic imple-
mentation. Each qubit is represented by a pair of fermionic modes
having a total occupation number of 1. The control operation can be
realized involving just one of the modes of the pair representing the
control qubit due to the occupation number constraint, acting when
it is occupied, and similarly, the usual measurement in the standard
basis can be implemented by measuring just one of these modes. If
the pair occupation number constraint is relaxed so that both local
number parities coexist, then control and measurement operations
involve both modes.

modes {|A1〉,|A2〉,|A3〉,|A4〉}, while Bob is in possession of
{|B1〉,|B2〉}. The first two modes of Alice are entangled with
those of Bob, being in the joint state |β00〉 = 1√

2
(c†A1

c
†
B1

+
c
†
A2

c
†
B2

)|0〉, and the remaining modes of Alice are in the state

|ψ〉 = (α c
†
A3

+ β c
†
A4

)|0〉, |α|2 + |β2| = 1. The input state is
therefore

|ψi〉 = 1√
2

(
α c

†
A3

+ β c
†
A4

)(
c
†
A1

c
†
B1

+ c
†
A2

c
†
B2

)|0〉

and it is straightforward to see that the output state is

|ψo〉 = 1
2

[
c
†
A4

c
†
A2

(
α c

†
B1

+ β c
†
B2

) + c
†
A4

c
†
A1

(
α c

†
B2

+ β c
†
B1

)
+ c

†
A3

c
†
A2

( − α c
†
B1

+ β c
†
B2

)
+ c

†
A3

c
†
A1

( − α c
†
B2

+ β c
†
B1

)]|0〉.
The controlled operations on Bob’s modes depicted in Fig. 2
then ensure that his output will be the state |ψ〉.

Considering now a general circuit, if the input states are
restricted to be SDs in the previous basis, with one fermion
for each pair, we recover a classical circuit. The CNOT gate
in (40) reduces for these states to a classical controlled
swap or Fredkin gate, which implies that reversible classical
computation can be done with SDs as input states.

On the other hand, if the occupation number restriction
Nij = 1 (i.e., odd number parity for each pair) is relaxed, so
that the building blocks of the circuit are no longer single
fermions that can be found in two possible states, but rather
the fermionic modes themselves, other possibilities arise. For
instance, if now the input states contain either zero or two
fermions for each pair (even-number-parity qubits), such that
modes i,j are either both empty or both occupied, then we
should use the σ̃

ij
μ operators as defined in (19), i.e., σ̃

ij
x =

c
†
i c

†
j + cj ci , σ̃

ij
y = i(cj ci − c

†
i c

†
j ), σ̃

ij
z = c

†
i ci + c

†
j cj − 1. In

this case the operator Ũ f
CNOT

should be constructed as in Eq. (40)
with the σ̃μ operators, while the operator, (40), and in fact
any unitary gate built with the σ

ij
μ operators, will become an

identity for these states, as previously stated. Hence, by adding
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the appropriate gates, the same modes can in principle be used
for even- and odd-number-parity qubits independently.

For example, in the even-local-parity setting the input state
for the teleportation protocol would be

|ψ̃i〉 = 1√
2

(
β + α c

†
A3

c
†
A4

)(
1 + c

†
A1

c
†
A2

c
†
B1

c
†
B2

)|0〉.

If |0〉 stands for a reference SD (Fermi sea), then this state in-
volves zero, one, two, and three particle-hole excitations, with
A4, A2, and B2, standing for holes. The output state becomes

|ψ̃o〉 = 1
2

[(
β + α c

†
B1

c
†
B2

) + c
†
A1

c
†
A2

(
α + β c

†
B1

c
†
B2

) + c
†
A3

c
†
A4

× (
β − α c

†
B1

c
†
B2

)
+ c

†
A1

c
†
A2

c
†
A3

c
†
A4

( − α + β c
†
B1

c
†
B2

)]|0〉,
so that if Alice measures which of her modes are occupied and
sends the result to Bob, he can reconstruct the original state
by applying the pertinent X̃ ≡ ie−i π

2 σ̃ 12
x and Z̃ ≡ −ie−i π

2 σ̃ 12
z

operators.
Finally, let us consider the case of superdense coding [4,36].

It is clear from the previous discussion that it can be
implemented with the fermionic |β00〉 state of the teleportation
example and performing exactly the same local operations as
in the usual case, but now viewed as two-mode operations.
Now a general state with even global parity of the four
modes {|A1〉,|A2〉,|B1〉,|B2〉} is a combination of eight states
as in Eq. (7): six two-particle states, the vacuum |0〉, and the
completely occupied state |0̄〉, as shown in Fig. 1. Four of the
six two-particle states (Fig. 1; top) have NA = NB = 1 and
can be used to reproduce the known results of the standard
protocol. But the four remaining states, which have even local
parity, may be used as well for superdense coding if the proper
local operations expressed in terms of the σ̃ AB

μ are performed.
A general even-parity state, (7), may then be thought of as

a superposition of states of two different two-qubit systems,
as in Eqs. (31) and (35). Defining the maximally entangled
orthogonal definite-local-parity states∣∣β 00

10

〉 = 1√
2

(
c
†
A1

c
†
B1

± c
†
A2

c
†
B2

)|0〉,
∣∣β̃ 00

10

〉 = 1√
2

( ± 1 + c
†
A1

c
†
A2

c
†
B1

c
†
B2

)|0〉, (41)

∣∣β 01
11

〉 = 1√
2

(
c
†
A1

c
†
B2

± c
†
A2

c
†
B1

)|0〉,
∣∣β̃ 01

11

〉 = 1√
2

(
c
†
A1

c
†
A2

± c
†
B1

c
†
B2

)|0〉, (42)

we may consider, for instance, the state

|�00〉 = 1√
2
(|β00〉 + |β̃00〉). (43)

By implementing on (43) the identity and the local operations
ie−i π

2 (σA
μ +σ̃ A

μ ) = σμ + σ̃μ, μ = x,y,z, and taking into account
Eq. (24), Alice can generate four orthogonal states: |�00〉 and

|�01〉 = ie−i π
2 (σA

x +σ̃ A
x )|�00〉 = 1√

2
(|β01〉 + |β̃01〉), (44a)

|�10〉 = ie−i π
2 (σA

z +σ̃ A
z )|�00〉 = 1√

2
(|β10〉 + |β̃10〉), (44b)

|�11〉 = −e−i π
2 (σA

y +σ̃ A
y )|�00〉 = 1√

2
(|β11〉 + |β̃11〉). (44c)

But she can also perform these operations with a local parity
gate P A = − exp[iπNA] that changes the sign of local even-
parity states. This allows her to locally generate another set of
four orthogonal states,

|�̃ij 〉 = P A|�ij 〉 = 1√
2

(|βij 〉 − |β̃ij 〉), i,j = 0,1, (45)

which are orthogonal to each other and to states (43) and (44).
Hence, by relaxing the occupation number constraint on the
partitions it is possible for Alice to send eight orthogonal states
to Bob, i.e., three bits of information, using only two modes
and local unitary operations that preserve the local parity, while
with one type of qubits and the same operations she can send
only two bits. Of course, if parity restrictions were absent and
she could change the local (and hence the global) parity, she
could send four bits (in agreement with the maximum capacity
for two d = 4 qudits, which is log2 d2 [36]). A fixed-global-
parity constraint reduces the total number of orthogonal states
she can send to Bob by half.

On the other hand, since state (43) does not have a definite
local number parity, the ensuing bipartite entanglement is not
restricted by the fermionic entanglement as shown in Sec. II F.
In fact all eight previous states, (43), (44), and (45), have
maximum bipartite entanglement, leading to maximally mixed
reduced states ρA(B), S(ρA) = S(ρB ) = 2, while by applying
Eq. (8) it is seen that the fermionic concurrence of the previous
states is C(|�ij 〉) = C(|�̃ij 〉) = 1. The unitary operations
applied by Alice are local and hence cannot change the
bipartite entanglement, while they are also one-body unitaries
(i.e., exponents of quadratic fermion operators) so that they
cannot change the fermionic concurrence and entanglement
(i.e., the eigenvalues of ρqsp) either. In fact, the fermionic
entanglement is not required here. By changing the seed state
(i.e., |� ′

00〉 = 1√
2
(|β00〉 + |β̃10〉)), it is possible for Alice to

generate locally eight orthogonal states with the same bipartite
entanglement yet no fermion entanglement [C(|� ′

00〉) = 0].
Therefore the entanglement built with local states with

different number parities plays the role of a resource for
superdense coding. In fact even state (25) with α = β = 1√

2
,

which obviously has null concurrence, can in principle be used
for sending two bits if Alice can perform the parity preserving
operations P A = − exp[iπNA], σx + σ̃x and P A(σx + σ̃x). It
is noteworthy, however, that the same state cannot be directly
used as a resource for teleportation with the standard protocol
without violating the parity superselection rule, since Bob’s
two local states have opposite parity and cannot be superposed.
After a measurement of Alice’s modes Bob’s reduced state will
collapse to a state of definite parity in a realizable protocol,
so that it will be impossible for him to recover a general state
|ψ〉.

We have so far considered just the number-parity restriction.
If other superselection rules (like charge or fermion number)
also apply for a particular realization, they will imply stronger
limitations on the capacity of states like (43). Nonetheless,
even local-parity qubits with no fixed fermion number remain
realizable through particle-hole realizations, i.e., excitations
over a reference Fermi sea in a many-fermion system.

We also mention that a basic realization of four-dimensional
SP space–based fermionic qubits is that of a pair of spin-1/2
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fermions in the two lowest states of a double-well scenario in
a magnetic field, which would control the energy gap between
the two spin directions and the transitions between them. For
single occupation of each well we would have odd-local-parity
qubits, while allowing double or zero occupancy through
hopping between wells, we could also have even-local-parity
qubits.

IV. CONCLUSIONS

We have first shown that there is an exact correspondence
between bipartite states and two-fermion states of the form
of (14) having a fixed local number parity. Entangled states
are represented by fermionic states which are not Slater
determinants, and reduced local states correspond to blocks of
the SP density matrix. In particular, qubits can be represented
by pairs of fermionic modes with the occupation number
restricted to 1 (odd-number-parity qubits). This result allows us
to rewrite qubit-based quantum circuits as fermionic circuits.
But in addition, a fermionic system also enables zero or double
occupancy of these pairs, which gives rise to a second type of
qubit (the even-number-parity qubit). Dual-type circuits can
then be devised, as the gates for one parity become identities for
the other parity. And even though both types of qubits cannot be

locally superposed due to the parity superselection rule, they
can contribute to the entanglement in a global fixed-parity
state.

We have then demonstrated rigorous properties of the basic
but fundamental case of a four-dimensional SP space. First,
there is always a single-particle (or quasiparticle) basis in
which any pure state can be seen as a state of two distin-
guishable qubits, with the fermionic concurrence determining
the entanglement between these two qubits [Eq. (22)]. Such
entanglement is “genuine,” in the sense that the local states
involved have a definite parity and can therefore be combined.
Second, such fermionic entanglement was shown always to
provide a lower bound to the entanglement obtained with
any other bipartition of this SP space, although the extra
entanglement arises from the superposition of states with dif-
ferent local parities. While its capacity for protocols involving
superpositions of local states is limited, such entanglement can
still be useful for other tasks such as superdense coding.
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Phys. Rev. A 64, 022303 (2001).

[8] J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B 63,
085311 (2001).

[9] K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann.
Phys. 299, 88 (2002).

[10] H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91, 097902
(2003).

[11] G. C. Ghirardi and L. Marinatto, Phys. Rev. A 70, 012109
(2004).

[12] C. V. Kraus, M. M. Wolf, J. I. Cirac, and G. Giedke, Phys. Rev.
A 79, 012306 (2009).

[13] P. Zanardi, Phys. Rev. A 65, 042101 (2002).
[14] Y. Shi, Phys. Rev. A 67, 024301 (2003).
[15] N. Friis, A. R. Lee, and D. E. Bruschi, Phys. Rev. A 87, 022338

(2013).
[16] F. Benatti, R. Floreanini, and U. Marzolino, Phys. Rev. A 89,

032326 (2014).
[17] X. M. Puspus, K. H. Villegas, and F. N. C. Paraan, Phys. Rev. B

90, 155123 (2014).

[18] A. R. Plastino, D. Manzano, and J. Dehesa, Europhys. Lett. 86,
20005 (2009).

[19] F. Iemini and R. O. Vianna, Phys. Rev. A 87, 022327 (2013);
F. Iemini, T. O. Maciel, and R. O. Vianna, Phys. Rev. B 92,
075423 (2015); T. Debarba, R. O. Vianna, and F. Iemini, Phys.
Rev. A 95, 022325 (2017).

[20] M. Oszmaniec, J. Gutt, and M. Kuś, Phys. Rev. A 90, 020302(R)
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