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Transport properties in a non-Hermitian triple-quantum-dot structure
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In this paper, we study the effect of PT -symmetric complex potentials on the transport properties of one
non-Hermitian system, which is formed by the coupling between a triple-quantum-dot molecule and two semi-
infinite leads. As a result, it is found that the PT -symmetric imaginary potentials have pronounced effects on the
transport properties of such a system, including changes from antiresonance to resonance, shift of antiresonance,
and occurrence of new antiresonance, which are determined by the interdot and dot-lead coupling manners.
This paper can be helpful in understanding the quantum transport behaviors modified by the PT symmetry in
non-Hermitian discrete systems.
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I. INTRODUCTION

The systems of non-Hermitian Hamiltonians have op-
portunities to exhibit entirely real spectra if they possess
parity-time (PT ) symmetry [1]. This exactly means the
fundamental physics intension and potential application of
such kinds of systems. Therefore, researchers explored nu-
merous PT -symmetric systems from various aspects in the
past decades, including the complex extension of quantum
mechanics [2,3], the quantum field theories and mathemat-
ical physics [4], open quantum systems [5], the Anderson
models for disorder systems [6–8], the optical systems
with complex refractive indices [9–13], and the topological
insulators [14,15]. Also, the non-Hermitian lattice models
with PT symmetry have attracted much attention, following
the experimental achievement in optical waveguides [16,17],
in optical lattices [18], and in a pair of coupled Inductor-
Resistor-Capacitor (LRC) circuits [19]. These works provide
research about the non-Hermitian Hamiltonians with PT
symmetry. Recently, it has been reported that such systems
can be realized in the Gegenbauer-polynomial quantum
chain [20], the one-dimensional PT -symmetric chain with
disorder [21], the chain model with two conjugated imaginary
potentials at two end sites [22], the tight-binding model
with position-dependent hopping amplitude [23], and the
time-periodic PT -symmetric lattice model [24]. During the
same period, Ghatak et al. complicated a one-dimensional po-
tential which exhibits bound, reflecting, and free states to study
various properties of a new PT -symmetric non-Hermitian
system [25].

Accompanied by the exploration and fabrication of the
PT -symmetric systems of non-Hermitian Hamiltonians, the
physics properties of them have also become one important
concern in the field of quantum physics. On the one hand,
researchers have begun to focus on their PT phase diagrams
as well as the signatures of PT -symmetry breaking [26]. On
the other hand, some works paid attention to the quantum
transport properties in one dot or double-dot systems, and
various interesting results have been observed [27,28]. For
example, any real-energy eigenstate of a PT tight-binding
lattice with on-site imaginary potentials shares the same
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wave function with a resonant transmission state of the
corresponding Hermitian lattice embedded in a chain. It
has been shown that for a Fano-Anderson system the PT -
symmetric imaginary potentials induce some pronounced
effects on Fano interference, including changes from the
perfect reflection to perfect transmission, and rich behaviors
for the absence or existence of the perfect reflection at one and
two resonant frequencies [29]. In a non-Hermitian Aharonov-
Bohm ring system with a quantum dot (QD) embedded
in each of its two arms, it has been observed that with
appropriate parameters the asymmetric Fano profile will show
up in the conductance spectrum just by the non-Hermitian
quantity in this system [30]. Thus one can ascertain that in the
PT -symmetric systems of non-Hermitian Hamiltonians the
PT -symmetric imaginary potentials play nontrivial roles in
modulating the quantum interference that governs the quantum
transport process.

Surely, for further understanding the impact of PT -
symmetric imaginary potentials on the transport properties
in low-dimensional systems, some other typical and com-
plex geometries should be investigated, which are not just
limited to one-QD or double-QD structures. With respect
to the complicated structures, the coupled triple-QD (TQD)
structure is one typical mesoscopic cell and has attracted
lots of attention [31–35]. Such a system can serve as a
laboratory for correlated electron systems as well as a
prototype quantum processor based on charge and/or spin
in QDs [36,37]. The other characteristic of the TQD is
its application in the area of quantum computation. This
system allows for the realization of the simplest three-level
system and hence allows for application of tools known from
quantum optics, e.g., the coherent electronic transfer using
adiabatic passage or rectification [38,39]. In addition, it is one
promising candidate for studying new phenomena, since it is
the smallest artificial molecule in which topology plays an
important role [40–44].

In the present paper, we would like to study the effect of
PT -symmetric complex potentials on the transport properties
of non-Hermitian systems, which is formed by the coupling
between a TQD molecule and two semi-infinite leads. By an-
alytically solving the scattering process, we find that the PT -
symmetric imaginary potentials can induce pronounced effects
on transport properties of our systems, including changes
from antiresonance to resonance, shift of antiresonance, and
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FIG. 1. Schematic of one non-Hermitian TQD circuit, in which
each QD couples to two leads simultaneously. The terminal QDs are
influenced by PT -symmetric complex on-site chemical potentials.

occurrence of new antiresonance, which are related to the
interdot and QD-lead coupling manners. This paper can assist
us to understand the quantum transport behaviors modified by
the PT symmetry in non-Hermitian discrete systems.

II. THEORETICAL MODEL

The structure that we consider is shown in Fig. 1, in
which each QD of a TQD molecule couples to two metallic
leads, respectively. We add PT -symmetric complex potentials
to the two terminal QDs (QD-1 and QD-3) to investigate
their influence on the quantum transport in this system.
According to the previous works, the PT -symmetric complex
potentials can describe the physical gain or loss during the
interacting processes between the environment and it [45].
The Hamiltonian of this system reads

H =
∑

α

Hα + Hc +
∑

α

HαT , (1)

with its each part given by

Hα =
∞∑

j=1

t0c
†
αj cα,j+1 + H.c.,

Hc =
3∑

l=1

Eld
†
l dl +

2∑
l′=1

tl′d
†
l′+1dl′ + t3d

†
1d3 + H.c.,

HαT =
∑

l

vαlc
†
α1dl + H.c. (2)

d
†
l (dl) is the creation (annihilation) operator for QD-l with

energy level El . When El are real, the Hamiltonian is
Hermitian, whereas if one of them is complex its Hamiltonian
becomes non-Hermitian. c†αj (cαj ) is the creation (annihilation)
of a fermion at site j of lead α with t0 being the hopping
amplitude between the nearest sites. vαl is the tunneling
amplitude between QD-l and lead α. It should be noted
that in discrete systems P and T are defined as the space
reflection (parity) operator and the time-reversal operator.
A Hamiltonian is said to be PT symmetric if it obeys
the commutation relation [PT ,H ] = 0. With respect to our
considered geometry, the effect of the P operator is to let
PdN+1−lP = dl with the linear chain as the mirror axis, and the
effect of the T operator is T iT = −i. Thus, it is not difficult
to find that the Hamiltonian is invariant under the combined
operation PT , under the condition of t1 = t2, vα1 = vα′N ,
and El = E∗

N+1−l .
The study of quantum transport through this structure

depends on the calculation of the transmission function in this

system. During the previous researches, various methods have
been employed to calculate the transmission function [46].
In this paper, we would like to choose the nonequilibrium
Green’s-function technique to perform the calculation. There-
fore, the transmission function can directly be expressed
as [47,48]

T (ω) = Tr[�LGa(ω)�RGr (ω)]. (3)

�α = i(�α − �†
α) denotes coupling between lead α and the

device region. �α , defined as �jl,α = vαjv
∗
αlgα , is the self-

energy caused by the coupling between the quantum chain
and lead α. gα is the Green’s function of the end site of the
semi-infinite lead. Due to the uniform intersite coupling in
lead α, the analytical form of gα can be written out. For
the same lead L and lead R, we can obtain the result that

gα = g0 = ω

2t2
0

− iρ0 with ρ0 =
√

4t2
0 −ω2

2t2
0

[49]. Additionally,

in Eq. (3) the retarded and advanced Green’s functions in
Fourier space are involved. They are defined as follows:
Gr

jl(t) = −iθ (t)〈{dj (t),d†
l }〉 and Ga

jl(t) = iθ (−t)〈{dj (t),d†
l }〉,

where θ (x) is the step function. The Fourier transforms
of the Green’s functions can be performed via G

r(a)
j l (ω) =∫ ∞

−∞ G
r(a)
j l (t)eiωtdt . They can be solved by means of the

equation of motion method. For convenience we employ an al-
ternative notation 〈〈A|B〉〉x with x = r,a to denote the Green’s
functions in Fourier space, e.g., Gr

jl(ω) is identical to 〈〈dj |d†
l 〉〉r .

In general, the Green’s functions obey the following equations
of motion:

(ω ± i0+)〈〈A|B〉〉r(a) = 〈{A,B}〉 + 〈〈[A,H ]|B〉〉r(a). (4)

Starting from Eq. (4), we can derive the equation of motion of
the retarded Green’s function 〈〈dj |d†

l 〉〉r between two arbitrary
QDs. And then, the matrix form of the retarded Green’s
function in this system can be obtained, i.e.,

[Gr ]−1 =

⎡
⎢⎣

z − E1 − �11 −t∗1 − �12 −t3 − �13

−t1 − �21 z − E2 − �22 −t∗2 − �23

−t∗3 − �31 −t2 − �32 z − E3 − �33

⎤
⎥⎦

(5)

with � = �L + �R .

III. NUMERICAL RESULTS AND DISCUSSIONS

Following the theory in Sec. II, we proceed to investigate
the transmission function spectra of our considered system to
clarify the influence of the PT -symmetric complex potentials
on the quantum transport process. In order to satisfy the
condition of PT symmetry, we choose t1(2) = tc, vα1(3) = v1,
and vα2 = v2 with E1(3) = E0 ± iγ . Also, we take E0 = 0
and assume t0 to be the unit of energy for calculation. In
this context, we would like to pay attention to two cases,
i.e., the TQD chain and TQD ring, to expand our numerical
discussion.
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FIG. 2. Spectra of the transmission function of the TQD chain
influenced by thePT -symmetric complex potentials, in the two cases
of v1 = 0 and v2 = 0, respectively. (a), (b) Transmission function
spectra of γ = 0, 0.1, 0.3, 0.5, 0.8, in the cases of E2 = 0 and 0.5
when v1 = 0.

A. Triple-QD chain

In the first subsection, we would like to investigate the trans-
mission function in the case of the TQD chain, by considering
different QD-lead coupling manners. The numerical results
are shown in Figs. 2 and 3. In Figs. 2(a) and 2(b), we take
v1 = 0 and v2 = 0.5 and investigate the quantum transport
properties in the simplest geometry, i.e., the cross-typed
TQDs. For performing the numerical calculation, we take
the interdot coupling as tc = 0.5 without loss of generality.
In Fig. 2(a), we see that for the Hermitian Hamiltonian
of the TQD chain (i.e., γ = 0) only two peaks appear in
the transmission function spectrum, near the positions of
ω ≈ ±1.0, respectively. Also, the two peaks are separated
from each other by one antiresonance at the energy zero point.
Thus, in this case, the decoupling mechanism occurs in the
quantum transport process, accompanied by the occurrence
of antiresonance. As the non-Hermitian Hamiltonian is taken
into account by setting E1 = E0 − iγ and E3 = E0 + iγ , one
can readily find that both the decoupling and antiresonance
vanish. This shows that even if γ = 0.1 the antiresonance
disappears, whereas one resonant peak emerges at the energy
zero point. If the value of γ further increases, all the peaks
in the transmission function spectra are widened obviously.
As a result, in the case of γ = 0.8, one transmission function
plateau forms and T (ω) gets close to 1.0 around the position
of ω = 0. Figure 2(b) shows one general case where the level
of QD-2 is away from the energy zero point, e.g., E2 = 0.5.
It can be found that in the case of γ = 0 the decoupling
and antiresonance phenomena still coexist in the quantum
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FIG. 3. Transmission function curves of the TQD chain influ-
enced by the PT -symmetric complex potentials, in the two cases of
v1 = 0 and v2 = 0, respectively. (a), (b) Results of γ = 0, 0.1, 0.3,
0.5, in the cases of E2 = 0 and 0.5 when v2 = 0.

transport process, though the two peaks shift to the positions
of ω = −0.7 and 1.2, with their different widths. Next, when
the nonzero γ is taken into account, both the decoupling
and antiresonance disappear, similar to the case of E2 = 0.
For a small γ (i.e., γ = 0.1), one resonant peak emerges at
the energy zero point. With its increase, all the peaks in the
transmission function spectra are widened. At the same time,
the transmission functions in different cases are equal to one
another around the position of ω = 0, with T (ω) ≈ 0.5. As a
result, in the negative region the transmission function peak
can be suppressed until its disappearance.

Next, we focus on an alternative case where v1 = 0.5 and
v2 = 0, with the results exhibited in Figs. 3(a) and 3(b).
We find in Fig. 3(a) that in the case of El = E0 two peaks
exist in the transmission function curve, and at the point
of ω = E0 the transmission function encounters its zero.
Such a result is similar to that in Fig. 2(a), except for the
difference of the peak widths. However, the influence of the
PT -symmetric complex potentials on the quantum transport
shows new results. Namely, the nonzero γ only narrows the
antiresonance valley around the energy zero point but does not
induce any other phenomenon. Next in the case of δ = 0.5,
Fig. 3(b) shows that the antiresonance point shifts to the
position of ω = 0.5. As the nonzero γ is taken into account,
it causes a new antiresonance to appear at the energy zero
point, with the antiresonance valley proportional to the value
of γ . As a consequence, two antiresonance points appear in the
transmission function spectrum. Up to now, we can find that
the effect of the PT -symmetric complex potentials is strongly
dependent on the QD-lead coupling manner.
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One can be sure that the spectra properties of
the transmission function can be understood by writ-
ing out its analytical expression. To do so, we rewrite

T (ω) in the form T (ω) = |τt |2 = |∑j l ṽLjGjl ṽjR|2 with
ṽαj = vαj

√
ρ0. For the general case, we can obtain the result

that

τt = 2�1(ω − E2)(ω − E0) + �2[(ω − E0)2 + γ 2] + 4
√

�1�2(ω − E0)tc∏
j (ω − Ej − �jj ) − 2Re[(tc + �21)(tc + �32)�13] − D (6)

where D = |tc + �21|2(ω − E3 − �33) + |�13|2(ω − E2 −
�22) + |tc + �32|2(ω − E1 − �11) with �n = v2

nρ0 (n = 1,2).
One can find the condition of τt = 0, i.e.,

ω = E0 − 2

2 + x
(2

√
xtc − δ ±

√
�), (7)

in which � = (δ − 2
√

xtc)2 − x(x + 2)γ 2 with x = �2
�1

.
In the case of v1 = 0, τt will simplify to be τt =

�2

ω−E2−�22−2 ω−E0
(ω−E0)2+γ 2 t2

c

. This result exactly means that the

presence of nonzero γ will destroy the antiresonance at
the point of ω = E0. When ω = E0, τt will be simplified
into τt = �2

ω−E2−�22
. On the other hand, in the case of

v2 = 0, τt will transform into τt = 2�1(ω−E2)(ω−E0)
D′(ω−E2)−2t2

c (ω−E0) with

D′ = (ω − E0)2 + γ 2 − (�11 + �33)(ω − E0). Thus in such
case, the antiresonance will occur at the points of ω = E2

and E0, once γ is not equal to zero. Alternatively, in the
absence of the PT -symmetric complex potentials, τt will
be simplified to be τt = 2�1(ω−E2)

(ω−E0−t3−�11+�33)(ω−E2)−2t2
c
, which

suggests only one antiresonance point located at the position of
ω = E2.

Based on the result in Eq. (6), we assume v1 = v2 = 0.5
and investigate the effect ofPT -symmetric complex potentials
on the quantum transport behaviors. The results are shown
in Fig. 4. It can be clearly found that in this case the PT -
symmetric complex potentials have a complicated effect on the
quantum transport process. First, in Fig. 4(a) where E2 = 0, we
see that in the case of γ = 0 an apparent Fano line shape exists
in the transmission function spectrum, with the antiresonance
point at ω ≈ −0.7. When the nonzero γ is introduced, one
new antiresonance point appears in the vicinity of the energy
zero point. However, the further increase of γ will eliminate
the antiresonance near the point of ω ≈ −0.7, accompanied
by the enhancement of the antiresonance around the energy
zero point. As γ rises to 0.5, there is only one antiresonance
point at ω ≈ −0.2. Second, in the case of E2 = 0.5, the effect
of PT -symmetric complex potentials is only to weaken the
Fano interference. As shown in Fig. 4(b), for the small γ ,
i.e., γ = 0.1, these potentials play trivial roles in changing the
transmission function spectrum. Once γ increases, the Fano
antiresonance will be destroyed gradually. For instance, in
the case of γ = 0.5, the Fano line shape in the transmission
function spectrum disappears.

B. Triple-QD ring

In what follows, we would like to introduce the coupling
between QD-1 and QD-3 to investigate the transmission
function properties in the TQD ring. Similar to the discussion
in the above subsection, we will consider the QD-lead coupling

manners of v1 = 0 and v2 = 0, respectively. In order to present
a general description about the effect of the PT -symmetric
complex potentials, we take E2 = 0.5 in this part.

The results in Fig. 5 describe the case of v1 = 0 and
v2 = 0.5. In this figure, we see that in the case of γ = 0 only
two peaks appear in the transmission function spectrum, and
they are separated by the antiresonance at the point of ω = t3.
Next when the non-Hermitian Hamiltonian is considered with
E1 = E0 − iγ and E3 = E0 + iγ , the transmission function
spectrum undergoes complicated change. It shows that the
peak in the high-energy region shifts left, accompanied by
its widening. For the antiresonance, one new antiresonance
emerges and it is located at the position of ω = −t3 when
γ = 0.1. With the increase of γ , this antiresonance will be
enhanced, leading to the disappearance of the transmission
function peak beside this antiresonance. Meanwhile, such a
new antiresonance point shifts right, until the consistence of
the two antiresonances in the case of γ = t3. Next, the further
increase of γ will destroy the antiresonance phenomenon,
and then only one peak survives in the transmission function
spectrum. For the QD-lead coupling manner of v1 = 0.5 and
v2 = 0, we see in Fig. 6 that in such a case the presence of
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FIG. 4. Spectra of T (ω) with the increase of γ . The QD-lead
couplings are taken to be v1 = v2 = 0.5. (a) Transmission function
spectra of γ = 0, 0.1, 0.3, 0.5, in the case of E2 = 0. (b) Results of
γ = 0, 0.1, 0.3, 0.5, 0.8, when E2 = 0.5.
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FIG. 5. Transmission function spectra of the TQD ring affected
by the PT -symmetric complex potentials, in the case of v1 = 0 and
E2 = 0.5. In (a)–(c), t3 is equal to 0.3, 0.5, and 0.8, respectively.

PT -symmetric complex potentials leads to alternative results.
The most typical result is that it introduces one antiresonance

at the point of ω = −t3, whereas the original antiresonance is
still located at the point of ω = δ in the transmission function
spectrum. In addition, with the increase of γ , the antiresonance
valley around that point of ω = δ is narrowed, but the other
one is widened. As a consequence, the transmission function is
suppressed in this process. For instance, in the case of γ = 1.2,
some of the transmission function peaks disappear. In view of
the above two cases, one can find that the effect of the complex
potentials is more complicated in the first case.

In Fig. 7, we suppose v1 = v2 = 0.5 to analyze the influence
of PT -symmetric complex potentials. In this figure, we can
find that the influence of PT -symmetric complex potentials
is dependent on the value of t3. To be specific, in the case
of t3 = 0.3, the nonzero γ can efficiently destroy the Fano
antiresonance in the transmission function spectrum. With the
increase of γ , the Fano line shape in the transmission function
spectrum disappears gradually. When t3 increases to 0.5, one
new antiresonance point appears at the point of ω = −0.5
in the case of γ = 0.1. However, as γ increases to 0.3, the
two antiresonances change to one, at the point of ω = −0.3.
The following increase of γ will eliminate this antiresonance
and destroy the Fano line shape in the transmission function
spectra. In the case of t3 = 0.8, the influence of increasing γ

is similar to the result in Fig. 7(b). The difference consists in
the fact that in the case of γ � 0.8 the Fano antiresonance
vanishes.

Let us present the analytical expression of the transmission
coefficient in the case of t3 	= 0. In the general case where
v1(2) 	= 0, it is given by

τt = 2�1(ω − E2)(ω − E0 + t3) + �2[(ω − E0)2 + γ 2 − t2
3 ] + 4

√
�1�2[(ω − E0) + t3]tc∏

j (ω − Ej − �jj ) − 2Re[(tc + �21)(tc + �32)(t3 + �13)] − D′ (8)

where D′ = |tc + �21|2(ω − E3 − �33) + |t3 + �13|2(ω −
E2 − �22) + |tc + �32|2(ω − E1 − �11) with �n = v2

nρ0

(n = 1,2). One can find the condition of τt = 0, i.e.,

ω = E0 − 2

2 + x
(t3 − δ + 2

√
xtc ±

√
�), (9)

in which � = (t3 − δ + 2
√

xtc)2 − (x + 2)[x(γ 2 − t2
3 ) −

2t3(δ − 2
√

xtc)] with x = �2
�1

. Here, the role of t3 can be clearly
observed. It also shows that with the increase of γ , � has an
opportunity to be equal to or less than zero. Consequently, the
antiresonance points decrease and then disappear. Taking the
case of t3 = tc and x = 1 as an example, antiresonance will
disappear when γ > δ√

3
. Next, when our considered structure

is simplified, the antiresonance properties will become clearer
accordingly. In the case of v1 = 0, τt will simplify to be

τt = �2

ω − E2 − �22 − 2 ω−E0+t3
(ω−E0)2+γ 2−t2

3
t2
c

. (10)

From this result, we can find that the antiresonance occurs
at the point of ω = E0 ±

√
t2
3 − γ 2. However, in the case of

γ = 0, τt = �2

ω−E2−�22−2 t2c
ω−E0−t3

. Antiresonance only occurs at

the point of ω = E0 + t3, whereas the antiresonance point

ω = E0 − t3 disappears due to the molecular-level decoupling.
On the other hand, in the case of v2 = 0, τt will transform
into τt = 2�1(ω−E2)(ω−E0+t3)

D′(ω−E2)−2t2
c (ω−E0+t3) with D′ = (ω − E0)2 + γ 2 −

t2
3 − (�11 + �33)(ω − E0 + t3). This result means that the

antiresonance occurs at the point of ω = E2 and E0 − t3,
independent of the change of nonzero γ . Next, in the absence
of the PT -symmetric complex potentials, τt will be simplified
to be τt = 2�1(ω−E2)

(ω−E0−t3−�11+�33)(ω−E2)−2t2
c
. And then, only one

antiresonance point can be observed, which is located at the
position of ω = E2.

At this point, one can understand the influence of the
PT -symmetric complex potentials on the quantum transport
through TQD systems. For different interdot or QD-lead
coupling manners, they have pronounced effects on the
antiresonance-to-resonance transition, shift of antiresonance,
and occurrence of new antiresonance. Therefore, it can be
ascertained that compared with the double-QD cases [29,30]
the roles of the PT -symmetric complex potentials are more
interesting and meaningful for the TQDs.

C. Result analysis

It is well known that the property of the transmis-
sion function is determined by the quantum interference

062123-5



LIAN-LIAN ZHANG AND WEI-JIANG GONG PHYSICAL REVIEW A 95, 062123 (2017)

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

-2 -1 0 1 2

0.0
0.2
0.4
0.6
0.8
1.0

(a) t3=0.3

(b) t3=0.5

T(
ω

)

γ=0.0
γ=0.1
γ=0.3
γ=0.5
γ=0.8
γ=1.2(c) t3=0.8

ω/t0

FIG. 6. Transmission function spectra of the TQD ring in the pres-
ence of PT -symmetric complex potentials. The QD-lead coupling is
taken to be v2 = 0, and the level of QD-2 is fixed at E2 = 0.5. In
(a)–(c), t3 is equal to 0.3, 0.5, and 0.8, respectively.

among the transmission paths in the low-dimensional system.
Thus, the influence of the PT -symmetric complex potentials
on the transmission function originates from their nontrivial
contribution to the quantum interference. Following this idea,
we here would like to discuss the change of the quantum
interference in the presence of the PT -symmetric complex
potentials.

In this subsection, we take the case of a TQD ring with
v1 = 0.5 and v2 = 0 as an example to expand discussion. As
demonstrated in the above subsection, the transmission co-
efficient τt obeys the following relationship: τt = ∑3

j,l=1 τjl .
Hence, the interference among these four transmission paths
dominates the leading property of the transmission function.
In order to clarify the interference property, in Figs. 8 and 9
we plot the magnitudes and phases of these four paths affected
by the PT -symmetric complex potentials, respectively. It can
be found in Fig. 8 that such complex potentials indeed change
the magnitudes of the respective transmission paths. This is
mainly manifested as the suppression of the transmission-path
magnitudes in the vicinity of ω = −0.5. Especially for τ11, its
magnitude is less than 0.4 in the case of γ = 0.3. Following the
increase of γ to γ = 0.5, τ11 contributes little to the quantum
transport since |τ11|2 gets close to zero. In comparison, the
decrease of |τ33|2 is relatively slow. As a result, τ33 makes
the leading contribution to the quantum transport process
following the increase of γ .

Next, Figs. 9(a)–9(d) show the phases of the four trans-
mission paths, which obey the relationship σjl = arg(τjl). It is
evident that they are also varied by the complex potentials. One
nontrivial change consists of the smoothed phase transition of
the transmission paths, near the point of ω = −0.5. Based
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FIG. 7. Spectra of T (ω) in the TQD ring with the increase of
PT -symmetric complex potentials. The structural parameters are
v1(2) = 0.5 and E2 = 0.5. In (a) t3 = 0.3, t3 = 0.5 in (b), and t3 = 0.8
in (c).

on these results, one can understand the influence of the
PT -symmetric complex potentials on the transmission paths.
This inevitably modifies the quantum interference. Taking the
case of γ = 0.5 as an example, the effect of τ11 is so weak
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FIG. 8. Magnitude of τjl(ω) in the TQD ring with the increase
of PT -symmetric complex potentials. Structural parameters are t3 =
E2 = 0.5 and v1 = 0.5.
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FIG. 9. (a)–(d) Phase of τjl(ω) in the TQD ring influenced by the
increase of γ . (e) Phase change of τ (ω) in the triple-QD ring. The
relevant parameters are identical with those in Fig. 8.

that it can almost be ignored in the quantum interference
process. As a result, the other three paths contribute to the
quantum interference, and their phase difference determines
the interference property as well as the magnitude of the
transmission function. In the case of ω = −0.5, the phases
of τ13 and τ31 are close to −π

2 , but σ33 is approximately equal
to π

2 . And then, destructive quantum interference occurs in
such a case, leading to the antiresonance effect [see Fig. 6(b)].

Following the analysis of the respective transmission paths,
we would like to investigate the phase of the transmission
coefficient, with the results shown in Fig. 9(e). It can be
observed that in the presence of complex potentials the
phase of τt experiences a new π -phase jump when the
incident-particle energy is tuned to ω = −0.5. This is exactly
related to the completely destructive quantum interference
among the transmission paths when the complex potentials
are taken into account. As a result, the phase jump of the
transmission coefficient is consistent with the antiresonance
in the transmission function spectrum. Therefore, the complex
potentials re-regulate the transmission function by changing
the quantum interference mechanism in this system.

The results in Fig. 10 encourage us to further discuss the
relation between the antiresonance and the phase jump of
τt in the other cases of our considered system. And then,
we investigate the phases of the transmission coefficients in
some other cases by using the formula σ = arg(τt ), with the
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FIG. 10. Phases of τt (ω) in the TQD ring and chain with the
increase of PT -symmetric complex potentials. (a), (b) Results of
v1 = 0 and v2 = 0.5 in the cases of t3 = 0.5 and 0, respectively. (c),
(d) Results of vj = 0.5 when t3 = 0.5 and 0, respectively.

numerical results shown in Fig. 10. Figures 10(a) and 10(b)
exhibit the phases of τt in the structures of t3 = 0.5 and 0,
respectively, under the situation of v1 = 0 and v2 = 0.5. It can
be found that increasing γ first induces a new phase jump
and then removes all the phase jump in the case of t3 = 0.5.
Instead, in the case of t3 = 0, γ is able to remove the phase
jump directly. Similar results can be observed in the case of
vj = 0.5, as shown in Figs. 10(c) and 10(d). When comparing
the magnitudes and phases of the transmission coefficients,
one can readily find that regardless of the geometry change
of the TQD structure the jump of the transmission-coefficient
phase is exactly consistent with the antiresonance point in the
transmission function spectrum. At this point, the quantum
interference that dominates the transport process can be
understood.

IV. SUMMARY

To sum up, we have presented an analysis of the effect of
PT -symmetric complex potentials on the transport properties
of non-Hermitian systems, which is formed by the coupling
between a TQD molecule and two semi-infinite leads. By
analytically solving the scattering process, we have found
that the PT -symmetric imaginary potentials can induce
pronounced effects on transport properties of our systems,
including changes from antiresonance to resonance, shift of
antiresonance, and occurrence of new antiresonance, which
are related to the QD-lead coupling manner. All these results
have been discussed by analyzing the quantum interference
properties in the presence of the complex potentials. Our
paper provides an additional way to understand the physical
interplay between the quantum transport and PT symmetry in
non-Hermitian discrete systems.
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