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Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels
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We present a framework for studying bosonic non-Gaussian channels of continuous-variable systems. Our
emphasis is on a class of channels that we call photon-added Gaussian channels, which are experimentally viable
with current quantum-optical technologies. A strong motivation for considering these channels is the fact that it is
compulsory to go beyond the Gaussian domain for numerous tasks in continuous-variable quantum information
processing such as entanglement distillation from Gaussian states and universal quantum computation. The
single-mode photon-added channels we consider are obtained by using two-mode beam splitters and squeezing
operators with photon addition applied to the ancilla ports giving rise to families of non-Gaussian channels. For
each such channel, we derive its operator-sum representation, indispensable in the present context. We observe
that these channels are Fock preserving (coherence nongenerating). We then report two examples of activation
using our scheme of photon addition, that of quantum-optical nonclassicality at outputs of channels that would
otherwise output only classical states and of both the quantum and private communication capacities, hinting
at far-reaching applications for quantum-optical communication. Further, we see that noisy Gaussian channels
can be expressed as a convex mixture of these non-Gaussian channels. We also present other physical and
information-theoretic properties of these channels.
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I. INTRODUCTION

Non-Gaussian states and operations have recently received
much attention with respect to theoretical and experimental
schemes in continuous-variable quantum information theory.
Experimentally realizable non-Gaussian states include Fock
states [1–3], NOON states [4], Schrödinger cat states [5,6],
photon-added coherent states [7,8], and photon-added thermal
states [9,10], among other examples [11–13]. Commonly
used non-Gaussian operations include photon addition [14,15],
photon subtraction [16–18], photon counting [19], cubic phase
gates [20], and Kerr nonlinearities [21].

There are various motivations and uses for going beyond
the Gaussian regime with regard to implementation of quantum
information protocols. These include no-go theorems against
a Gaussian-only toolbox such as distillation of entanglement
from Gaussian states [22–24], use as quantum repeaters [25],
and other quantum information protocols such as cloning
[26], error correction [27], bit commitment [28], computing
with cluster states [29], and universal quantum computation
[30–32]. Also non-Gaussian resources have proven advan-
tageous in many scenarios such as parameter estimation
[33], generation of entangled states [34–37], and teleportation
[38–41].

In this article we generate non-Gaussian operations using
two main ingredients, the commonly used (experimentally
viable) photon addition and the ubiquitous class of Gaussian
unitaries, specifically two-mode squeezing operators and
beam splitters. We call the resulting non-Gaussian operations
photon-added Gaussian channels and this is schematically
represented in Fig. 1. Here photon addition is applied to
the environment state in the Stinespring dilation of the
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underlying Gaussian channel. As a consequence, we generate
non-Gaussian operations on the initial system when the
environment system is ignored.

The method can also be thought of as being one example of
the many protocols and implementations that concern manip-
ulating the environment state in the Stinespring representation
of a channel that have been considered in literature. Some
illustrative examples include implementation of general gates
[42], using mixed environment states for channel simulation
[43], manipulating the environment to generate additional
capacities either as a helper or an adversary [44–46], and using
feedback from the environment to correct for transmission of
information through the channel [47–49].

We stress that although we use the common terminology
“environment system” to denote the additional system in the
Stinespring representation, we think of it as auxiliary ports
one can keep track of as inputs to unitary gates used in the
implementation. Hence the channels that we introduce and
study are implementable non-Gaussian gadgets of potential
use in continuous-variable quantum information processing.

The rest of the article is structured as follows. Section II
introduces the basic framework for quantum channels, the
phase-space techniques, and the phase-space description of
photon-added channels. In Sec. III we present our construction
of photon-added channels and obtain the operator-sum repre-
sentation of three special classes of channels closely related
to attenuation, amplification, and phase-conjugation channels.
We then study in Sec. IV numerous physical, mathematical,
and information-theoretic properties of the photon-added
channels introduced in Sec. III. We summarize in Sec. V.

II. PRELIMINARIES

We now discuss the connection between the unitary Stine-
spring representation and the operator-sum representation of
any quantum channel. Given a channel �, it can always
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FIG. 1. Schematic diagram for the construction of a class of non-
Gaussian channels using two constituent elements of photon addition
and Gaussian unitary gates.

be represented as a unitary dynamics on a suitably chosen
larger system with the ancilla system consequently ignored.
Let the input system be described by a Hilbert space HA.
Then there exists an environment with Hilbert space HE , a
system-environment unitary UAE , and a pure state |ψ〉E ∈ HE

such that any completely positive trace-preserving map on
system A can be represented in the following way:

�[ρ̂A] = TrE[UAE(ρ̂A ⊗ |ψ〉E〈ψ |)U †
AE]. (1)

To obtain an operator-sum representation [50] we introduce a
suitable complete basis to perform the trace of the environment
system. Since our physical system is that of bosonic modes of
an electromagnetic field or harmonic oscillators, we make use
of the Fock basis. Choosing the Fock basis {|k〉E}, we have,
from Eq. (1),

�[ρ̂A] =
∑

k

E〈k|[UAE(ρ̂A ⊗ |ψ〉E〈ψ |)U †
AE]|k〉E

=
∑

k

(E〈k|UAE|ψ〉E)ρ̂A(E〈ψ |U †
AE|k〉E)

=
∑

k

Fkρ̂AF
†
k , (2)

where {Fk = E〈k|UAE|ψ〉E} are the Kraus operators for the
channel �.

We first consider the case when the system and the
environment are both single-mode systems. The corresponding
generalization to the case of multimodes can be performed in a
similar way. Let the two-mode unitary operator in the dilation
of a channel � be written as U [�] with matrix elements in the
Fock basis given by

U [�] =
∞∑

m1,m2,n1,n2=0

T [�]m1,m2
n1,n2

|m1,m2〉〈n1,n2|. (3)

Then by Eq. (2) we have that the Kraus operators {Fk} of �

are given by

Fk = E〈k|
[ ∞∑

m1,m2,n1,n2=0

T [�]m1,m2
n1,n2

|m1,m2〉〈n1,n2|
]
|ψ〉E

=
∞∑

m1,n1,n2=0

T [�]m1,k
n1,n2

〈n2|ψ〉E|m1〉〈n1|. (4)

In this article we are interested in channels for which there
exists a dilation UAE that is Gaussian even if the environment
state |ψ〉E is not necessarily Gaussian. We call such channels
Gaussian dilatable. We first recall a few points regarding the
Stinespring dilation of Gaussian channels since it is our starting
point as hinted in Fig. 1. We first focus on the case of quantum-

FIG. 2. Unitary dilation for Gaussian channels. Any quantum-
limited single-mode bosonic Gaussian channel can be realized in the
following three-step method: First one appends a suitable single-
mode environment state that can be taken to be pure Gaussian
(vacuum, without loss of generality), then evolves the system-
environment state through a canonical two-mode Gaussian unitary,
and finally, traces out the environment degrees of freedom.

limited channels. For the underlying phase-space framework
we refer the reader to [51,52]. An important fact that will play
a crucial role for us is that every single-mode quantum-limited
Gaussian channel can be realized as a canonical unitary
interaction with a suitable single-mode environment taken in a
pure Gaussian state (or vacuum state without loss of generality)
and then ignoring the environment degrees of freedom. This
representation is schematically depicted in Fig. 2. We point
out that for noisy single-mode Gaussian channels one can
follow a similar method with the main difference being that
one requires a two-mode pure environment state. We will
make further comments regarding the case of noisy Gaussian
channels towards the end of the article in Sec. IV H.

Phase-space description of linear bosonic channels

Non-Gaussian channels can be realized by two underlying
schemes in its Stinespring dilation as depicted in Fig. 3. The

FIG. 3. Basic schemes to construct non-Gaussian channels using
the Stinespring representation. One can use an ancilla non-Gaussian
state |ψnonG〉 and a Gaussian unitary as in scheme 1 (top), which
we label Gaussian dilation scheme. The second option is to use a
non-Gaussian unitary with a Gaussian ancilla as in scheme 2 (bottom),
which we label the general dilation scheme. A third scheme that
combines the use of a non-Gaussian unitary and a non-Gaussian
ancilla state can be reduced to scheme 2. In this article we focus on
scheme 1.

062309-2



NON-GAUSSIAN OPERATIONS ON BOSONIC MODES OF . . . PHYSICAL REVIEW A 95, 062309 (2017)

first scheme is when the non-Gaussian channel is realized
through a Gaussian unitary and a non-Gaussian environment
state, which we call the Gaussian dilation scheme. The
second scheme is when we use a non-Gaussian unitary and
a Gaussian environment state and we call this the general
dilation scheme. The final combination of a non-Gaussian
unitary with a non-Gaussian environment state can be reduced
to the general dilation scheme. For simplicity we consider
the system and environment to be a single-mode system
from both a theoretical and an experimental point of view.
The generalization to the multimode case can be done in an
analogous manner.

We focus on the first Gaussian dilation scheme where we
have a Gaussian unitary and a non-Gaussian environment state.
In particular, as mentioned earlier, we construct a special class
of channels that we call photon-added Gaussian channels.
These channels are constructed through three elementary
building blocks. First we start with the Gaussian unitary in
the dilation of a Gaussian channel and a vacuum state in
the environment as previously depicted in Fig. 2. Next we
apply a suitable photon addition to the environment state.
Finally, we trace out the environment system. We now briefly
discuss the phase-space description of photon-added Gaussian
channels.

Let the Gaussian unitary of the dilation corresponding
to the underlying Gaussian channel induce a symplectic
transformation of the form

S−1 =
[
S11 S12

S21 S22

]
(5)

at the level of the characteristic function [53], i.e.,

χ (ξ ; U [S]σ̂U [S]†) = χ (S−1ξ ; σ̂ ). (6)

Let ρ̂E be the photon-added state of the environment. So we
have by Eqs. (1) and (6) that the combined system-environment
output state after the action of the Gaussian unitary is

χ (ξ 1,ξ 2; U [S](ρ̂ ⊗ ρ̂E)U [S]†)

= χ (S11ξ 1 + S12ξ 2; ρ̂)χ (S21ξ 1 + S22ξ 2; ρ̂E). (7)

We then obtain the characteristic function of the output state
of the channel corresponding to input state ρ̂ by setting ξ 2 = 0
in Eq. (7), i.e.,

χ (ξ 1; ρ̂out) = χ (S11ξ 1; ρ̂)χ (S21ξ 1; ρ̂E). (8)

We now briefly digress to outline the phase-space descrip-
tion of linear bosonic channels of an n-mode system. Let �

denote a quantum channel and �† the adjoint of �. Let ρ̂ be
an input state to � and let �(ρ̂) = ρ̂ ′ be the corresponding
output state. At the level of displacement operators D(ξ ), or
equivalently the Heisenberg picture, � is said to be a linear
channel if it can be written as [54]

�†[D(ξ )] = D(Xξ )f (ξ ), (9)

where X is a linear map on the phase-space variables ξ and f is
an arbitrary function that together with X has to satisfy certain
constraints encoding the fact that � is completely positive
[54]. At the level of the characteristic function we have by

Eq. (9) the action of � to be

χ (ξ ; ρ̂ ′) = Tr[�(ρ̂)D(ξ )] = Tr[ρ̂�†(D(ξ ))]

= Tr[ρ̂D(Xξ )]f (ξ )

= χ (Xξ ; ρ̂)f (ξ ). (10)

When the function f is Gaussian and satisfies the complete-
positivity condition, the map corresponds to a linear bosonic
Gaussian channel. For a non-Gaussian function f that satisfies
the complete-positivity condition the corresponding channel is
a linear bosonic non-Gaussian channel.

Comparing Eqs. (8) and (10), we see that S11 plays the
role of X and χ (S21ξ 1; ρ̂E) plays the role of f (ξ 1). Note that
we did not make use of any special form for the environment
state. Since the map is completely positive trace preserving by
construction, we have the following proposition.

Proposition 1. All Gaussian dilatable channels, including
the class of photon-added bosonic Gaussian channels, belong
to the class of linear bosonic channels.

We now state in the form of a conjecture a connection
between the set of Gaussian dilatable channels and linear
bosonic channels.

Conjecture 1. The set of linear bosonic channels and the set
of Gaussian dilatable channels are identical.

From the proposition mentioned above, what remains to be
shown is the converse statement that the set of linear bosonic
channels (i.e., linear Gaussian and linear non-Gaussian) is
Gaussian dilatable.

III. KRAUS DECOMPOSITION FOR PHOTON-ADDED
GAUSSIAN CHANNELS

For simplicity, we now consider the case of the photon-
added bosonic Gaussian channels as depicted in Fig. 4, i.e.,
when the initial environment state is a vacuum state and
the underlying Gaussian channel is quantum limited. The
case of photon addition to noisy Gaussian channels will be
considered towards the end of the article in Sec. IV H. We

FIG. 4. Scheme for obtaining photon-added Gaussian channels.
Starting from the underlying unitary representation for quantum-
limited attenuator, amplifier, and phase-conjugation channels, we
obtain the corresponding photon-added version by applying photon
addition to the vacuum state to generate a Fock state in the
environment. The resulting channels fall under the class of linear
bosonic non-Gaussian channels. In the absence of photon addition we
have the underlying single-mode quantum-limited bosonic Gaussian
channel.
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TABLE I. Notation used for the various quantities. Here A(κ; n)
(κ � 1), B(κ; n) (κ � 1), and C(κ; n) (κ � 0) denote the photon-
added amplifier, attenuator, and phase-conjugation channels, respec-
tively. The argument κ stands for the corresponding underlying
quantum-limited Gaussian channel parameter and n for the resulting
number state of the environment post photon addition. In addition, U
denotes the unitary matrix in the dilation of the underlying Gaussian
channels and T represents its Fock basis matrix elements [Eq. (4)].

Channel Unitary Kraus Fock matrix elements
� U [�] operators of U [�]

A(κ; n) U [A(κ; n)] {A�(κ; n)} T [A(κ; n)]m1,m2
n1,n2

B(κ; n) U [B(κ; n)] {B�(κ; n)} T [B(κ; n)]m1,m2
n1,n2

C(κ; n) U [C(κ; n)] {C�(κ; n)} T [C(κ; n)]m1,m2
n1,n2

will consider three main classes, the photon-added quantum-
limited amplifier, attenuator, and phase-conjugation channels,
and study their properties in subsequent sections. It turns
out to be useful to work completely in the Fock basis.
For example, computing output states in a certain basis or
evaluating entropies and other information-theoretic quantities
all require working in a specific basis as opposed to a global
picture. The reason some of these necessities can be bypassed
for the Gaussian case is because many of the quantities are
directly computable from the phase-space picture, which also
contains the covariance matrices.

As mentioned earlier, these special illustrative classes
both have theoretical importance and are also practically
implementable. We will see later that these special classes
of single-mode quantum-limited attenuator, amplifier, and
phase-conjugation channels all have a Stinespring dilation
where the unitary acting on the larger Hilbert space is either
a two-mode beam splitter or a two-mode squeezing operator.
Also, turning on and off this photon addition takes one from
the Gaussian to the non-Gaussian regime and hence leads to
a comparison of the two regimes in a systematic way. There
are other such properties that we explain in the rest of the
article.

Before we begin with our specific examples of non-
Gaussian channels we briefly comment on the notation that
we use in the rest of the article; this is outlined in Table I. We
use the calligraphic letters A, B, and C to denote the amplifier,
attenuator, and phase-conjugation channels, respectively, with
κ denoting the channel parameter of the underlying quantum-
limited channels and n denoting the Fock state (or number of
photon additions applied) of the environment. The italic letters
A, B, and C denote the respective Kraus operators, U denotes
the unitary operator of the dilation of the Gaussian channels,
and T denotes the matrix elements of this unitary operator in
the Fock basis.

The rest of this section is dedicated to the derivation of
an operator-sum representation of the photon-added quantum-
limited amplifier, attenuator, and phase-conjugation channels
of a single mode taken in their respective canonical forms.

A. Photon-added amplifier A(κ; n)

We first consider the case of the photon-added quantum-
limited amplifier depicted in Fig. 5. From the scheme

FIG. 5. Realization of the photon-added amplifier channels
A(κ; n). Here κ denotes the channel parameter coming from the
two-mode squeezing (TMS) operator unitary and n denotes the photon
addition.

mentioned above we have to evaluate the appropriate matrix
elements of the unitary operator to obtain the operator-sum
representation. The Gaussian unitary in the dilation of an
amplifier channel is a two-mode squeezing operator and its
matrix elements were previously evaluated to be [55]

T [A(κ; n)]m1,m2
n1,n2

= κ−1

√
n1!m2!

m1!n2!

n2∑
r=0

m1∑
j=0

(
n2

r

)(
m1

j

)
(−1)r (κ−1)n2+j−r

× (
√

1 − κ−2)m1+r−j δn1,r+j δm2,n2+m1−r−j , (11)

where ( x

y
) = x!/(y!(x − y)!) is the binomial coefficient. As

outlined in Sec. II and Fig. 4, to compute the Kraus operators
we set m2 = � and n2 = n and eliminate j using δn1,r+j to
obtain

T [A(κ; n)]m1,�
n1,n

= κ−1

√
n1!�!

m1!n!
g1(n,n1,m1; κ)δ�+n1,m1+n, (12)

where

g1(n,n1,m1; κ)

=
min{n,n1}∑

r=max{0,n1−m1}

(
n

r

)(
m1

n1 − r

)
(−1)r (κ−1)n+n1−2r

× (
√

1 − κ−2)m1+2r−n1 . (13)

By Eq. (4), we then obtain the Kraus operators A�(κ; n) as

A�(κ; n) = κ−1
∞∑

m1,n1=0

√
n1!�!

m1!n!
g1(n,n1,m1; κ)

× δ�,m1+n−n1 |m1〉〈n1|

= κ−1
∞∑

n1=max{0,n−�}

√
n1!�!

(� − n + n1)!n!

× g1(n,n1,� − n + n1; κ)|n1 + (� − n)〉〈n1|.
(14)

As a preliminary observation we see that each Kraus
operator has nonzero elements only along a line parallel
to the diagonal. We find a demarcation into three regions
depending on |� − n|. For the case when the Kraus index
� < n this line falls above the diagonal and for � > n it
falls below the diagonal. For the case � = n we see that the
corresponding Kraus operator is diagonal in the Fock basis.
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FIG. 6. Structure of Kraus operators for the photon-added ampli-
fier channels. Each Kraus operator has nonzero elements only along
a line parallel to the diagonal whose location depends on |� − n|,
where � is the Kraus index and n the number of photon addition.

This is schematically depicted in Fig. 6. If we set n = 0 in
Eq. (14) we obtain {A�(κ; 0)}, which are the Kraus operators
for the quantum-limited amplifier channel A(κ; 0) [55].

B. Photon-added attenuator B(κ; n)

We next consider the case of the photon-added attenuator
channel, which is depicted in Fig. 7. The unitary in the dilation
of the attenuator channel is the beam splitter. The matrix
elements of the two-mode beam-splitter unitary operator was
previously evaluated as [55]

T [B(κ; n)]m1,m2
n1,n2

=
√

m1!m2!

n1!n2!

n1∑
r=0

n2∑
j=0

(
n1

r

)(
n2

j

)
(−1)n2−j δm2,r+j

× (κ)n1−r+j (
√

1 − κ2)r+n2−j δm1,n1+n2−r−j . (15)

As in the earlier case, setting m2 = � and n2 = n and
eliminating j using δm2,r+j we have

T [B(κ; n)]m1,�
n1,n

=
√

m1!�!

n1!n!
g2(n,�,n1; κ)δm1,n1+n−�, (16)

where

g2(n,�,n1; κ) =
min{�,n1}∑

r=max{0,�−n}

(
n1

r

)(
n

� − r

)
(−1)n−�+r

× (κ)n1−2r+�(
√

1 − κ2)2r+n−�. (17)

FIG. 7. Realization of the photon-added attenuator channels
B(κ; n). Here κ denotes the channel parameter coming from the
two-mode beam-splitter unitary and n denotes the photon addition.

FIG. 8. Structure of Kraus operators for the photon-added attenu-
ator channels. Each Kraus operator with index � has nonzero elements
only along a line parallel to the diagonal, whose location depends on
|� − n|, where n is the photon-number state of the environment.

We then evaluate the Kraus operators B�(κ; n) to be

B�(κ; n) =
∞∑

m1,n1=0

√
m1!�!

n1!n!
g2(n,�,n1; κ)

× δm1,n1+n−�|m1〉〈n1|

=
∞∑

n1=max{0,�−n}

√
(n1 + n − �)!�!

n1!n!
g2(n,�,n1; κ)

× |n1 + (n − �)〉〈n1|. (18)

We notice that, as in the photon-added amplifier case, each
Kraus operator has nonzero elements only along a line parallel
to the diagonal whose location depends on |� − n|, but the
situation is now reversed when compared with the photon-
added amplifier channel as depicted in Fig. 8. This line is
located in the upper triangle for � > n and in the lower triangle
for � < n.

C. Photon-added phase conjugator C(κ; n)

The last example we consider is the photon-added phase-
conjugation channel depicted in Fig. 9. The unitary operator
in the dilation of the phase-conjugation channel has matrix
elements given by [55]

T [C(κ; n)]m1,m2
n1,n2

= dκ

√
n2!m2!

m1!n1!

m1∑
r=0

n1∑
j=0

(
m1

r

)(
n1

j

)
(
√

1 + κ2)−(n1+r−j )

× (−1)j (
√

1 + κ−2)−(m1−r+j )δn2,r+j δm2,n1+m1−r−j ,

(19)

FIG. 9. Realization of the photon-added amplifier channels
C(κ; n). Here κ denotes the channel parameter coming from the
two-mode phase-conjugation unitary (PCU) and n denotes the photon
addition.
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FIG. 10. Structure of Kraus operators for the photon-added
phase-conjugation channels. Each Kraus operator has nonzero ele-
ments only along a particular antidiagonal whose location depends
on � + n, where � is the Kraus index and n is the value of photon
addition.

where dκ = (
√

1 + κ2)−1 and the unitary is obtained by
following the two-mode squeezing operator with a mode-flip
operator, a fact that will be discussed in more detail in
Sec. IV C. As before, by setting m2 = � and n2 = n and
eliminating j using δn2,r+j we have

T [C(κ; n)]m1,�
n1,n

= dκ

√
n!�!

m1!n1!g3(n,n1,m1; κ)δ�,m1−n+n1 , (20)

where

g3(n,n1,m1; κ)

=
min{n,m1}∑

r=max{0,n−n1}

(
m1

r

)(
n1

n − r

)
(
√

1 + κ−2)−(m1−2r+n)

× (−1)n−r (
√

1 + κ2)−(n1+2r−n). (21)

We then obtain the Kraus operators C�(κ; n) as

C�(κ; n) = dκ

∞∑
m1,n1=0

√
n!�!

m1!n1!
g3(n,n1,m1; κ)

× δ�,m1−n+n1 |m1〉〈n1|

= dκ

n+�∑
n1=0

√
n!�!

(� + n − n1)!n1!

× g3(n,n1,� + n − n1; κ)|� + n − n1〉〈n1|.
(22)

We observe that {C�(κ; n)} are of finite rank for finite n,�.
Furthermore, we note that unlike the photon-added amplifier
and attenuation channels, each Kraus operator has nonzero
elements along a line parallel to the antidiagonal as depicted
in Fig. 10.

We emphasize that for each of the photon-added amplifier,
attenuator, and phase-conjugation channels there exists an
operator-sum representation in the Fock basis in which all
the Kraus operators are real. We summarize the results of this
section in the following theorem.

Theorem 1. The collections {A�(κ; n)}, {B�(κ; n)}, and
{C�(κ; n)} given in Eqs. (14), (18), and (22) are a set of Kraus
operators for the photon-added channels A(κ; n), B(κ; n), and
C(κ; n), respectively.

IV. PROPERTIES OF PHOTON-ADDED CHANNELS

In this section we derive various properties of photon-
added channels whose operator-sum representation we de-
rived in the preceding section. We emphasize the fact that
the Fock basis plays an important role in describing the
properties of these non-Gaussian channels. We now begin
with the action of the photon-added channels in the Fock
basis.

A. Action on Fock states

From the operator-sum representation of each of the
photon-added channels we study their action on the Fock
basis and this turns out to reveal many important structural
properties. We first begin with the action of the photon-added
attenuator channel on a given Fock state |j 〉〈j |. We have, from
Eq. (18),

B(κ; n)[|j 〉〈j |]

=
∞∑

�=0

B�(κ; n)|j 〉〈j |B�(κ; n)†

=
∞∑

�=0

∞∑
n1=max{0,n−�}

∞∑
m1=max{0,n−�}

√
(n1 + n − �)!�!

n1!n!

×
√

(m1 + n − �)!�!

m1!n!
g2(n,�,n1; κ)g2(n,�,m1; κ)

×〈n1|j 〉〈j |m1〉|n1 + n − �〉〈m1 + n − �|

=
j+n∑
�=0

(j + n−�)!�!

j !n!
g2(n,�,j ; κ)2|j + n−�〉〈j + n − �|.

(23)

We observe that states diagonal in the Fock basis are mapped
to states that are also diagonal in the Fock basis irrespective
of the amount of photon addition. Furthermore, we see that
states having a finite Fock support are also taken to states
with finite Fock support. An analogous observation for the
Gaussian channel case n = 0 [55] played an important role
in the resolution of an output entropy optimization problem
[56].

We next consider the case of the photon-added amplifier
and consider its action on an input Fock state |j 〉〈j |. We have,
by Eq. (14),

A(κ; n)[|j 〉〈j |]

=
∞∑

�=0

A�(κ; n)|j 〉〈j |A�(κ; n)†

= κ−2
∞∑

�=0

∞∑
n1=n0

∞∑
m1=n0

√
n1!�!

(� − n + n1)!n!
〈n1|j 〉〈j |m1〉

×
√

m1!�!

(� − n + m1)!n!
g1(n,n1,� − n + n1; κ)

× g1(n,m1,� − n + m1; κ)|n1 + � − n〉〈m1 + � − n|,
n0 = max{0,n − �}. (24)
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TABLE II. Largest and smallest Fock state supports of an output
state ρ̂out for a given input state ρ̂in for each of the photon-added
amplifier, attenuator, and phase-conjugation channels. Here Nmax[ρ̂]
and Nmin[ρ̂] denote the largest and smallest Fock states in support
of ρ̂.

Channel Nmin[ρ̂out] Nmax[ρ̂out]

A(κ; n) max{Nmin[ρ̂in] − n,0} ∞
B(κ; n) 0 Nmax[ρ̂in] + n

C(κ; n) max{n − Nmin[ρ̂in],0} ∞

This expression evaluates to

A(κ; n)[|j 〉〈j |]

= κ−2
∞∑

�=max{n−j,0}

j !�!

(� − n + j )!n!

× g1(n,j,� − n + j ; κ)2|� − n + j 〉〈� − n + j |.
(25)

Finally, for the case of the action of the photon-added
phase-conjugation channel on an input Fock state, we have,
by Eq. (22),

C(κ; n)[|j 〉〈j |]

=
∞∑

�=0

C�(κ; n)|j 〉〈j |C�(κ; n)†

= d2
κ

∞∑
�=0

n+�∑
m1=0

n+�∑
n1=0

√
n!�!

(� + n − n1)!n1!
〈n1|j 〉〈j |m1〉

×
√

n!�!

(� + n − m1)!m1!
g3(n,n1,� + n − n1; κ)

× g3(n,m1,� + n − m1; κ)|� + n − n1〉〈� + n − m1|

= d2
κ

∞∑
�=max{j−n,0}

n!�!

(� + n − j )!j !
g3(n,j,� + n − j ; κ)2

× |� + n − j 〉〈� + n − j |. (26)

From the action on an arbitrary Fock state one can deduce
some properties of the action of the photon-added channels
on a general state ρ̂. For this let us denote by Nmax[ρ̂] and
Nmin[ρ̂] the largest and smallest Fock states in the support of
some given state ρ̂.

Let an input state ρ̂in to either of the photon-added channels
be mapped to an output state ρ̂out. Then, by Eqs. (23), (25), and
(26), we have the following proposition regarding the action
of photon-added channels on ρ̂in; this is also summarized in
Table II.

Proposition 2. The n-photon-added attenuator produces
an output with Nmax[ρ̂out] = Nmax[ρ̂in] + n and Nmin[ρ̂out] =
0, the n-photon-added amplifier produces an output with
Nmin[ρ̂out] = max{Nmin[ρ̂in] − n,0} and Nmax[ρ̂out] = ∞, and
finally the n-photon-added phase-conjugator outputs a state
with Nmin[ρ̂out] = max{n − Nmin[ρ̂in],0} and Nmax[ρ̂out] = ∞.

So we see the effect of photon addition with respect to the
restrictions on the Fock-support ranges for the outputs of each

of the channels. Also we note that photon addition gives rise
to different properties of the output states as compared with
the Gaussian (n = 0) case through its dependence on n. As a
consequence of Proposition 2, we observe the following.

Corollary 1. There does not exist any fixed point with finite
support in the Fock basis for the photon-added attenuator,
amplifier, and phase-conjugation channels.

For a comparison with the fixed points of the corresponding
Gaussian amplifier, attenuator, and phase-conjugation chan-
nels, i.e., in the absence of any photon addition (n = 0), we
refer the reader to [55]. As a final comment, the action of the
channels on input Fock states helps us understand aspects of
Fock-basis coherence, which we discuss in Sec. IV E.

B. Activation of quantum-optical nonclassicality

We now present a consequence of photon addition with
respect to nonclassicality in the quantum-optical context and
it is well known that nonclassicality of light is an important
resource in many situations such as entanglement generation
[57–59] and use in laser interferometers [60]. We illustrate
with a useful example that nonclassicality can be activated at
the outputs of certain channels, through our scheme of photon
addition to the environment state, that would otherwise output
only classical states. Before we begin with a specific example,
we briefly recall the notion of quantum-optical nonclassicality
that we are dealing with in this section.

Any state ρ̂ can be described in terms of its Glauber-
Sudarshan diagonal weight function φ(α; ρ̂) [61]:

ρ̂ =
∫

d2nα

πn
φ(α; ρ̂)|α〉〈α|. (27)

Then ρ̂ is said to be classical if its associated φ(α; ρ̂) function
is everywhere non-negative over the phase space α ∈ R2n 	
Cn; otherwise it is said to be nonclassical. In other words, a
classical state is a convex mixture of coherent states.

It is known that the quantum-limited phase-conjugation
channel is nonclassicality breaking [51,52,55,62]. In other
words, the output corresponding to any input to the phase-
conjugation channel is rendered classical. Let us now con-
sider the effect of photon addition, i.e., the corresponding
photon-added phase conjugator, on the output states of the
corresponding channel and we have the following proposition.

Proposition 3. The photon-added phase-conjugation chan-
nel C(κ; n) is nonclassicality breaking only for n = 0. For
n > 0, i.e., under any nontrivial photon addition, nonclassical-
ity is activated at the output of the corresponding channel.

Proof. As mentioned earlier, it is known that the phase-
conjugation channel C(κ; 0) (with no photon addition) is
nonclassicality breaking [51,52,55,62]. We now consider the
case n 
= 0. Let us consider as input the vacuum state |0〉〈0|.
Having seen the action of the photon-added channel in the
Fock basis, we have by Eq. (26) that the corresponding output
is given by

C(κ; n)[|0〉〈0|]

= d2
κ

∞∑
�=0

n!�!

(� + n)!
g3(n,0,� + n; κ)2|� + n〉〈� + n|. (28)
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So it clear that

〈τ |C(κ; n)[|0〉〈0|]|τ 〉 = 0 ∀ τ = 0,1, . . . ,n − 1 (29)

and in particular for τ = 0. This implies further that the Q

function defined as Q(α; ρ̂) = 〈α|ρ̂|α〉 is zero when evaluated
at α = 0. It then immediately follows that the corresponding
output state C(κ; n)[|0〉〈0|] is nonclassical for each n > 0 [63].
Hence we see that photon addition to the environment has
activated nonclassicality at the output of the corresponding
photon-added phase-conjugation channel. �

We have shown that nonclassicality can be activated at
the output of a phase-conjugation channel through photon
addition in the ancilla port vacuum state. We also highlight that
this activation is measure independent since it deals directly
with the notion of quantum-optical nonclassicality described
in Eq. (27). We now extend this property to all input classical
states, thereby proving a form of strong activation.

Theorem 2. All classical states are mapped to nonclassical
states under the action of the photon-added phase-conjugation
channel C(κ; n) for every n > 0.

Proof. The crucial observation is that for any classical
state ρ̂in, i.e., a state with everywhere non-negative diagonal
function φ(α; ρ̂in), the support on the vacuum state is strictly
positive. Alternatively, 〈0|ρ̂|0〉 = Q(0) > 0. If this is not the
case, then the state is nonclassical as mentioned in the proof
of Proposition 3.

Therefore, for any classical state the minimum Fock state
with nonzero Fock support is zero, i.e., Nmin[ρ̂in] = 0. Then
by Proposition 2 or equivalently Table II we have that

Nmin[C(κ; n)(ρ̂in)] = n − Nmin[ρ̂in] = n. (30)

So 〈0|C(κ; n)(ρ̂in)|0〉 = 0 for n � 1. By arguments used in the
proof of Proposition 3 we have that the output corresponding
to a classical input for the photon-added phase-conjugation
channel is nonclassical. �

C. Complementarity

Consider a channel � that has a Stinespring representation
as given in Eq. (1). Then the complementary channel, denoted
by �c, is given by tracing out the system degrees of freedom,
i.e.,

�c[ρ̂A] = TrA[UAE(ρ̂A ⊗ |ψ〉E〈ψ |)U †
AE]. (31)

Therefore, the complementary channel maps states of the
system to states of the environment. We make the following
observation with respect to complementarity of photon-added
channels.

Proposition 4. The complementary channel corresponding
to the photon-added amplifier channel A(κ; n) with κ � 1 is
the photon-added phase-conjugation channel C(

√
κ2 − 1; n)

for every n. Similarly, the photon-added attenuator B(κ; n)
with 0 � κ � 1 is complementary to another photon-added
attenuator B(

√
1 − κ2; n) for every n � 0.

Proof. The proof follows by comparing the matrix elements
of the corresponding unitary operators in the dilations as
explained in Appendix B and schematically depicted in
Fig. 11. �

We have a straightforward implication regarding the mini-
mum output entropies.

FIG. 11. Relation between the unitary operators in the Stinespring
dilation of the amplifier channel denoted by TMS and that of the
phase-conjugation channel with parameters κ and κ ′ = √

κ2 − 1
(top), and the two unitaries (beam splitters) in the Stinespring dilation
of the corresponding attenuator channels with parameters κ and
κ ′ = √

1 − κ2 (bottom), respectively. The pairwise unitaries in each
case are connected by the mode-flip operator.

Corollary 2. The minimum output entropy of the photon-
added amplifier channel A(κ; n) and the photon-added phase-
conjugation channel C(

√
κ2 − 1; n) are identical. Similarly,

the minimum output entropies of photon-added attenuation
channels B(κ; n) and B(

√
1 − κ2; n) are identical.

This can be seen easily from two facts. First, the minimum
output entropy is achieved on input states that are pure. Second,
for pure inputs the channel and its complement have identical
output entropies and therefore this also holds true for the
pure optimal state that minimizes the output entropy of the
channel. �

D. Activation of quantum and private capacities

We now make a few remarks regarding the quantum
and private classical capacities of the photon-added phase-
conjugation channels and present a phenomenon of activa-
tion of these capacities. Given a quantum channel, one of
its defining characteristics is its usefulness in transmitting
information. Depending on the resources available and the
specific information-theoretic task to accomplish, a host of
capacities have been discussed and studied in the literature.
We focus on the fundamentally important quantum and private
classical capacities [64].

The quantum capacity Q(�) of a channel � is the rate
(qubits per channel use) at which the channel can reliably
transmit quantum information in the asymptotic limit of
channel uses and can be expressed as

Q(�) = lim
n→∞

1

n
Q(1)(�⊗n),

Q(1)(�) = sup
ρ̂

Icoh(�,ρ̂),

Icoh(�,ρ̂) = S(�(ρ̂)) − S(�c(ρ̂)). (32)

Here, Icoh(�,ρ̂) denotes the coherent information for a given
channel � and input state ρ̂ [65], S(·) stands for the
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von Neumann entropy of the state, and �c stands for the
complimentary channel (see Sec. IV C).

On the other hand, the private capacity P(�) is the rate (bits
per channel use) at which � can transmit classical information
reliably in the asymptotic number of channel uses such that
the information is secret from an eavesdropper and can be
expressed as

P(�) = lim
n→∞

1

n
P(1)(�⊗n),

P(1)(�) = sup
px,ρ̂x

I ([11 ⊗ �](σ̂ )) − I ([11 ⊗ �c](σ̂ )), (33)

where σ̂ = ∑
x px |x〉〈x| ⊗ ρ̂x is a classical-quantum state and

I (ρ̂AB) = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB) is the mutual information
of a bipartite state ρ̂AB . Further, it is also known that both
the quantum and private classical capacities are zero for
entanglement breaking channels [64,66].

With respect to the phase-conjugation channel C(κ; 0)
we know that it is not only nonclassicality breaking but
also entanglement breaking [51,67]. This implies further that
the quantum capacity and the private classical capacity of
C(κ; 0) are zero [52]. We have seen by Theorem 2 that
the corresponding photon-added channels C(κ; n) are not
nonclassicality breaking for all n > 0. Hence we take this
as evidence that not only nonclassicality is activated at the
output of the phase-conjugation channel after photon addition
applied on the ancilla state but also both the quantum and
private classical capacities are activated as well. We find that
indeed this is the case with specific numerical examples.

We have seen in Sec. IV C that for the photon-added phase-
conjugation channel C(κ; n), the complementary channel is
given by the photon-added amplifier channel A(

√
κ2 + 1; n).

This is important for evaluating the coherent information
Icoh(�,ρ̂) that appears in the evaluation of the quantum
capacity of � as given in Eq. (32), where �c denotes the
complementary channel of �.

Numerical examples

As our first example we consider the photon-added phase-
conjugation channel C(κ; n) (κ = √

1.52 − 1 = 1.118 03 and
n varying), with input state 0.6|0〉〈0| + 0.4|1〉〈1| (diagonal in
the Fock basis). The corresponding photon-added amplifier
channel has κ ′ = 1.5 with the same value of n. We compute
the coherent information for this state and we depict the same
in Fig. 12 for n varying from 1 to 10, values that are of
practical relevance as well. We see that for this input state
the coherent information decreases with increasing value of
photon addition. Further, for n = 0 or no photon addition, the
coherent information evaluates to −0.2239, as expected. We
note that the coherent information provides a lower bound to
the quantum capacity (32), i.e.,

Q(�) � Icoh(�,ρ̂), (34)

and hence the quantum capacity Q(C(κ; n)) > 0 for κ =√
1.52 − 1 and n = 1,2, . . . ,10. We note that the output states

of the photon-added phase-conjugation channels are of infinite
rank and hence their numerical evaluation required a truncation
of the output Hilbert space. For the case n = 1, Fig. 13 depicts
the entropy S(C(κ; 1)[ρ̂]), κ = √

1.5 − 1, and S(A(1.5; 1)[ρ̂])

FIG. 12. Coherent information Icoh(C(κ; n),ρ̂) as a function
of photon addition n with κ = √

1.52 − 1 and ρ̂ = 0.6|0〉〈0| +
0.4|1〉〈1|. The coherent information is positive for n varying from
1 to 10.

with ρ = 0.6|0〉〈0| + 0.4|1〉〈1| as a function of the truncated
value of the output Fock state. The numerically evaluated
entropies in Fig. 12 and Table III (which we explain in the next
paragraph) were for output states truncated at value n = 110.

As a second example we consider different input states
that are all diagonal in the Fock basis and evaluate the
corresponding entropies similar to the method outlined above
and tabulated in Table III. We reiterate that any positive
coherent information Icoh > 0 is a already a lower bound to
the quantum capacity.

Hence we see that photon addition to the environment
(vacuum) state leads to the activation of quantum capacity.
Since the quantum capacity is a lower bound to the private
capacity [64], i.e.,

Q(�) � P(�), (35)

we have that the private capacity is also activated for the
phase-conjugation channel. This is a clear phenomenon where

FIG. 13. Variation of entropy as a function of the truncated value
of the output Fock state. The top line (in blue with circle plot points)
corresponds to S(C(κ; 1)[ρ̂]) and κ = √

1.52 − 1 and the bottom line
(in red with square plot points) corresponds to S(A(1.5; 1)[ρ̂]), with
ρ̂ = 0.6|0〉〈0| + 0.4|1〉〈1|.
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TABLE III. Output entropies and coherent information for various input states and values of photon addition. Here κ = √
1.5 − 1 and

κ ′ = 1.5. Note that A(κ ′; n) is the complementary channel to C(κ; n). Further, Icoh(�) > 0 ⇒ Q(�) > 0.

n ρ̂in S(C(κ; n)[ρ̂in]) S(A(κ ′; n)[ρ̂in]) Icoh(C(κ; n),ρ̂in)

1 0.6|0〉〈0| + 0.4|1〉〈1| 3.46527 3.35954 0.10573
2 0.4|0〉〈0| + 0.3|1〉〈1| + 0.4|2〉〈2| 4.12843 4.02385 0.10458
3 0.35|0〉〈0| + 0.35|1〉〈1| + 0.3|2〉〈2| 4.36985 4.27853 0.09132
4 0.35|0〉〈0| + 0.35|1〉〈1| + 0.3|2〉〈2| 4.54768 4.48032 0.06736
5 0.3(|0〉〈0| + |1〉〈1|) + 0.2(|2〉〈2| + |3〉〈3|) 4.86302 4.78464 0.07838

no amount of photon addition (or any operation) on the input
state to the phase-conjugation channel would give a nonzero
quantum capacity, whereas even a single-photon addition to
the environment already activates its quantum and private
capacities.

As a final example we set both the input state ρ̂in =
0.6|0〉〈0| + 0.4|1〉〈1| and the amount of photon addition equal
to n = 1. However, now we vary the channel parameter κ and
we plot the coherent information in Fig. 14. We note that our
examples were constructive in nature and we believe that this
phenomenon holds true for all values of κ > 0 and n for the
photon-added phase-conjugation channel C(κ; n) and we state
this as the following conjecture.

Conjecture 2. The quantum capacity Q(C(κ; n)) and the
private classical capacity P(C(κ; n)) for the photon-added
phase-conjugation channels C(κ; n) are positive for all n > 0.

If this conjecture is proven it would imply that the quantum
and private classical capacities of the phase-conjugation chan-
nels are activated alongside the output nonclassicality. This
could have far-reaching practical implications for quantum-
optical communication.

E. Fock-basis coherence and resource theories

The study of the resource theory of coherence has garnered
much attention in recent literature [68–70] with motivation
taken from the resource theory of entanglement. A crucial
element in these resource theories is the description of the set

FIG. 14. Variation of coherent information Icoh(C(κ; 1),ρ̂in) as a
function of the channel parameter κ with ρ̂in = 0.6|0〉〈0| + 0.4|1〉〈1|
and n = 1.

of free operations, i.e., operations that can be implemented
without incurring costs, for manipulation among resource
states; local operations, and classical communication being
examples in the resource theory of entanglement. We make
a few remarks regarding the resource theory of coherence in
the Fock basis and photon-added Gaussian channels. This is
further application of the action of the channel in the Fock
basis considered in Sec. IV A.

Let us denote the set of positive operators diagonal in the
Fock basis by D, i.e.,

D :=
{

σ̂ =
∞∑

n=0

pn|n〉〈n|,pn � 0 ∀ n

}
. (36)

From the action of the photon-added channels in the Fock
basis we can obtain its behavior with respect to generating
coherence in the Fock basis. By Eqs. (23), (25), and (26) we
immediately see that states diagonal in the Fock basis are taken
to states that are diagonal in the Fock basis. Such channels are
known as Fock-preserving channels [71] and we then have the
following proposition.

Proposition 5. The photon-added attenuator, amplifier, and
phase-conjugation channels are Fock preserving, i.e., �(ρ̂) ∈
D for ρ̂ ∈ D.

In the language of resource theory of coherence [68–70],
states that are diagonal in the Fock basis (the basis under
consideration) are known as incoherent states (which are
the common free states). Operations that map incoherent
states to incoherent states are known as maximally incoherent
operations. By Proposition 5 we have that the photon-added
amplifier, attenuator, and phase-conjugation channels are all
maximally incoherent operations for every n � 0.

We can refine the specific class to which these non-Gaussian
operations belong. From the structure of the Kraus operators,
we have by Eqs. (14), (18), and (22) that each individual
Kraus operator takes states diagonal in the Fock basis to
operators diagonal in the Fock basis, i.e., F�ρ̂F

†
� ∈ D for

ρ̂ ∈ D. Operations where not only the map as a whole but also
each Kraus operator takes incoherent states to incoherent states
are known as incoherent operations. Thus the photon-added
channels we consider are not only maximally incoherent but
also incoherent operations [70].

Furthermore, it is also easy to see that the action of
each individual Kraus operator commutes with the completely
dephasing map � (in the Fock basis), which is defined as

�(ρ̂) =
∞∑

n=0

〈n|ρ̂|n〉|n〉〈n|, (37)
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FIG. 15. Scheme for environment-assisted error correction for
transmitting classical information through the photon-added attenua-
tor, amplifier, and phase-conjugation channels. Here the label x stands
for classical information encoded into Fock states and input to the
channel. Conditioned on classical feedback y from the environment
that results from a measurement, a recovery map Ry is applied at the
output of the channel to achieve error correction.

i.e., �(F�ρ̂F
†
� ) = F�(�(ρ̂))F †

� ∀ � for F = A,B,C. Channels
for which each individual Kraus operator action commutes
with the completely dephasing map are known as strictly
incoherent operations. Due to this fact the photon-added
channels that we have considered belong to this class and
we state it in the following remark.

Remark 1. The photon-added attenuator, amplifier, and
phase-conjugation channels belong to the class of strictly
incoherent maps acting on the Fock basis for each n � 0.

Note that the set of strictly incoherent operations is
contained in the set of incoherent operations, which is in turn
contained in the set of maximally incoherent operations [70].

We now observe a few properties of the photon-added
channels with respect to other resources. We have seen that
the photon-added channels are Fock preserving or coherence
nongenerating in the Fock basis. Further, when the resource
is quantum-optical nonclassicality, by Theorem 2 the photon-
added phase-conjugation channel is resource generating, since
its action on classical input states generates nonclassicality at
the output. As a third example of a resource let us consider
non-Gaussianity. Then we see by Eq. (10) that any Gaussian
input state is necessarily taken to a non-Gaussian state at the
output. In other words, the photon-added phase-conjugation,
amplifier, and attenuator channels are all resource generating
where input Gaussian states are taken to non-Gaussian states.
To summarize, the photon-added channel are resource non-
generating on incoherent Fock states and resource generating
on Gaussian states. Further, examples of channels exist that
are resource generating on classical states.

F. Environment-assisted error correction

We now briefly discuss the notion of environment-assisted
error correction for photon-added Gaussian channels. We
follow the formalism that was introduced by Gregoratti and
Werner in Ref. [47]. A schematic of the protocol is provided
in Fig. 15. Classical information is encoded in some chosen
basis states and sent into the communication channel. We
assume that there is classical feedback from the environment
that contains information about the exact Kraus operator that
has acted on the input state based on a measurement outcome.
Conditioned on this information, one can apply a recovery map
at the output of the channel to correct for loss of information.

It turns out that the structure of the quadratic operators
{W�� = F

†
� F�} detailed in Appendix A, where {F�} are the

Kraus operators of a given channel, has consequences for

the existence of an error correction scheme for environment-
assisted information transmission. We first begin with a propo-
sition regarding these quadratic operators corresponding to
photon-added Gaussian channels that follows from Eqs. (A2),
(A3), and (A5) in Appendix A.

Proposition 6. The positive operators {W [�]�� =
F

†
� [�]F�[�]} corresponding to the Kraus operators {F�[�]}

of each of the photon-added amplifier, attenuator, and phase-
conjugation channels are all diagonal in the Fock basis for
every n � 0.

As mentioned earlier, the above proposition has
an information-theoretic consequence with respect to
environment-assisted communication that we now state as a
theorem.

Theorem 3. For the photon-added attenuator, amplifier,
and phase-conjugation channels there exists an environment-
assisted error correction scheme that restores classical infor-
mation encoded in the Fock basis for every value n � 0 of
photon addition.

Proof. Consider the following scheme. Let {|nj 〉}∞j=0 denote
the Fock basis with j representing the encoding of a classical
message taken from a given message set. Let � denote one of
the photon-added amplifier, attenuator, or phase-conjugation
channels, with Kraus operators {Fy}. Let |nx〉〈nx | be a
particular input state to � encoded with classical message
x. The output operator conditioned on classical feedback from
the environment, say, y, i.e., conditioned on the action of a
particular Kraus operator Fy , is given by Fy |nx〉〈nx |F †

y .
We then construct the recovery map (completely positive

and trace preserving) as

Ry(ρ̂) =
∑

j

|nj 〉〈φj |ρ̂|φj 〉〈nj | + Eyρ̂Ey, (38)

where |φj 〉 denotes the normalized state

|φj 〉 = (||Fy |nj 〉||)−1Fy |nj 〉 (39)

for all ||Fy |nj 〉|| 
= 0 and Ey denotes the projection onto
the orthogonal space corresponding to span{Fy |nj 〉∀j}. Then
conditioned on a particular y we have that

Ry(Fy |nx〉〈nx |F †
y )

=
∑

j

|nj 〉 〈nj |F †
y Fy |nx〉

(||Fy |nj 〉||)
〈nx |F †

y Fy |nj 〉
(||Fy |nj 〉||) 〈nj |

+Ey(Fy |nx〉〈nx |F †
y )Ey. (40)

By Proposition 6 we have that this equation reduces to

Ry(Fy |nx〉〈nx |F †
y ) = (〈nx |F †

y Fy |nx〉)|nx〉〈nx |. (41)

Therefore, the action of the corrected channel �corr =∑
y Ry ◦ Fy considering all the Kraus operators (or equiva-

lently labels y) on any basis vector |nx〉 is then given by

�corr(|nx〉〈nx |) =
∑

y

Ry(Fy |nx〉〈nx |F †
y )

= 〈nx |
[∑

y

F †
y Fy

]
|nx〉|nx〉〈nx |

= |nx〉〈nx |. (42)
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So we have that every vector {|n〉}∞0 in the Fock basis that
is input to � can be restored by a correction map applied
to the output with the help of classical feedback from the
environment. In other words, the fact that the positive operators
{W�}∞0 are all diagonal in the Fock basis guarantees that the
output states conditioned on a Kraus operator are orthogonal
for input Fock states. This implies that these outputs can be
reliably distinguished and hence useful for transmission of
classical information encoded in them. �

G. Connection between photon-added channels
and noisy Gaussian channels

For this section we introduce some notation. Consider a
single-mode bosonic Gaussian channel represented by the
matrix pair (X,Y ), with X and Y real and Y � 0. Its action at
the level of the characteristic function χ (ξ ; ρ̂) with ξ ∈ R2 is
given by [55,72]

χ (ξ ; ρ̂out) = χ (Xξ ; ρ̂ in) exp
[− 1

2ξT Y ξ
]
. (43)

Let the noise matrix Y be decomposed as YQL + Ỹ , where
YQL, QL stands for quantum limited, is the minimum amount
of noise as required by the complete positivity condition
for the given X and Ỹ stands for the additional noise in
the channel over and above the amount that makes the
channel quantum limited. For consistent notation we denote
by �(X,Ỹ ; n) an n-photon-added noisy Gaussian channel
represented by the matrix pair (X,YQL + Ỹ ) and we suppress
the YQL term and denote only the extra noise Ỹ . We will
explicitly consider photon-added noisy Gaussian channels
in Sec. IV H. Therefore, a photon-added quantum-limited
channel as considered in earlier sections will be denoted by
�(X,0; n) or simply �(X; n).

We now present a straightforward connection between
photon-added Gaussian channels and noisy Gaussian channels.
We first begin with the following fact that every noisy Gaussian
channel can be obtained by using a thermal state in the
Stinespring representation of these noisy channels [55,72].
In other words, we have that any noisy Gaussian channel
(X,YQL + Y (n̄)), with additional noise denoted by Y (n̄), can
be written as

�(X,Y (n̄); 0) = TrE[UAE(ρ̂A ⊗ ρ̂th(n̄))U †
AE], (44)

where ρ̂th(n̄) is the thermal state

ρ̂th(n̄) =
∞∑

n=0

pn(n̄)|n〉〈n|, pn(n̄) = n̄n

(1 + n̄)n+1
(45)

and n̄ = 〈â†â〉ρ̂th is the average photon number in the state
ρ̂th(n̄). By Eq. (8) we have that the amount of additional
noise in the Gaussian channel �(κ; 0) is Y (n̄) = 2n̄YQL (with
the quantum-limited channel corresponding to n̄ = 0, or the
vacuum state in the environment).

Substituting the Fock-basis representation of Eq. (45) in
Eq. (44), we have that

�(X,Y (n̄); 0)

= TrE[UAE(ρ̂A ⊗ (1 − a)an|n〉〈n|)U †
AE]

= (1 − a)
∞∑

n=0

anTrE[UAE(ρ̂A ⊗ |n〉〈n|)U †
AE]

=
∞∑

n=0

pn(n̄)�(X; n),a = n̄

1 + n̄
, (46)

where �(X; n) are the photon-added Gaussian (quantum-
limited) channels. To summarize we have

�(X,Y (n̄); 0) =
∞∑

n=0

pn(n̄)�(X; n), (47)

which is expressed as the following proposition connecting
noisy Gaussian channels and the non-Gaussian photon-added
channels.

Proposition 7. The noisy attenuator, amplifier, and phase-
conjugation channels can be decomposed into a convex
mixture of their corresponding photon-added channels as given
in Eq. (47).

Thermal states can be thought of as noisy Gaussian states
and these can be decomposed in the Fock basis with a
suitable geometric distribution as given in Eq. (45). Likewise
Proposition 7 provides a representation for the channel analog
wherein a noisy Gaussian channel can be decomposed into
a convex mixture of photon-added Gaussian channels also
with a geometric distribution, where photon-added Gaussian
channels take on the role of Fock states. So we see how
these photon-added channels are fundamentally related to the
ubiquitous noisy Gaussian channels.

H. Photon addition to noisy channels: Complete framework

Up to now we have considered photon-added quantum-
limited Gaussian channels. In this section we generalize the
scheme to incorporate photon addition to noisy Gaussian
channels in a systematic way. To achieve this, we start from
the unitary dilation of noisy Gaussian channels. There are
two possible implementations for photon addition that one can
take, depending on the choice of the environment state being
pure or mixed. For the first case of a pure vacuum state we
have the following proposition [55].

Proposition 8. Noisy attenuator, amplifier, and phase-
conjugation channels of a single-mode can be realized with
a two-mode vacuum environment state followed by a suitable
two-mode squeezing transformation before the application of
the channel unitary.

FIG. 16. Schematic for photon-added noisy Gaussian channels
with a vacuum environment state. In the absence of photon addition
we obtain the underlying noisy Gaussian channel with the noise
parameter tuned by the squeezing parameter of the TMS operator.
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FIG. 17. Schematic for photon-added noisy Gaussian channels
with a mixed environment state. Here PATS stands for the photon-
added thermal state.

With this realization of noisy Gaussian channels, one
can then apply a photon addition to obtain the photon-
added noisy Gaussian channels as schematically depicted in
Fig. 16.

Equivalently, we can choose to trace out the second
environment mode resulting in a mixed thermal state for the
first environment mode to which one applies photon addition.
We recall that this scheme was mentioned in Sec. IV G to
connect noisy Gaussian channels and photon-added Gaussian
channels. Then by photon addition we get a photon-added
thermal state [9,10] for the environment as depicted in Fig. 17.
With respect to the resulting photon-added channel, the two
schemes are identical.

To summarize, we provided a uniform framework that
includes four special cases. We focused on the first scheme
with a pure environment state (Fig. 16), with equivalent
statements that can be easily inferred for the case of a mixed
environment state. First, in the absence of both the photon ad-
dition and the two-mode squeezing we have the representation
for a quantum-limited Gaussian channel. Second, to obtain
the noisy version of the Gaussian channel one can tune the
squeezing parameter of the TMS and with no photon addition.
Third, to obtain photon addition to the quantum-limited
Gaussian channels we switch off the TMS. Finally, with all
elements in place, we have photon addition to noisy Gaussian
channels. We thus have a consistent description of photon
addition as in the earlier cases of photon addition to quantum-
limited Gaussian channels. Also in this way the role of each
component is made transparent. We do not consider the proper-
ties and applications of photon-added noisy Gaussian channels
here.

V. CONCLUSION

We presented a systematic framework to study linear
bosonic non-Gaussian channels of continuous-variable sys-
tems. We focused on a special class of channels we call photon-
added Gaussian channels. Photon-added Gaussian channels
are realized by extending quantum-limited Gaussian channels
with photon addition applied to the environment state in the
Stinespring dilation of these channels. The resulting channels
are linear and non-Gaussian in nature. We considered the
cases of the photon-added attenuator, amplifier, and phase
conjugator as our main examples as these channels can be
realized using either a beam splitter or a two-mode squeezing

operator, both of which are very important and practically
realized with current quantum-optical technology. We first
obtained the operator-sum representation of the photon-added
channels and studied various implications.

Our most interesting application is to the case of activation
of quantum-optical nonclassicality at outputs of channels
that would otherwise output only classical states. This was
achieved through the use of photon addition in the ancilla
modes. Further, we also report activation of the quantum
and private capacities of these channels. This has potentially
far-reaching applications in quantum-optical communications.
We emphasize that no operation on the input state could have
achieved this phenomenon of activation of the said quantities,
giving a clear distinction and use of our scheme of photon
addition to the ancilla states.

The action of the channels on Fock states revealed the
ranges of the Fock support for the output states corresponding
to any input states. We also see that the photon-added phase-
conjugation channel is complementary to the photon-added
amplifier channel and the photon-added attenuator channel is
complementary to another photon-added attenuator channel
with different attenuation parameter, leading to an immediate
implication on the minimum output entropy of these channels.
From the structure of the Kraus operators we also showed that
all photon-added Gaussian channels that we considered allow
for environment-assisted classical information transmission
through them.

The photon-added amplifier, attenuator, and phase-
conjugation channels are also coherence nongenerating in the
Fock basis when acting on incoherent states. With respect to
the resource theory of non-Gaussianity, it was also noted that
input Gaussian states are mapped to non-Gaussian states at
the output and therefore are resource generating, in contrast to
their behavior with respect to Fock-basis coherence.

We then provided a decomposition of noisy Gaussian
channels in terms of their respective photon-added quantum-
limited channels analogous to the Fock basis representation of
a thermal state, thereby providing further motivation for study-
ing these non-Gaussian channels as they are fundamentally
related to noisy Gaussian channels. Furthermore, our method
allows for tuning between the Gaussian and non-Gaussian
regime in the space of channels through photon addition
where n plays the role of the tuning parameter, with n = 0
corresponding to a Gaussian channel and n > 0 corresponding
to a non-Gaussian channel.

The present study is one approach contributing to the
systematic study of non-Gaussian operations that not only
have proved advantageous for many quantum information
protocols but are also necessary due to many Gaussian no-go
theorems as mentioned in the Introduction. In light of recent
interest in quantum resource theories, it would be useful to
quantify the resource-theoretic properties of the photon-added
channels for resources such as quantum-optical nonclassicality
and non-Gaussianity [73–76], whose resource theories are
still important open problems in continuous-variable quantum
information theory.

The photon-added channels considered in this article are
experimentally realizable as gadgets with potential use in
quantum protocols since they only use simple Gaussian unitary
elements along with photon addition. We believe that there
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are many applications of the present work in light of the
increasing and indispensable use of non-Gaussian resources
in continuous-variable quantum computing, cryptography, and
communications tasks.
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APPENDIX A: STRUCTURE OF QUADRATIC OPERATORS
{F†

i Fj } AND EXTREMALITY

For a given channel � there are many useful properties
that can be inferred from the structure of the corresponding
quadratic operators {F †

i [�]Fj [�]}ij , where {Fj [�]}j are the
Kraus operators of �. Extremality is one such example and
another application to environment-assisted communication
was presented earlier in Sec. IV F.

The set of all channels on a single-mode system forms
a convex set. Extremal channels are those that lie on the
boundary of this convex set and cannot be expressed as
a convex combination of other channels. Starting from the
structure of the Kraus operators, we state the following
conjecture with respect to the photon-added channels and
extremality.

Conjecture 3. The photon-added amplifier, attenuator, and,
phase-conjugation channels are extremal in the set of all
completely positive trace-preserving maps for every n > 0.

The conjecture was shown to hold true for the case n = 0,
i.e., the Gaussian channel case, in Ref. [55] using a theorem by
Choi [77,78] that tells us that a channel � with Kraus operators
{F�[�]}� is extremal if and only if the set of associated matrices
{W [�]��′ }�,�′ defined as

W [�]��′ := F
†
� [�]F�′[�], �,�′ = 0,1, . . . ,∞, (A1)

are linearly independent.
We now compute the quadratic operators for each of the

channels beginning with the photon-added phase-conjugation
channel:

W [C(κ; n)]��′ = d2
κ

n+�∑
n1=0

n+�′∑
m1=0

√
n!�!

(� + n − n1)!n1!

√
n!�′!

(�′ + n − m1)!m1!
g3(n,n1,� + n − n1; κ)g3(n,m1,�

′ + n − m1; κ)

×〈� + n − n1|�′ + n − m1〉|n1〉〈m1|

= d2
κ

n+�∑
n1=max{0,�−�′}

√
n!2�!�′!(�′ − � + n1)!−1

n1!(� − n + n1)!2
g3(n,�′−�+n1,�+n−n1; κ)g3(n,n1,�+n−n1; κ)|n1〉〈�′−�+n1|.

(A2)

We next consider the quadratic operators {W [B(κ; n)]��′ } for the attenuator channel. We have by Eq. (18) that

W [B(κ; n)]��′ = B
†
� (κ; n)B�′(κ; n)=

∞∑
n1=max{0,�−n}

∞∑
m1=max{0,�−n}

√
(n1 + n − �)!�!

n1!n!

√
(m1 + n − �′)!�′!

m1!n!
g2(n,�,n1; κ)g2(n,�′,m1; κ)

×〈n1 + n − �|m1 + n − �′〉|n1〉〈m1|

=
∞∑

n1=max{0,�−n,�−�′}

√
(n1 + n − �)!2�!�′!
n1!n!2(n1 + �′ − �)!

g2(n,�,n1; κ)g2(n,�′,n1 + �′ − �; κ)|n1〉〈n1 + �′ − �|. (A3)

As the final case the operators quadratic in the Kraus operators for the photon-added amplifier channel are given by Eq. (14)
to be

W [A(κ; n)]��′ = A
†
�(κ; n)A�′(κ; n) = κ−2

∞∑
n1=max{0,n−�}

∞∑
m1=max{0,n−�′}

√
n1!�!

(� − n + n1)!n!

× g1(n,n1,� − n + n1; κ)g1(n,m1,�
′ − n + m1; κ)

√
m1!�′!

(�′ − n + m1)!n!
〈n1 + � − n|m1 + �′ − n〉|n1〉〈m1|.

(A4)
Upon simplifying this equation we evaluate W [A(κ; n)]��′ to be

κ−2
∞∑

n1=max{0,n−�,�′−�}

√
n1!�!�′!(n1 + � − �′)

(� − n + n1)!2n!2
g1(n,n1 + � − �′,� − n + n1; κ)g1(n,n1,� − n + n1; κ)|n1〉〈n1 + � − �′|. (A5)
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We see that there are three natural branches corresponding
to � < �′, � > �′, and � = �′ in which the corresponding
quadratic operators are mutually linearly independent. Proving
that the quadratic operators within each branch are also linearly
independent would settle Conjecture 3 by the above-mentioned
theorem of Choi.

Remark 2. We reiterate that demonstrating a channel to be
extremal implies that the channel is fundamentally one that
cannot be decomposed into a convex combination of other
constituent channels.

APPENDIX B: PROOF OF PROPOSITION 2

We begin at the level of the Fock-basis matrix elements
of the associated unitary operators in their respective channel
dilations. We first prove the relation

U [C(
√

κ2 − 1)] = U [A(κ)] ◦ U [B(0)] ◦ Ulo, (B1)

where Ulo is a product of local unitary operators and is given
by

〈m1,m2|Ulo|n1,n2〉 = (−1)n2δm1,n1δm2,n2 . (B2)

Equivalently, we have that

Ulo = 11 ⊗
∑
n2

(−1)n2 |n2〉〈n2|. (B3)

Its role is to compensate for the phases. Furthermore, we have
by Eq. (15) that

〈m1,m2|U [B(0)]|n1,n2〉 = (−1)n2δm1,n2δm2,n1 . (B4)

We have the product of U [B(0)] ◦ Ulo to be the flip operator
Uflip, which is given by

〈m1,m2|Uflip|n1,n2〉 = δm1,n2δm2,n1 . (B5)

By Eq. (11) we see that U [A(κ)] ◦ Uflip is given by

〈m1,m2|U [A(κ)] ◦ Uflip|n1,n2〉
= 〈m1,m2|U [A(κ)]|n2,n1〉

= κ−1

√
n2!m2!

m1!n1!

n1∑
j=0

m1∑
r=0

(
n1

r

)(
m1

r

)
(−1)j (κ−1)n1+r−j

× (
√

1 − κ−2)m1+j−r δn2,r+j δm2,n1+m1−r−j .

We substitute κ = √
1 + t2, which can always be done since

κ � 1. We have that 〈m1,m2|U [A(t)]|n2,n1〉 is given by

(
√

1 + t2)−1

√
n2!m2!

m1!n1!

n1∑
j=0

m1∑
r=0

(
m1

r

)
(
√

1 + t2)−(n1+r−j )

×
(

n1

r

)
(−1)j (

√
1 + t−2)−(m1+j−r)δn2,r+j δm2,n1+m1−r−j

= T [C(t)]m1,m2
n1,n2

, (B6)

where the last line followed from Eq. (19). Hence, we recover
the matrix elements of the phase-conjugation unitary. It is
then a simple consequence that the n-photon-added phase
conjugation C(

√
κ2 − 1; n) is complementary to the n-photon-

added amplifier A(κ; n) for each n � 0.
The proof of the second part of the theorem regarding

attenuators also follows in a similar way to the above proof
since

U [B(
√

1 − κ2)] = Uflip ◦ U [B(κ)], (B7)

as can be seen by Eq. (15). Hence the photon-added attenuator
B(κ; n) is complementary to another photon-added attenuator
B(

√
1 − κ2; n) for all n � 0. The relation between the unitary

operators of the photon-added amplifier and the photon-added
phase conjugation and the relation between the two beam
splitters are represented in Fig. 11. �
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