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Quantum contextuality turns out to be a necessary resource for universal quantum computation and important
in the field of quantum information processing. It is therefore of interest both for theoretical considerations and
for experimental implementation to find new types and instances of contextual sets and develop methods of
their optimal generation. We present an arbitrarily exhaustive hypergraph-based generation of the most explored
contextual sets [Kochen-Specker (KS) ones] in 4, 6, 8, 16, and 32 dimensions. We consider and analyze 12 KS
classes and obtain numerous properties of theirs, which we then compare with the results previously obtained
in the literature. We generate several thousand additional types and instances of KS sets, including all KS sets
in three of the classes and the upper part of a fourth set. We make use of the McKay-Megill-Pavičić (MMP)
hypergraph language, algorithms, and programs to generate KS sets strictly following their definition from the
Kochen-Specker theorem. This approach proves to be particularly advantageous over the parity-proof-based ones
(which prevail in the literature) since it turns out that only a very few KS sets have a parity proof (in six KS classes
<0.01% and in one of them 0%). MMP hypergraph formalism enables a translation of an exponentially complex
task of solving systems of nonlinear equations, describing KS vector orthogonalities, into a statistically linearly
complex task of evaluating vertex states of hypergraph edges, thus exponentially speeding up the generation of
KS sets and enabling us to generate billions of novel instances of them. The MMP hypergraph notation also
enables us to graphically represent KS sets and to visually discern their features.
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I. INTRODUCTION

An assumed property of a classical system is that any of
its measurements have values independent of other compatible
measurements that might have been carried out on the system
previously or counterfactually simultaneously, i.e., that the
values are predetermined. The property is called the noncon-
textuality. This is in contrast to quantum mechanical systems
whose measurements might be contextual, i.e., dependent
on the context of previous or counterfactually simultaneous
measurements. Such property of quantum systems is called
(quantum) contextuality.

The so-called Kochen-Specker (KS) sets provide construc-
tive proofs of quantum contextuality and therefore provide
straightforward blueprints for their implementation and exper-
imental setups. KS sets are likely to find applications in the
field of quantum information, similarly to ones recently found
for the Bell setups in implementing entanglements [1,2]. The
assumption is supported by a recent result of Cabello [3],
according to which local contextuality can be used to reveal
quantum nonlocality.

Along that road, it has been most recently “demonstrate(d)
that . . . contextuality is the source of a quantum computer’s
power” [4]. In particular, Howard, Wallman, Veitech, and
Emerson [5] “uncover a remarkable connection between the
power of quantum computers and . . . contextuality” [4]
and prove that “contextuality is a necessary resource for
universal quantum computation via magic state distillation”
([5], p. 354). [“The way of initializing the quantum bits
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(by means of) . . . superposition . . . is called magic” [4].]
The scheme of Howard et al. [5] has been extended by
Delfosse, Guerin, Bian, and Raussendorf so as to include
Wigner function negativity [6].

It has also been recently shown by Raussendorf that “the
measurement-based quantum computations which compute
a nonlinear Boolean function with a high probability are
contextual” [7]. A contextual kind of quantum gates, indis-
pensable ingredients of quantum computational circuits, can be
straightforwardly constructed from the scheme which served
Waegell and Aravind to build four-dimensional (4D) complex
KS sets [8].

On the other hand, Pavičić, McKay, Megill, and Fresl
have shown that KS sets can serve as a generator of a new
kind of lattices within Hilbert lattice representation of the
Hilbert space ([9], Fig. 8), where a Hilbert lattice is an algebra
underlying every Hilbert space. In addition, Megill and Pavičić
have shown how new generalized orthoarguesian equations,
the only known equations, apart from the orthomodularity
equation itself, holding in the algebra of closed subspaces
of a Hilbert space, can be generated from KS sets [10].

Another quantum information contextual KS set application
is a quantum cryptography protection, as outlined by Cabello,
D’Ambrosio, Nagali, and Sciarrino [11]. It has even been
shown by Nagata that the KS theorem is a precondition for
secure quantum key distribution (QKD) in the sense that in
each QKD protocol KS noncontextuality is violated [12].

A series of KS experiments have been carried out during
the last 10 years. They were implemented for 4D systems
with photons [13–18], neutrons [19–21], trapped ions [22],
and molecular nuclear spins in the solid states [23], for
six-dimensional (6D) systems via six path possibilities for
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the photon transmission through a diffractive aperture [24,25],
and for eight-dimensional (8D) systems by means of the
linear transverse momentum of single photons transmitted by
diffractive apertures addressed in spatial light modulators [26].

The aforementioned role of contextual sets in “supply(ing)
‘magic’ for quantum computation” [5] would require numer-
ous instances of contextual sets and here KS sets as the most
numerous contextual sets are likely to have an important role
in designing appropriate schemes for implementations and
applications. Then, in order to test different quantum gates for
KS sets we should be able to engineer sufficiently large number
of vectors for them, i.e., KS sets of different complexities. For
constructing new algebraic structures and equations for the
Hilbert space we should also have an arbitrarily increasing
number of KS sets as explicitly shown in [10]. Finally, it is
of theoretical significance to know the structure, features, and
sizes of various KS sets. Taken together, it is important to find
new classes and new instances of nonredundant nonisomorphic
KS sets as well as different coordinatizations for them. It is
also of importance to design algorithms and programs with the
help of which we can generate an arbitrary number of different
KS sets.

In this paper, we describe the discovery of large numbers
(billions of them) of critical nonredundant nonisomorphic KS
sets in 4-, 6-, 8-, 16-, and 32-dimensional Hilbert spaces.
“Critical” means that they are minimal in the sense that a
removal of any n-tuple of mutual orthogonalities, of n vectors
from an n-dimensional Hilbert space, turns a KS set into a
non-KS set. In other words, they represent a KS setup that
has no redundancy. We describe the features of KS sets within
particular KS classes which emerge as we generate the sets.
We also outline patterns of distribution and generation and
compare them with the other methods of generation in the
literature. For instance, huge blocks of KS sets and even whole
classes of KS sets turn out to be completely invisible with the
latter methods.

The paper is organized as follows. In Sec. II we provide
the reader with a constructive version of the KS theorem,
define KS sets as well as the critical KS sets, define the parity
proof for KS sets, and present the formalism, algorithms, and
programs we make the use of in the paper. In Secs. III, IV,
V, VI, and VI we deal with KS sets in 4D Hilbert space. In
Sec. III we review the oldest KS class, the 24-24 one, which
is actually a subclass of the 60-105 class we introduce in
Sec. V. In Sec. IV we obtain three orders of magnitude
more sets from the class 60-74 than in our previous paper
[27] and 15 times more than reported in other literature
(the class is also known as the 60-75 and/or 600-cell based
KS class); we denoted the 60-74 class as “tentative” in
the title of the section because it is particular subclass
of the class 300-675 we introduce in Sec. VI. In Sec. V
we elaborate on the 60-105 class defined by means of
Pauli operators for two qubits in the complex Hilbert space
and obtain approximately 2.5 more types of KS criticals
and 3×104 more instances of them than known from the
literature. In Sec. VI we analyze the recently discovered
highly complex and extremely interwoven 300-675 class and
find important subclasses at the higher end of the class. In
Sec. VII we generate a class of approximately 250 000 KS
criticals from the so-called Witting’s master set, recently found

in the literature; none of the criticals have a parity proof
and therefore all the obtained sets from class are completely
invisible in the standard approach via parity-proof-based
algorithms and programs.

In the 6D Hilbert space, the so-called “seven context”
starlike 21-7 KS critical set has recently been discovered and
a challenge was issued to find bigger 6D KS sets in response
to which we in Sec. VIII generate 3.7×106 6D KS criticals
in the 236-1216 class; all but eight of the criticals lack a
parity proof; we also show that the vector components of the
seven-context-star KS set can be simplified and that the set
itself is not contained in the latter class.

In Sec. IX we generate 10 times more types of and KS
sets themselves, from the Lie algebra E8 based 120-2024
master set, than previously achieved in the literature, due to
the very low number of the parity proofs (0.1%); we also
construct a real starlike KS critical set and show that it is
not contained in the 120-2024 class. In Sec. X we enter a
sparsely charted territory of 16-dimensional (16D) four-qubit
KS sets and generate approximately 2.5×106 more sets and
approximately 70 more types of sets than known from the
literature from an 80-265 master set. In Sec. XI we generate
approximately 2.5×105 more instances and approximately 153
more types of 32-dimensional (32D) five-qubit KS criticals
(from a 160-661 master set) than known from the literature.
In Sec. XII we revisit the only four known three-dimensional
(3D) KS criticals and show that recently spotted 13-vector
set does not prove the Kochen-Specker theorem. In Sec. XIII
we discuss and compare, both mutually and with those in the
literature, all the KS sets we generated. In the Appendix A
we give all hypergraph strings we refer to in the main body
of the paper. In the Supplemental Material [28], we provide
the reader with chosen KS critical sets from most of the types
from all classes we considered.

II. KS SETS, MMP HYPERGRAPHS, FORMALISM,
ALGORITHMS, AND PROGRAMS

Our aim is to present results in the realm of contextual
setups and KS sets, methods that served us to generate them,
and we introduce formalism and representation that enable
us to handle them. The input and output data are extremely
massive and numerous and they contain all known (from
the previous literature, including our own previous papers)
setups, sets, figures, hypergraphs, and diagrams as a very
special and tiny portion of the ones obtained here. Before
we dwell on details of the formalism we will make use of,
we briefly introduce contextuality versus noncontextuality
features, quote the KS theorem, and define a KS set.

The notion of noncontextuality of a system, whose ob-
servables we measure after its passing through a device,
boils down to a statement that measurements of a system
correspond to predetermined values of the observables during
the interaction of the system with the device. A stronger
statement, which is usually called the KS theorem, is that
noncontextual theories assume that a predetermined result
of a particular measurement of an observable of a system
does not depend on measurements simultaneously carried
out on other observables of the system, while quantum,
contextual theories do not assume any predetermined values
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for outcomes of measurements, clicks, 0-1’s, and might depend
on simultaneous measurements.

Theorem 1. (Kochen-Specker [29–31]). In Hn, n � 3,
there are sets of n-tuples of mutually orthogonal vectors to
which it is impossible to assign 1’s and 0’s in such a way that

(1) no two orthogonal vectors are both assigned the value 1;
(2) in any group of n mutually orthogonal vectors, not all

of the vectors are assigned the value 0.
The sets of such vectors are called KS sets and the vectors

themselves are called KS vectors.
Any KS set defined for a quantum system provides a

constructive proof of the KS theorem and of the contextuality
of quantum mechanics. A collection of related measurements
provides an experimental verification of the theorem. Within
quantum mechanics we can formalize KS set properties in the
following manner. To every quantum observable of a quantum
system there corresponds a linear Hermitian operator in a
Hilbert space and to every state of the system associated to the
observable there corresponds an eigenvector of the operator in
the same space. The result of a measurement of the observable
is associated with the eigenvalue of the operator. Any KS set is
represented by a collection of n-tuples of mutually orthogonal
(eigen)vectors from n-dimensional Hilbert spaces.

In this paper, we consider 3-, 4-, 5-, 6-, 8-, 16-, and
32-dimensional KS sets. They can be implemented in a
laboratory in two different ways. By means of qubits in an
n-dimensional (where n = 2k , where k is a natural number �2)
Hilbert space Hn = H2 ⊗ · · · (k) · · · ⊗ H2 and by means of
spin- n−1

2 systems. The examples of the former way are KS
sets in 4D H4 by means of two qubits from the class 60-105 in
Sec. V and from the 24-24 class [32] in Sec. III, in 8D H8 by
means of three qubits, or in 16D and 32D spaces via four and
five qubits in Secs. X and XI, respectively. The examples of
the latter way are 4D 60-74 class in Sec. IV, 6D star or triangle
set and the 236-1216 class in Sec. VIII, and the star or triangle
set in Sec IX. In our hypergraphs approach, the calculational
treatment of, and the elaboration on, all classes are the same,
though. Only experimental implementations differ and we will
discuss them when needed.

General formalism of n-dimensional (n � 3; n ∈ N) KS
sets and their implementation via spin- n−1

2 particles (say via,
e.g., generalized Stern-Gerlach devices with a simultaneous
usage of magnetic and electric fields by means of which it is
possible to generate an arbitrary spin state [33]) covers any
possible experimental implementation in contrast to the qubit
approach which covers only n-dimensional = 2k-dimensional
cases (k ∈ N, k � 2).

We represent KS sets by hypergraphs in the MMP hy-
pergraph notation specified below. In a KS set, the vectors
correspond to vertices of an MMP hypergraph. Vertices
representing n-tuples of orthogonal eigenvectors are organized
in edges of MMP hypergraphs [34].

Definition 2. MMP hypergraphs are hypergraphs in which
(i) every vertex belongs to at least one edge;
(ii) every edge contains at least three vertices;
(iii) edges that intersect each other in n − 2 vertices contain

at least n vertices.
A KS set with n vertices and m edges is denoted as n-m.

Only minimal KS sets, called critical KS sets, are relevant
for experimental implementations since their supersets just

contain additional orthogonalities that do not change the KS
property of the smallest critical set.

Definition 3. KS sets that do not properly contain any KS
subset, meaning that if any of its edges were removed, they
would stop being KS sets, are called critical KS sets.

Some authors make use of a coarser notion of (vertex-)
critical KS sets: “A KS (set) is termed critical iff it cannot be
made smaller by deleting the (vertices)” [35]. However, this
definition lacks operationality in identifying a huge number of
critical sets which turn into a non-KS set when an edge of theirs
is removed while the number of vertices remains unaltered as
allowed by Definition 3. On the other hand, deleting a vertex
means a removal of at least one edge.

We encode MMP hypergraphs by means of alphanumeric
and other printable ASCII characters. Each vertex is denoted
by one of the following characters: 1 2 ...9 A B ...Z
a b ...z ! ‘‘ # $ % & ’ () * - / : ; < = > ? @ [ \ ] ˆ
_ ‘ { | } ˜ [32]. When all these characters are exhausted, we
reuse them so as to prefix them by “+,” then by “++,” and so
on. An example is shown in the graphical representation of
a hypergraph of KS set 18-9 in the figure in Sec. III, where
ASCII characters printed next to corresponding vertices
from the hypergraph belong the MMP hypergraph string
1234, 4567, 789A, ABCD, DEFG, GHI1,29BI,35CE,68FH.
So encoded, MMP hypergraphs are generated by our
algorithms and programs or introduced into our programs
to be processed. Each edge is represented by a string of
characters separated by commas and all of them together
form a hypergraph, i.e., a KS set, as a single textual line or
string which ends with a full stop. When dealing with such
ASCII line encoding of MMP hypergraphs, we call them
MMP hypergraphs lines or strings when needed. The order
of the strings and characters is irrelevant; gaps in characters
are allowed and its number is not limited; tens of thousands
of them are not a problem for our programs SHORTD.C,
MMPSTRIP.C, SUBGRAPH.C, VECTORFIND.C, STATES01.C, and
others [9,27,32,34,36–38].

To visualize the hypergraphs, we represent them as figures
showing vertices as dots and edges as straight or curved
lines each connecting n-tuples of vertices. We often draw
hypergraphs so as to start with the biggest loop they contain.
Usually, we do not attach characters to vertices in a figure
because one can always arbitrarily attach them and then
use program VECTORFIND to ascribe vector components to
each vertex. In chosen figures in the following sections
below we show graphical representations of some of the KS
sets that we found in this study in the MMP hypergraph
notation.

Our standard and compact definition of MMP hypergraphs
enables us to smoothly design algorithms for generation,
handling, and analysis of KS sets what together amounts
to MMP hypergraph language. In this work, we generate
subgraphs of big chosen KS hypergraphs, which we call master
sets, by deleting a specified number of edges from such master
sets via our program MMPSTRIP. Then, we filter them on the KS
property via our program STATES01 which just verifies whether
they violate the conditions of the Theorem 1, i.e., whether
they are KS sets. Program STATES01 carries out an exhaustive
search according to a backtracking algorithm. This is a much
less demanding task than a constructive upward generation we
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FIG. 1. Four-dimensional KS sets from the 24-24 KS class; (a)–(f) are all critical KS sets from the class; (a) and (c) were found in [45] and
[47], respectively; (b), (d), and (e) were found in [34]; (f) was found in [32]; (g) and (h) are two isomorphic representations of a noncritical
Peres’ 24-24 KS set found in [43] [it contains all (a)–(f) as well as all the other 1226 KS sets from the 24-24 class]; (a) shows that its vertices
cannot satisfy the conditions of Theorem 1; encircled vertices represent possible 1-assignments.

used previously in [34], and although we have to deal with a
huge volume of hypergraphs, on computing clusters we can
carry out generations successfully, as we show in subsequent
sections below.

A collection of all KS subsets of a particular master set
i − j , with i vertices and j edges, we call an i − j class of
KS sets. We can generate members of an i − j class from
a master set i − j , on a computing grid, as follows. First,
we strip edges from the master set with MMPSTRIP and then
filter them with SED, STATES01, SED, and SHORTD to obtain, say,
mk − l files, where l = 1, . . . ,m and k depends on l in a rather
involved manner depending of how many vertices, if any, were
stripped together with stripped edges. Each file might contain
millions of KS sets (all with l edges). Then, we use these
files as input files for the next round of distributed computing
to randomly generate a chosen number of nonisomorphic
KS critical sets from each line, i.e., each single KS set,
of the obtained files by means of STATES01 and SHORTD.
Thus, we obtain arbitrary exhaustively many p − q KS
criticals.

In elaborating on KS sets, we, as well as other authors in
the literature, make use of theory and algorithms from several
disciplines: quantum mechanics, lattice theory, graph theory,
and geometry. Each discipline has its own terminology which
is often adopted by the authors of papers on KS sets. In this
context, the terms “vertex,” “atom,” “ray,” “1D subspace,” and
“vector” are synonymous, as are the terms “edge,” “block,”
“context,” and “n-tuples (of mutually orthogonal vectors).”
Similarly, “MMP hypergraph” and “MMP diagram” mean the
same thing.

In the literature, KS sets are very often generated and tested
via the so-called parity proof. (The proof was generalized by
Lisoněk, Raussendorf, and Singh [39].)

Definition 4. Parity proof. A parity proof of the KS theo-
rem, in an even-dimensional Hilbert space, via a KS set is a set
of k vertices of the set that form l edges (l odd) such that each
vertex shares an even number of edges. Looking, e.g., at the
18-9 KS set in Fig. 1, we see that, because each vertex shares
exactly two edges, there should be an even number of edges
with 1’s. At the same time, each edge can contain only one
1 by definition, and since there are an odd number of edges,
there should also be an odd number of edges with 1’s, i.e., we
have a contradiction.

Parity proofs face several problems, though:
(i) KS sets with even number of edges cannot have parity

proofs per definition.
(ii) Many KS sets with odd number of edges turn out not

to have a parity proof, either.

(iii) In some classes of KS sets we obtained, less than 0.1%
have a parity proof, and in some others, none at all.

Parity proofs are just special and particular cases of our
general MMP hypergraph verification but sometimes they turn
out to offer a complementary method of generation of KS
sets since parity-proof-based programs are much faster than
general MMP-hypergraph-based ones, when applicable.

III. TENTATIVE 24-24 CLASS OF 4D KS SETS;
GENERATION OF KS SETS VIA STRIPPING

OF MASTER SETS

In this section, we shall make use of the results about the
24-24 class of 4D KS sets we obtained in [32,34,40–42] to
introduce the main steps and strategy we shall undertake to
obtain the results in the subsequent sections. Pavičić [40]
realized that one can establish a correspondence between MMP
hypergraphs and systems of nonlinear equations describing
mutual orthogonalities of vectors as, for instance, in the
following 3D example:

x · y = x1y1 + x2y2 + x3y3 = 0,

x · z = x1z1 + x2z2 + x3z3 = 0, (1)

y · z = y1z1 + y2z2 + y3z3 = 0.

The latter system is an unsolvable problem on any supercom-
puter, even for the smallest KS sets while ascribing 0-1 valua-
tions, required by the definition of a KS set given in Theorem 1,
to vertices of MMP hypergraphs is a problem of statistically
polynomial complexity. In other words, solving for MMP
hypergraphs is exponentially more computationally efficient
than solving for Hilbert space vectors directly when searching
for KS sets. Such a correspondence between nonlinear systems
and MMP hypergraphs enables us to generate KS sets on a
large scale (billions of them). This can be compared with less
than a dozen of KS sets discovered by several researchers
between 1967 and the end of the 20th century [30,43–48],
mostly exploring highly symmetrical geometrical structures
defined by mutually orthogonal vectors.

Pavičić, McKay, Merlet, and Megill [34,41] generated
nonisomorphic MMP hypergraphs and filtered them by means
of a program which was written for our algorithm of assigning
0’s and 1’s to their vertices and another algorithm for assigning
vector components to vertices. The generation and assignments
are exponentially complex tasks in general but applied to our
KS MMP hypergraphs they turned out to be polynomially
complex for the great majority of jobs. We say that they
are statistically polynomially complex. Nevertheless, when we
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reached 24 vertices, the task became forbiddingly CPU-time
consuming: we obtained over 300 KS sets with up to 23
vertices on a cluster with on average 100 CPUs running for
several months. Among them there were only five critical KS
sets. So, we started to search for another way of generating KS
sets. We arrived at the idea of a faster generation as follows.

Kernaghan [45] and Cabello, Estebaranz, and García-
Alcaine [47] realized that their 18-9 and 20-11 KS sets were
subsets of Peres’ 24-24 set [43] but, since they did not make
use of graphical representation, it took them a while to find
their two sets and neither they nor Peres were able to find any
more KS subsets the 24-24 set (Peres even wrote a computer
program for the purpose [49]).

After we generated the first few hundred KS sets in [34,41]
and started to draw their hypergraphs, we visually recognized
(see Fig. 1) that they were all subgraphs of the hypergraph
we drew for Peres’ 24-24 set. Then Pavičić, Megill, and
Merlet designed an algorithm for stripping (peeling) edges
off the latter hypergraph and obtained 1232 KS subsets [32]
(including all six criticals from Fig. 1) within less than 2 min
on a PC. These 1233 KS sets form a 24-24 class of KS sets
and Peres’ 24-24 set is their master set. (We would just like
to mention here that we generated and scanned, during 3 CPU
months, all nonisomorphic hypergraphs with 24 vertices and
24 edges and that among all millions of them there is only one
KS set: Peres’ 24-24 one.)

This led us to another aspect of generating KS sets. All
vectors forming KS sets in the 24-24 class have components
from the set {−1,0,1} since Peres’ 24-24 set has components
from this class. However, we also found KS sets that were not
subsets of the 24-24 set [e.g., the 22-11 one, shown in Fig. 3(a)
of [32]] and those subsets have the components from a wider
set of values (see Table 2 of [32] for the aforementioned 22-11
set). That indicated that there is another class or other classes
which contain those sets or both kinds of sets and we started
stripping master sets meanwhile discovered [8,38,48,50,51].

We designed algorithms and programs which exhaustively
generate all KS sets from all stripped subsets of chosen master
KS sets that we introduced and described in Sec. II. They
are computationally rather demanding and require many CPU
months of running on clusters and supercomputers but that
is feasible with today’s resources. In the rest of the paper,
we present various outcomes of such calculations with our
algorithms and the features of the critical KS sets we obtained
on our clusters.

IV. TENTATIVE 60-74 CLASS OF 4D KS SETS

Waegell and Aravind have derived a 60-75 KS set from a 4D
regular polytope (600-cell) with 60 pairs of vertices [50]. The
vertices correspond to vectors whose components have values
from the set V = {0, ± (

√
5 − 1)/2, ± 1, ± (

√
5 + 1)/2,2}

and one can use them to write the 60-75 set ([50], Table 2).
MMP hypergraph of the 60-75 generated in [38] is given in
the Appendix, Sec. A 1.

Generation of smaller KS sets from the master sets will
be carried out by relying on the MMP hypergraph structure
only and the vertices of the obtained set can be ascribed values
from V later on, if needed, via (a) our program VECTORFIND

randomly, or (b) via our program SUBGRAPH so as to trace

down vertices which survived stripping of edges. We need to
ascribe values from V to the vertices, e.g., for an experiment
(cf. [51], Fig. 1).

Megill, Fresl, Waegell, Aravind, and Pavičić [27] presented
preliminary and partial results of generating subsets of the 60-
75 set by stripping it of its edges and obtaining their features.
Here, we present in many respects an almost exhaustive
analysis of these subsets. We start by stripping just one edge at
a time of the 60-75 set in 75 different ways so as to obtain 75
60-74 sets. To be more explicit, we remove one edge from the
60-75 set to get the first 60-74, then we put it back and remove
another edge to the second 60-74 and so forth. It turns out that
all 75 of the so-obtained 60-74 sets are isomorphic to each
other and that they all reduce to a single MMP hypergraph
string 60-74 given in the Appendix, Sec. A 1.

We shall therefore consider this 60-74 KS set to be a master
set for all smaller KS sets we obtain from it. Therefore, we
shall call the collection not a 60-75 but a 60-74 class of 4D
KS sets. The number of sets from the class we generated and
analyzed by running our programs over a century of CPU time
on our clusters are given in Fig. 2. The stripping technique
applied to the sets means a removal of one edge at the time
and filtering out the KS sets with the help of several additional
algorithms and programs.

In [27] we obtained only about 8000 KS sets and many were
missing. Here, we have 1.54×109 sets and among them all
types of sets that were obtained by means of much faster parity
proofs and which were missing in ([27], Table 1) (denoted
there by ⊗). We also obtained new types of KS sets with
both even (mostly) and odd number (23) of edges that we did
not obtain in [27], in particular: 38-22, 39-23, 41,43,44-24,
42, . . . ,44,46, . . . ,49-26, 45,50, . . . ,52-28, 47,48,54, . . . ,56-
30, 50,56, . . . ,60-32, 60-34.

Our aforementioned conjecture that the table in Fig. 2 shows
all the types of KS criticals from the 60-74 class is based
on the following statistics. The table now shows 1.54×109

KS criticals. The last new type, 47-30, started to appear after
we reached 1.07×109 sets; before that, 59-32 after 5.5×108,
55-37 after 3.37×108, and all the other 150 types were already
appearing within 2.15×108 generated sets. Here, we stress
that our method of generating sets is as random as a program
can possibly be and that therefore the “late” appearance of
the aforementioned three types is due only to their very low
occurrence among the sets, i.e., to a minuscule probability to
appear at all.

This can be well illustrated by looking at the KS criticals
with parity proofs. Among all 1.5×109 criticals only 1.2×105

have parity proofs and among them some are still missing. In
particular, we have 3×106 60-39 criticals and 3.5×103 60-41
criticals and none of them have a parity proof although there
are at least two (60-39 and 60-41 whose MMP hypergraph
strings are given in the Appendix, Sec. A 1) that do have
such a proof which we obtained by means of a parity-proof
program in [51]. The strings are presented with their maximal
loops, hexadecagon and heptadecagon (first 16 and 17 edges
up to “,,,”), respectively, to facilitate graphical representation.
In Fig. 3, 60-41 is drawn (vertex “2” is indicated and other
vertices from the loop follow anticlockwise) and we can see
that there are 22 encircled (in red online) vertices that share
four edges and, of course (otherwise we would not have a
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FIG. 2. List of 1 540 184 852 nonisomorphic KS critical sets from the 60-74 class we obtained on our cluster. We conjecture that all possible
types of vertex-edge sets are given here, i.e., that an exhaustive generation would not provide us with any new type. We also conjecture that an
exhaustive generation might give up to about an order of magnitude more samples of these sets. We obtained no critical sets with 27, 28, 29,
31, or 35 vertices.

FIG. 3. MMP hypergraphs from the 60-74 class shown with the help of their maximal loops; 26-13 is the smallest set from the class: the
arrow points at a “graphical proof” of contextuality [all zeros, while rings (green online) denote “1”]; 26-13 through 36-19 all have parity
proofs; the first two 30-15 and the last 34-17 have two axes of symmetry; three middle 34-17, one axis; 38-22 are the smallest sets that have
even number of edges; 39-23 is the smallest set with an odd number of edges which does not have a parity proof; 54-29 and 54-30 are the two
smallest sets with the biggest loops (18-gon); 54-34 is a typical large set; 60-41 belongs to the largest sets of criticals; it does have a parity
proof, while other 60-41 criticals do not have it (see text).
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TABLE I. A sample from a complete list of 15 Pauli operator products and their eigenvectors given in Ref. [8].

Pauli product triples Four eigenvectors of each product from the triple

σ (1)
x ⊗ I (2), I (1) ⊗ σ (2)

z , σ (1)
z ⊗ σ (2)

z |1000〉 |0100〉 |0010〉 |0001〉
σ (1)

x ⊗ I (2), I (1) ⊗ σ (2)
x , σ (1)

x ⊗ σ (2)
x |1111〉 |1 −11 −1〉 |11 −1 −1〉 |1 −1 −11〉

. . . , . . . , . . . . . . . . . . . . . . .
σ (1)

y ⊗ I (2), I (1) ⊗ σ (2)
z , σ (1)

y ⊗ σ (2)
z |10i0〉 |010i〉 |10i0〉 |010i〉

. . . , . . . , . . . . . . . . . . . . . . .
σ (1)

x ⊗ σ (2)
y , σ (1)

y ⊗ σ (2)
x , σ (1)

z ⊗ σ (2)
z |100i〉 |01−i0〉 |01i0〉 |100−i〉

. . . , . . . , . . . . . . . . . . . . . . .

parity proof), not a single one of which would share three
edges. The probability that a randomly generated hypergraph
has such a structure is extremely low and this explains why we
did not get them even after more than 1015 runs.

We used a procedure that strips one edge at a time of
smaller and smaller sets and simultaneously checks them
on KS property, KS criticality, maximal loops, number of
iterations, level of classical noncontextuality of each set, etc.
A choice of them is represented graphically by means of MMP
hypergraphs in Fig. 3.

The KS criticals 26-13 to 36-19 all have parity proofs, and
among the sets with up to 38 vertices and odd number of edges
there is no one which fails the parity proof. The first sets with
odd number of edges without parity proofs are 39-23 sets. One
of them is shown in Fig. 3 in which arrows point to vertices
that share an odd number of edges and therefore violate the
parity proof condition from Definition 4. Actually, none of the
39-23 sets satisfy the parity proofs and this is the reason why
this type of sets is missing in Table 1 of [51].

None of the sets with even number of edges can have a
parity proof per definition. Two of the smallest such sets are
38-22 and 38-22a shown in Fig. 3. Two of the smallest sets
with the biggest maximal loops in the class, octadecagon, are
54-29 and 54-30. They show an interesting property of having
all vertices contained in the maximal loop like the smallest
sets 26-13 and 30-15. Set 54-29 does not have a parity proof
because it contains vertices that share three edges. It also has
a property that some of its vertices share only one edge which
most smaller sets do not possess.

As we can see from Fig. 3, the maximal loops range from
octagon (26-13) to octadecagon (54-29) in contrast to the sets
from the 24-24 class in Fig. 1. On the other hand, the majority
of sets from the 24-24 class have edges which intersect each
other at more than one vertex, while in the vast 60-74 class
there is not a single such set. It follows that not only the
two classes are disjoint, but that is also unlikely that they
would belong to a wider class which would contain them both.
However, there is a class which contains the 24-24 class, the
60-105 one, which we present in the next section.

V. 60-105 CLASS OF 4D KS SETS DEFINED BY HILBERT
SPACE OPERATORS AND PROPERLY

CONTAINING 24-24 CLASS

When we envisage an application of KS sets in the
field of quantum computation and communication, a qubit
implementation comes forward as most interesting. And, while
the real vectors of the KS sets from the 24-24 class do enable

a qubit representation, as recent experiments have shown,
it is not clear whether the vector components of the real
vectors defining the 60-74 class offer us a qubit representation.
Recall that the dimension of the Hilbert space of a quantum
system and the spin of this system satisfy dimHs = 2s + 1.
So, a 4D KS set can be realized either via an s = 3

2 particle,
say by means of a Stern-Gerlach device, or via two qubits:
dim(H2 ⊗ H2) = 22 = 4.

In order to achieve a qubit representation in the complex
4D Hilbert space, by means of complex vectors, Aravind
and Waegell [8] made use of Pauli operators (e.g., σ (1)

x ,σ (2)
y ),

where the superscripts refer to one of two qubits. In a 4D
Hilbert space, they form 9 mutual tensor products and 6
tensor products with the unit vectors. Altogether, these 4D
operators form 15 commuting triplets each of which has
four eigenvectors (tetrads) in common. There are 60 different
eigenvectors that form the resulting 105 tetrads as given in
Tables 1 and 2 of [8]. Their components take values from the
set {0, ± 1, ± i}. A few lines of the former Table are given in
Table I, below.

The latter table represents a 60-105 master set. Its MMP
hypergraph string is given in the Appendix, Sec. A 2. By
removing one of 105 edges from the string at a time, each time
a different one, we obtain 105 sets. They all turn out to belong
to two nonisomorphic noncritical KS sets in contrast to the
60-75 set which reduces to the unique 60-74 one. By applying
the same technique as in Sec. IV, we generate critical KS sets
listed in the table in Fig. 4. They make the 60-105 class of KS
sets. Although the generated critical KS sets from the 60-105
class are more than two orders of magnitude less numerous
than the ones from the 60-74 class, the statistics indicates that
the majority of types have been generated.

MMP hypergraph of the master set 60-105 properly
contains all MMP hypergraphs from the 24-24 class [8] and
also the ones we obtained by means of our down-up generation
in [32,34] but which did not belong to the 24-24 class as
well as new ones, which do not belong to either of those two
kinds, shown in Fig. 5. That is why we called 24-24 class
tentative in the title of Sec. III. Still, with respect to vector
representation, the 24-24 class is not uniquely determined
by the coordinatization of the 60-105 master set. The vector
components of the 60-105 set are complex (taking values from
the set {0, ±1, ±i}) and Peres’ 24-24 master set can take over
them directly as shown in the Appendix, Sec. A 2.

But, as we mentioned above, for the master set 24-24 and
therefore all of its subsets there exist real coordinatizations,
e.g., the one originally found by Peres, and that is what
Waegell and Aravind meant when they said that “60-105
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FIG. 4. List of 7 720 539 nonisomorphic KS critical sets from the 60-105 class we obtained on our cluster. We conjecture that all possible
types of vertex-edge sets are given here. We obtained no critical sets with 10, 12, or 14 vertices.

system contain[ed] (in 10 different ways) 24-24 systems of rays
and bases used by Peres and others” [8]. The fact that the 24-24
class can have both real and complex coordinatization depends
on particular structure of its sets. In contrast, the systems
21-11 shown in Fig. 5 do not possess real coordinatizations,
apparently due to the δ feature of their structure (see below).
Another example of different coordinatizations within the
60-105 class is Pavičić, Merlet, McKay, and Megill’s 20-11a
[34], shown in Fig. 1. Its 60-105 coordinatizations might
be complex as given in the Appendix, Sec. A 2 as well
as real. If we compared the components with those of the
24-24 set, we would see that 20-11a might be generated
(stripped) directly from the 24-24. The 20-11a also possesses
real coordinatizations, though, one of which is given in [34].

On the other hand, Cabello, Estebaranz, and García-
Alcaine’s 18-9 [47] and Kernaghan’s 20-11b [45] (both shown
in Fig. 1) have real coordinatizations with components from
{0, ± 1} in 60-105 as given in the Appendix, Sec. A 2. By
comparing their components, we can see that they are not
generated directly from the presented 24-24 set with the
given complex coordinatization (it does not have enough
real components) but from some other subsets of 60-105. Of
course, here we should pose a question as to whether there is an
even wider class which properly contains the criticals from the
60-105 class, and this is an open question. Since the biggest
such criticals contain only 60 vertices, such a bigger class
might exist (the master set from Sec. VI has 300 vertices).
However, a wider class which would properly contain both

FIG. 5. MMP hypergraphs of KS critical sets from the 60-105 class with up to 24 vertices that are not isomorphic to the ones shown in
Fig. 1. They share edges of the form α, β, and γ which characterize 24-24 sets but not, e.g., the one of the form δ, which is specific to the
60-105 sets. Maximal loops of the criticals shown here range from hexagons to octagons.
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FIG. 6. Bigger 60-105 class criticals; sets with even number of edges (no parity) compared with sets with odd number of edges (with parity)
of the same vertex size; arrows indicate edges at which conditions (1) and (2) of the KS theorem are violated and the theorem proved; rings
(red online) in 29-16, 30-16, 31-18, and 60-40 denote vertices that share just one edge; 26-15 is one of the smallest sets without parity proofs;
60-40 is one of the biggest criticals; its maximal loop forms a heptadecagon (17-gon).

60-74 and 60-105 might not exist since these two classes
have too disparate properties. First, not a single critical KS set
from the 60-105 class is isomorphic to any of 1.5×109 critical
KS sets from the 60-74 class. Second, there is an important
structural difference together with all similarities.

The similarities are of the α, β, and γ kind shown at 24-13b
and 24-13c in Fig. 5. α is an edge whose vertices each share
a single edge from the maximal loop; β consists of two such
vertices, one which shares two loop edges and a third edge and
one which shares only that third age; γ is the third edge from
the previous β definition.

A definite difference with and a dominant feature of 65-105
sets is the δ feature (see Fig. 5). It refers to two neighboring
edges from the maximal loop exclusively sharing two vertices,
i.e., intersecting each other at two vertices which do not share
any third edge. The δ feature characterizes most of the criticals
shown in Figs. 5, 6, and 7. It might correspond to a rank-2
projector and be related to the fact that in a KS test one need
not distinguish which of the two vertices that share two edges
was assigned a 1. The role of projectors of a higher rank in
a description of KS sets has been explored by Waegell and
Aravind in details in [8].

The portion of sets from the 60-105 class with an odd
number of edges which possess the parity proofs and the
overall number of sets from the class with the parity proofs
is much higher than in the 60-74 class. Of 7.5×106 60-105
criticals, we obtained, 5.72×106 have parity proofs, i.e.,
76.3%. The latter number includes six criticals from the former
24-24 class which all have parity proofs. There are 132 types
of KS criticals with an odd number of edges of which 45 were
previously reported by Waegell and Aravind [8] and additional

12 by Pavičić [52] and 111 with an even number of edges of
which 22 were previously found by Pavičić [52].

A general feature of all classes is that smaller sets have only
odd number of edges and that they all have parity proofs. On
the other hand, among large sets with odd number of edges
there are only a very few ones with the parity proofs. As we
saw in Sec. IV, we did not obtain a single such 60-39 or 60-41
set in the 60-74 class although they exist (and are given above)
and of 21 60-39 sets in the 60-105 class no one has a parity
proof and, to our knowledge, it is not known whether such a
set exists. One of 11 smallest sets without a parity proof is the
26-15 shown in Fig. 6. Encircled vertices (in red online) do not
satisfy the parity-proof condition; they do not share an even
number of edges.

The smallest sets with even number of edges are 29-16. In
Fig. 6, a sample of them is shown with vertices which share
only one edge drawn as rings (red online). As the number
of vertices and edges increase, there are fewer and fewer
such vertices which are dominant among 3D KS criticals (see
Sec. XII). Yet, there is one of them in the 60-40 set. Our
generation of KS sets via stripping of master sets was so far
completely random. As we already stressed, this does require
a considerable amount of CPU time. What slows down the
generation is not the stripping itself, which is extremely fast,
but filtering on the KS property and criticality. Algorithms
which would be focused on particular arrangement of vertices
and edges might prove more efficient and even serve us to
obtain KS sets without previous stripping from any master
set. Possible arrangements of such a kind are the ones which
would have all vertices contained within a single loop as 26-13
to 46-23 or nearly so as 50-25 and 54-27 in Fig. 7.

FIG. 7. 26-13 to 46-23 samples of 60-105 criticals with all the vertices contained in the maximal loop; there are no such sets with 50 or
more vertices; 50-25 and 54-27 are the closest structures; rings in 46-23 to 54-27 denote the end vertices of edges.
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FIG. 8. KS criticals from the 300-675 class together with one non-KS set (see text); KS criticals from the higher vertex-edge group (211 to
283 vertices and 127 to 188 edges) are represented by circles since the vertices and edges are too numerous to be discernible in a figure (they
are all listed in Fig. 9, though); black circles represent maximal loops with 47 (Schläfli symbol {47}) and 57 edges ({57}).

VI. 300-675 CLASS OF 4D KS SETS CONTAINING
60-74 CLASS

Waegell, Aravind, Megill, and Pavičić made use of 600-cell
convex regular 4-polytope to obtain a 60-75 master KS set and
a huge number of KS criticals which we call the 60-74 KS
class [51]. Three years later, Waegell and Aravind considered
its dual 120-cell and obtained a 300-675 master set and from it a
number of different KS sets via parity proofs [53]. In particular,
using parity-proof algorithms and programs, they found the
following 102 types of critical KS sets from their 300-675
master sets: 38-19, 42-21, 44 . . . 46-23, 48 . . . 50-25, 50 . . . 54-
27, 52 . . . 58-29, 54 . . . 62-31, 56 . . . 66-33, 58 . . . 70-35,
60 . . . 74-37, 53 . . . 78-39, and 65 . . . 82-41. We show MMP
hypergraphs for some of them (38-19, 42-21, 48-25) in Fig. 8.

Among the smallest KS criticals we generated from the
300-675 master set are one 26-13 (shown in Fig. 8), two
(nonisomorphic) 30-15, one 32-17, one 33-17, four 34-17,
two 38-19 (one of them, 38-19b, is shown in Fig. 8), one
43-24, and one 44-26. Apart from the last two, all of them
have parity proofs. These KS criticals with parity proofs are
subgraphs of the master set 60-74 and therefore belong to the
60-74 class. Waegell and Aravind actually show in [53], by
the very construction of the 300-675 master set, that the 60-75
master set is properly contained in it, i.e., that the hypergraph
of the 60-75 master sets is contained in the hypergraph of the
300-675 master set.

Next, in Fig. 8, we present three hypergraph MMP represen-
tations of the KS criticals obtained in [53]: 38-19 (max loop:
10-gon), 42-21 (11-gon), and 48-25 (12-gon). Their MMP
hypergraphs are given in the Appendix, Sec. A 3. Our program
SUBGRAPH shows that these KS criticals are not subgraphs of
the master set 60-74 (or 60-75) and that, therefore, the class
60-74 does not contain them. Here, we use the opportunity
to show yet another advantage of the hypergraph approach to
KS sets. Waegell and Aravind made a misprint somewhere
in their Table 7 [53] which should have defined their 48-25
set but an automated translation gives a hypergraph denoted
“non-KS 42-21” in Fig. 8. To find the misprint in their list of
vertices and edges, one should invest a considerable amount
of time and most likely they themselves as well. However, in
our representation it is immediately visually apparent that in a
parity proof the vertex can neither share three edges, denoted
by “*”, nor just one, denoted by “?”. Therefore, we can easily
amend the misprint by disconnecting the brown edge from the
*-vertex and extending it to the ?-vertex, so as to obtain the
48-25 KS critical set shown as the next set in the figure; its
ASCII MMP representation is given above. It provably does
not belong to the 60-74 class.

Further advantages are obvious from the generation of a
cluster of unprecedentedly big KS criticals indicated in the
last two figures in Fig. 8 and listed in all details in Fig. 9. The
generation of KS criticals in the 300-675 class is an extremely
demanding task due to the intricacy of the master set 300-675
itself which stems from the high number of vertices. If we strip
too many loops in the first step with MMPSTRIP, we shall find
ourselves in the non-KS desert, i.e., the probability of finding a
KS set will be too small. If we strip only, say, 500 loops, from
the master set, verification of whether a single obtained MMP
hypergraph is a KS set and if it is to reduce it to a critical KS
set will take between one and three CPU months (3 GHz). At
the first glance, it might look as if Waegell and Aravind also
stumbled upon this problem of intricately interwoven edges
and orthogonalities: “we have not found any (set) with more
than 41 bases, but we cannot be sure about the upper limit
because our searches have been limited to only the reduced
sets in Table 4” ([53], p. 1093, bottom).

However, they actually could not have found them because
with their parity-proof-based programs they could not have
seen them at all. More precisely, 14% of all criticals in the
300-675 class have a parity proof but the probability KS sets
having them is not uniformly distributed throughout the class.
All KS sets with parity proofs are in the bottom part of the class.
KS sets from the top part of the class do not have parity proofs;
none of the 221-127 to 283-188 generated KS criticals have a
parity proof. Hence, they are invisible for parity-proof-based
algorithms and programs and since search algorithms in the
literature rely almost exclusively on parity proofs we give an
MMP representation of the 221-127 critical KS set (47-gon)
in the Appendix, Sec. A 3.

Higher criticals from the class 300-675 we obtained and
presented in Fig. 9 are far less numerous than KS criticals from
any other class we presented in this paper. This is, however,
not due to a small number of sets in the class: their overall
number is according to our tests staggeringly huge; this is due
to the fact that their generation is computationally extremely
demanding and time consuming. Therefore, we generated the
sets in stages and subjected them to several levels of filtering.
We first randomly stripped 400 to 550 edges from the master
set 300-675 by MMPSTRIP thus obtaining 150 groups of sets
with 275 down to 125 edges. Then, we filtered these sets for the
KS property and randomly reduced them to criticals by means
of STATES01. This procedure takes up to three CPU months
for each single critical. We generated higher criticals from the
KS noncritical sets in the range from 190 to 275 edges. For
example, the 211-127 KS critical we obtained from a set with
190 edges. For sets with less than 190 edges we observed a
sudden drop to criticals with up to 40 edges.
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FIG. 9. Critical 4D KS sets from the 300-675 class; the very table shows only big KS criticals with 127 to 188 edges (columns) and 211 to
283 vertices (rows); the inset shows all critical KS sets from the 300-675 class: at the bottom right (blue online) are all criticals from the outer
table, at the top left, upper line (red online), are 26-13, . . . , 44-26 we obtained (belonging to the 60-74 class as well; not shown in the table),
and also at the top left, lower line (cyan online), are 28-19, . . . , 82-41 obtained by Waegell and Aravind [53] (equally not shown in the table
itself).

VII. 148-265 CLASS OF 4D KS SETS

Waegell and Aravind [54] showed that the Penrose dodec-
ahedron, Zimba and Penrose used to construct their 40-40
non-critical KS set [31], can be extracted from the Witting
polytope in C4. Actually, Waegell and Aravind consider a
148-265 KS master set and its subsets, 40-40 being one of
them. Since this is a work in progress, we shall not go into
details but will only list the types of KS criticals the master set
148-265 can be reduced to and give two of their hypergraphs, in
Fig. 10, so as to round up our presentation of generation of KS
criticals from all known 4D KS master sets and their classes.

Waegell and Aravind in [54] make use of a rather involved
coordinatization, but they also indicate that a simpler one,
in which vector components take the values from the set
{0,±1,±ω,±ω2}, where ω = e2πi/3 = (−1 + i

√
3)/2, can be

used ([54], Eq. (6)). We explicitly verified that, in the master set
148-265, vectors can indeed be ascribed a valuation from this
set which means that all sets from the 148-265 class can easily
be given a random valuation with the help of our program
VECTORFIND by simply introducing the seven values given
above as its options. Two examples of such a valuation are
40-23 and 49-27 KS criticals. 40-23 MMP hypergraph, shown
in Fig. 10(a), is one of 56 40-23 subgraphs of Penrose’s 40-40
KS hypergraph. 49-27, shown in Fig. 10(b), is the smallest
critical from the 148-265 class which is not contained in its
40-40 set. MMP hypergraph strings of 40-23 and 49-27 are
given in the Appendix, Sec. A 4.

In contrast to the smallest sets from the other 4D KS classes,
the above smallest hypergraphs do not show geometrical
symmetries and that is caused by the geometrical features
of the Witting polytope which in turn cause that the vertices

062121-11
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FIG. 10. KS criticals from the 4D 148-265 class; none of them have a parity proof; 40-40 circle (red online) indicates the Penrose 40-40
noncritical KS set; inset (a) shows one of smallest KS criticals generated from Penrose’s 40-40 set; inset (b) shows one of the smallest KS
criticals not contained in the 40-40 set.

share both even and odd number of edges, i.e., that they do
not have parity proofs. Actually, none of 250 140 KS criticals
in the 148-265 class we obtained have a parity proof, so they
are completely invisible for the parity-proof-based algorithms
and programs.

The maximal loops of the criticals are up to 36-gons big and
therefore smaller than the ones of all the higher KS criticals
from the 300-675 class but bigger than ones of all the other
KS criticals from any other class. Similarly to 60-74 and 300-
675 and unlike 24-24 and 60-105 classes, no two edges share
more than one vertex. The program SUBGRAPH verified that the
master set 148-265 is not a subgraph of the master set 300-675.
Program SHORTD verifies that the classes 148-265 and 300-675
are completely disjoint.

VIII. �/� 21-7 6D KS SET AND 236-1216
CLASS OF 6D KS SETS

Lisoněk, Badziag, Portillo, and Cabello [24] recently
found a 6D 21-7 KS set which they drew in the form of
a seven-pointed star, a regular heptagram with Schläfli
symbol {7/3}, as shown in Fig. 11. (It was experimentally
implemented in [25].) They chose vector component
values from the set {0,1,ω,ω2}, as we did in Sec. VII,
however, since ω is a cube root of 1 and therefore
ω × ω2 = 1, and 1 is already present as a component,
for their set ω2 is not needed. To see this, we start with
the MMP hypergraph representation of the seven-star
set: 123456,6789AB,BCD3EF,F5G8HI,IAJD2K,KE4G7L,
LH9JC1. We assign 1 to any point and then proceed

along the edges. Our program VECTORFIND can then
ascribe the components to vertices: 1= (0,0,0,0,0,1),
2= (0,0,0,0,1,0), ... ,6= (1,0,0,0,0,0), 7= (0,1,0,ω,1,ω),
8= (0,0,1,1,ω,ω), 9= (0,ω,ω,1,1,0), A= (0,ω,1,ω,0,1),
B= (0,1,ω,0,ω,1), C= (1,ω,1,0,ω,0), D= (ω,1,1,0,0,ω),
E= (ω,ω,0,0,1,1), F= (1,0,ω,0,1,ω), G= (1,0,0,ω,ω,1),
H= (ω,0,1,ω,1,0), I= (ω,0,ω,1,0,1), J= (1,1,ω,ω,0,0),
K= (1,ω,0,1,0,ω), L= (ω,1,0,1,ω,0). Recall that dot
products (orthogonality of vectors) involve the complex
conjugates, e.g., K · L† = ω∗ + ω + 0 + 0 + 1 + 0 + 0 =
(−1 − i

√
3)/2 + (−1 + i

√
3)/2 + 1 = 0.

The heptagram is isomorphic to a triangle (�) hypergraph
shown in Fig. 11 below the star (	). The advantage of the trian-
gular representation is that it can describe both odd- and even-
dimensional sets while the starlike representation is limited
to the even-dimensional sets. 4D triangle (five-pointed star),
which does not admit a 0-1 state, would be a 10-5 KS set if it
had a vectorial representation in the complex Hilbert space, but
apparently it does not have it. Here, we stress that all the results
we obtained for the KS sets of the 60-105 class depend on vec-
tor components from {0, ± 1, ± i}. There are 4D KS sets with
vector components from other sets, e.g., the ones from the 60-
74 class. There are also hypergraphs which do not admit non-
contextual 0-1 states, e.g., those smaller than the 18-9 [34], or
the above 10-5 one, for which we actually do not know whether
they have a vectorial representation with vector component val-
ues from some other sets. A direct solving of nonlinear equa-
tions which would answer this question is rather demanding.

Neither the 5D triangle (15-6 set) nor the 7D triangle (28-8)
are KS hypergraphs (they do admit 0-1 states), but the 8D
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FIG. 11. 6D KS critical sets: 	/� 21-7 and KS from the 236-1216 KS class; 	 21-7 is from [24]; � 21-7 is isomorphic to 	; others are
critical KS sets from the 236-1216 class; 53-21 has a parity proof.

one (36-9) is. The latter KS set is also not a subgraph of the
120-2024 class (see Sec. IX). The authors of [24] have made
an attempt to find a bigger 6D set but did not find any.

Waegell and Aravind appreciated the approach as the first
one “in a dimension that is not of the form 2N ” [53], meaning
that the 6D space cannot “host” qubits (recall that two qubits
reside in the 22D, i.e., 4D Hilbert space, three qubits in the
23D, i.e., 8D space, etc.). Subsequently, Aravind and Waegell
[55] designed a 6D 236-1216 master KS set but since it did not
allow parity proofs they could not generate smaller sets with
their parity-proof programs. So, they sent the master set to us
and we generated 3.7×106 KS criticals in this paper. We say
that they make the 236-1216 class. Their statistics is shown
in Fig. 12. The vector components take values from the set
{0, ± 1/2, ± 1/

√
3, ± 1/

√
2,1}. The class does not contain

the 21-7 KS set, though (verified with SUBGRAPH).
Aravind [55] has arrived at the 236-1216 master KS set by

considering hypercubes which led him to a hexeract (6-cube,
6D cube) with Schläfli symbol {4,3,3,3,3} or {4,34}. The master
set written in the MMP notation occupies more than three
pages, so we do not print it here. The approach of Aravind
and Waegell is very geometrical and unorthodox and by no
means straightforward, so, it is outside of the scope of this
paper. It will be presented in detail in a separate publication.
The master set in the MMP notation is given in our repository
http://goo.gl/xbx8U2.

The features of the 236-1216 class are as follows:
(1) Its KS sets cannot be implemented via qubits but can

via spin- 5
2 quantum systems.

(2) Its smallest KS sets have an even number of edges
and small sets with odd and even number of edges are evenly
distributed, unlike in any other class.

(3) Although the number of vertices of the master set is
comparable with the 4D 300-675 and the number of edges is
twice as high, the criticals are computationally much easier
to generate; a generation of a single KS critical is up to 1000
times faster.

(4) Types of sets with a definite number of edges and
different number of vertices are more numerous than in other
classes (columns in Fig. 12 are higher than in other tables);
a dynamic algorithm compensated for a lower occurrence of
smaller KS sets.

(5) Edges connect vertices in much more irregular way
than in other classes as the figures in Fig. 11 show. We were
not able to find a single symmetric hypergraph.

(6) Statistics from Fig. 12 shows gaps in the KS sets
with high number of edges indicating that a more extensive

generation would generate many more sets possibly with
higher number of edges and vertices.

There is another peculiarity we should mention. As already
stressed above, in the literature, most of the KS proofs have
been found via parity proofs. However, in the 236-1216 class
among 3.7×106 KS critical sets we generated we found only
eight KS criticals with a parity proof. Their edges are in the
interval from 21 to 39. We shall present and discuss them in
detail in a subsequent publication, and here we only show one
of them (53-21) in Fig. 11.

IX. 120-2024 CLASS OF 8D KS SETS
AND �/� 36-9 8D KS SET

We start with a brief history of generation of 8D KS sets
which can be realized with either three qubits (23 = 8) or spin-
7
2 systems. Kernaghan and Peres produced a 36-11 KS critical
set and a 40-25 noncritical one (experimentally implemented
in [26]) from which several smaller ones including 36-11 can
be obtained [44]; Ruuge and van Oystaeyen gave a scheme for
constructing 8D KS proofs but did not themselves construct
any [56]; Ruuge claimed to have given an example of a
36-vertex 8D KS set [35] but we were not able to identify
its octads of orthogonal vertices in [35] (nor to contact him),
so, we could not verify whether it is isomorphic to 36-11 from
[44] (as claimed in [35]); and, finally, Planat discussed 8D KS
sets that can be obtained from the Kernaghan-Peres’ 40-25
KS set [57]. Waegell and Aravind obtained a KS master set
with 120 vertices and 2025 edges and, from it, many smaller
8D KS sets, including noncritical Kernaghan-Peres’ 40-25
one [58] (see also [59]). In this paper we generate 6.9×106

nonisomorphic KS criticals, listed in the table in Fig. 13, from
Waegell-Aravind’s 120-2025 master set. We also produce a
new star or triangle (	/�) 36-9 KS set which is not a subgraph
of the 120-2025 master set.

To obtain KS sets, in Refs. [56,58], the authors made use
of the Lie algebra E8. Waegell and Aravind reduced it to
a collection of 120 vectors (rays, vertices) and 2025 bases
(octads, edges) [58] to obtain their 120-2025 KS master set. We
verified that by peeling off one edge at a time, we obtain 2025
varieties of the 120-2024 KS sets which are all isomorphic
to each other and therefore reduce to a single 120-2024 KS
master set from which we generate the 120-2024 KS class, i.e.,
smaller KS critical sets. Critical KS sets from the 120-2024
class are given in the table in Fig. 13.

The coordinatization (vector components) in [58] is taken
over from Richter and is based on tetrads formed by
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FIG. 12. List of 3 714 503 nonisomorphic 6D KS critical sets from the 236-1216 class; 16 to 87 edges (columns); 34 to 177 vertices (rows);
169-78 to 87-177 sets are shown in the inset.
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FIG. 13. List of 6 925 540 nonisomorphic 8D KS critical sets from the 120-2024 class we obtained on our cluster and of those, denoted as
⊗, obtained by Waegell and Aravind [58] and still not by us.

expressions rmeinπ/30 (values of constants rm and n are given in
[58]) so that their real and imaginary parts form octads. Using
this coordinatization, Waegell and Aravind generate sets of
bases (edges) which define their KS sets. We, however, do not
need the coordinatization to obtain KS sets. We start with the
master set 120-2024 and simply strip off edges. Then, we filter
the smaller sets via STATES01 to obtain critical KS sets. We can
always add vector components later on, if needed.

The distribution of sets from the 120-2024 KS class is
different from the above 6D class as well as from the three of
the 4D ones and somewhat similar to the 300-675 4D class
with respect to the following feature. The critical sets are split
so as to be clustered in two groups of subsets with respect to the
number of vertices and edges: first one, sparsely spread, over 9
to about 40 edges and 34 to about 100 vertices and, the second
one, densely populated, over about 41 to 58 edges and about
100 to 120 vertices as shown in the table in Fig. 13. The split

structure of the 120-2024 class resembles the similarly split
structure of the 4D 300-675 class. We conjecture that there is
only one or at most a few KS noncritical sets with about 100
vertices and 40 edges which most of the smaller critical sets
are subsets of.

Similarly to the 4D classes (with the exception of the 60-105
one) and the 6D class, the number of critical sets which
exhibit a parity proof is very small with respect to the total
number of critical sets, but on the other hand, parity-proof
algorithms used by Waegell and Aravind [58] are very efficient
in generating the sets so that the two approaches (via the MMP
algorithms for bare hypergraphs and the parity-proof-based
ones for vectors corresponding to vertices of hypergraphs)
turn out to be complementary. In particular, Waegell and
Aravind [58] obtained the following sets which still did
not appear in the course of our computer generation so far:
36-11 (Kernaghan-Peres), 38,39-13, 40,41,44,45-15, 48-17,
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FIG. 14. 8D Kochen-Specker sets: 	/� 36-9 KS set and five chosen critical KS sets from the 120-2024 KS class; see the text for a
description of their features.

60-15,17,19,21,23,27, and 85-25 (we do show these sets in
the table in Fig. 13 as ⊗); both Waegell and Aravind [58]
and we in this paper obtained 34-9, 36-9, 37-11, and 95-35;
Waegell and Aravind [58] have not obtained all the other sets
we obtained in the table in Fig. 13 and most of them they
actually cannot obtain due to the features of the parity-based
algorithm they make use of but, still, the parity-proof-based
programs confirm themselves as a powerful complementary
method of providing us with KS criticals since our general
MMP hypergraph algorithms are CPU-time demanding.

In Fig. 14, we show five chosen KS criticals from the 120-
2024 class. KS criticals 34-9 are the smallest in the class. KS
36-9 is particularly interesting because it can be viewed as an
8D version of 18-9 from Fig. 1(a) with graphically analogous
edges where each vertex from the 18-9 is represented by a pair
of vertices in the 36-9. KS 44-11 is one of the critical KS sets
with the biggest maximal loop (heptagon) among the sets with
11 edges (second smallest number of edges). KS 52-16 has
the smallest even number of edges. One of 14 KS 120-58 has
the biggest maximal loop, i.e., tetradecagon (14-gon); it is not
shown in the figure.

In Sec. V we have seen that the 24-24 class is contained in
the 60-105 class and in Sec. VI that the 60-74 class is contained
in the 300-675 class. On the other hand, in Sec. VIII we have
shown that the 	/� KS set is not contained in the much bigger
236-1216 class of the 6D KS sets. Here, we verified that 8D
	/� 36-9 KS critical set, shown in Fig. 14, is not contained in
also much bigger 120-2024 class of 8D KS sets.

The MMP representations of the star and triangle forms
(they are mutually isomorphic) of the 36-9 critical are given
in the Appendix, Sec. A 5. In Fig. 14, the first three edges
correspond to the edges of the triangle as indicated by its
vertices 1,8,F and then the inner vertices are denoted in
alphabetical order from left to right from the bottom horizontal
ones (indicated by M to Q) to the single a at the top. In
contrast to 6D 21-7 set from Fig. 11, this 8D 36-9 can have
real vector components from {−1,0,1}. Coordinatizations for
the triangle and for the star are given in the Appendix, Sec.
A 5. Interestingly, our program VECTORFIND finds the triangle
coordinatization sooner than the one for the star.

The 8D star and triangle set is not smaller than the smallest
sets from the 120-2024 KS class as the 6D one is with respect
to the smallest sets from the 6D 236-1216 class; the 34-9 sets
shown in Fig. 14 are smaller. The 120-2024 class contains at
least seven 36-9 criticals but their structure is very different
from the star and triangle 36-9 (cf. 36-9 in the middle of
Fig. 14).

Via our program SUBGRAPH we prove that the star and
triangle 36-9 or any other 36-9 isomorphic to it cannot be

obtained by stripping edges and vertices from the master set
120-2024 down to sets with 36 vertices and 9 edges, i.e., that
it cannot be a subgraph of the master set and that it therefore
does not belong to the 120-2024 class. Of all sets from the
120-2024 class we generated so far, only ca. 0.1% have parity
proofs, notably 609 of 6 925 540. The star and triangle 36-9
does have a parity proof, though.

X. 80-265 CLASS OF 16-DIM KS SETS

Harvey and Chryssanthacopoulos constructed an 80-265
KS master set in the 8D real Hilbert space with vector
components from the set {−1,0,1} [60]. They considered it
for four qubits (24 = 16) although, theoretically, it can also
serve as a KS set for spin- 15

2 systems. The set has far too many
redundant edges, so, Planat promptly designed a procedure
to obtain smaller KS sets and he claimed to have obtained
three sets with the initial number of vertices: 80-21, 80-22,
and 80-23 [57], however, as we show below, his 80-21 and
80-22 are not KS sets and 80-23 is not critical. In this paper,
we generate 4.1×106 nonisomorphic critical KS sets from the
80-265 master set. We say that KS critical sets that can be
generated by stripping the 80-265 master set form the 80-265
class of KS critical sets. The ones we obtained so far are shown
in the table in Fig. 15.

The original 80-265 master file printed in [60] took over 11
pages. Its MMP representation is much shorter. Still, it takes
over one page. So, we shall consider some smaller examples,
but, first, we shall check the sets Planat obtained in [57]. His
set 80-21 given by 21 lines of Eq. (17) in [57] has an MMP
rendering with 21 edges as given in the Appendix, Sec. A 6.
But, this set is not a KS set. For instance, according to our
program STATES01 we can assign “1” to G, H, Y, o, r, and
u, so as to exhaust all 21 edges, i.e., when we delete the edges
that contain them, then none is left, meaning that each contains
one “1” and therefore the set is noncontextual [cf. Fig. 1(a)
where, e.g., we can assign “1” to none of vertices 789A and
for which there is always an edge to which one cannot assign
“1” at all vertices contained in it]. Then, it is claimed that this
80-21 set together with the 1st line of Eq. (18) from [57], in
MMP notation: 2ACEZbhj$(∗ :<> ?@, form an 80-22 KS set.
However, this 80-22 is not a KS set, either.

All lines from Eqs. (17) and (18), the last line read-
ing notuwy!#’)-:<=>? in MMP notation, form an
80-23 noncritical KS set. By deleting the first line,
Zbhjprsv$(*-:<=@, we get a noncritical 80-22 KS set. If we
also deleted the eighth line (HIKLMPQRTUVWbhlm), we would
get a noncritical 80-21 KS set. These sets contain one 80-20
critical set and two nonisomorphic 80-19 criticals, all shown
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FIG. 15. List of 4 069 963 nonisomorphic 16D KS critical sets from the 80-265 class. Two 80-19s and one 80-20 KS critical we generated
from Planat’s [57] noncritical 80-23 are among our 169 197 80-19s and 88 464 80-20s, respectively, indicated by † in the table.

in Appendix A 6. Their maximal loops are pentagons. We
obtained them from the aforementioned 80-23,22,21 via our
program STATES01.

The goal of [57] was to find small KS sets, but the table
in Fig. 15 shows that its non-critical KS set 80-23 is bigger
than all 2.5×106 KS criticals we generated from the master
80-265 set and listed in the table in Fig. 15. This shows
that algorithms for automated exhaustive generation of MMP
hypergraphs, although probabilistic until full exhaustion is
reached, are indispensable sources for obtaining new KS sets.
Still, the 80-20 and 80-19s we obtained with the help of our
program STATES01 are not isomorphic to any of the 80-20’s
and 80-19’s we listed in the table in Fig. 15. This is because
the probability of generating any specific KS set via our
programs MMPSTRIP and STATES01 is very low due to the their
probabilistic algorithms. Within established probabilities for
obtaining MMP hypergraphs with wanted number of edges
and vertices they are generated completely at random.

The 16D KS criticals listed in the table in Fig. 15 have
maximal loops in the range from a square to a heptagon as
illustrated in Fig. 16. The vector components corresponding to
vertices from the set {−1,0,1} for the master set listed in [60]
can be traced down to any chosen MMP hypergraph from the
table in Fig. 15 via any of our programs MMPSTRIP, STATES01,
MMPSHUFFLE, etc., or, equivalently, program VECTORFIND can
generate the components directly for a given hypergraph.

In contrast to all previous classes of KS sets apart from 4D
60-105, 16D 80-625 class has a significant number of parity
proofs, notably, 28%. There are approximately 64% criticals

with an odd number of edges but only 44% of them have parity
proofs. Also, in contrast to all previous classes, except the 6D
236-1216 class, the KS criticals of the 16D 80-265 class do
not exhibit symmetries. They have rather intricate and dense
structure. In particular, all vertices share at least two edges and
some pairs of edges share eight vertices. Also, in contrast to
KS sets from the classes in smaller dimensions (not counting
the tentative 24-24 class for which we in Sec. V proved to be
contained in the 60-105 class), there are no maximal loops big-
ger than heptagons. There are approximately 10% of squares,
86% of pentagons, 4.6% of hexagons, and 1% of heptagons.

Why is 77-13 missing, while 76-13 has 123 769 noniso-
morphic instances and 78-13 is present, is an open question.
The 16D star and triangle set does not admit 0-1 states and is
critical and therefore would be a critical KS set if one found
a coordinatization for it. We have not found any so far. It has
16 + 1 = 17 edges and (16 + 1)16/2 = 136 vertices, which
are 1.7 times the highest number of vertices of the critical
sets from the 80-265 class. Its structure is dissimilar to any
obtained set from the 80-265 class so it is very unlikely that it
might belong to it, however, for the time being, the program
SUBGRAPH which would give us a definitive answer to this
question it is still running.

XI. 160-661 CLASS OF 32D KS SETS

Recently, Planat and Saniga, extending Aravind’s and
DiVincenzo-Peres’ generalizations of the Bell-Kochen-
Specker theorem [61,62], constructed a 32D KS master set

FIG. 16. 16D critical KS sets. The smallest sets with square, pentagon, hexagon, and heptagon maximal loops are shown. MMP hypergraph
strings are given in Appendix A 6.
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FIG. 17. List of 254 318 nonisomorphic 32D KS critical sets from the 160-661 class and 52-19 and 60-19 criticals we derived from Planat
and Saniga’s [63] noncritical 160-21; the latter criticals are included in 8862 52-19s and 861 60-19s, respectively, and indicated by † in the
table.

with 160 vertices and vectors and 661 edges with a real
coordinatization from the set {−1,0,1} [63]. This is a very
big set which corresponds to states of five qubits, so, they did
not present it in their paper. But, Planat kindly sent us the
set in their notation and we translated it to an MMP encoded
hypergraph. Planat and Saniga only published a smaller 160-21
KS set they obtained from the master set. MMP hypergraph
string of that set is given in Appendix A 7. (Edge 14 in [63]
which reads 08 should read 108.)

However, this KS set is not critical and it contains at least
two smaller critical KS sets, 160-19 and 152-19 ones. There is
no point in giving their MMP representations here because we
obtained thousands of smaller KS 32 criticals from the 160-661
master set as shown in the table in Fig. 17. The nonisomorphic
KS criticals with the smallest number of edges (11) all have
144 vertices and we show one of them in Fig. 18.

It is interesting that a single KS set with 21 edges (the
number of edges of the KS set from [63]) has 9 vertices less
than any other set we found (135), indicated by

... in the table
in Fig. 17. This might stem from some geometrical structure
of the set or its smaller subset. We do not show the 135-21
hypergraph because it has almost twice as many edges as
144-11 and its figure would be much more difficult to read.
Also, 135-21 maximal loop is a square and its hypergraph has
47 vertices outside of the loop as opposed to 24 such vertices
of the 144-11 hypergraph shown in Fig. 18.

We find the complexity of KS criticals from the 32D
160-661 class similar to the one of the 16D 80-265 class.
Not a single vertex shares only one edge, and some pairs of
edges share 16 vertices. The distribution of distances between
maximal bases was considered in [63] for a single noncritical

160-21 set. In our approach, such a distribution does not
play any role for either obtaining thousands of KS criticals
or proving that they really are KS sets. The vector components
of vertices from the set {−1,0,1} for the master set are listed
in [63]. As for all the sets from the previous classes given
above, we can either trace them or generate them for any given
hypergraph.

FIG. 18. 144-11; one of 31 smallest 32D critical KS sets.
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Of all 2.5×105 KS criticals we obtained, only 10.7%
have a parity proof. In contrast to all KS sets from the
classes in smaller dimensions, there are no maximal loops
bigger than hexagons. There are 11.9% of squares, 87.4% of
pentagons, and 0.7% of hexagons. The star and triangle KS set,
although not admitting 0-1 states and being critical, is far too
complicated to be considered here. It has (32 + 1)32/2 = 528
vertices and 32 + 1 = 33 edges which makes it far bigger than
any of the critical sets from the present class. However, if one
found a coordinatization for it, it would be the biggest critical
KS set of all known ones.

XII. 3D KS SETS

The successful generations of all the above presented KS
sets in up to 32 dimensions were enabled by newly found
big master sets and they were in turn derived from various
polytopes (like, e.g., 120-cell and 600-cell), or Lie algebras,
or some involved individual constructions which made use
of geometric symmetries of even-dimensional spaces. Even
without the big master sets a direct generation of smaller
KS sets is possible via our MMP algorithms [34] because in
four- and higher-dimensional space those KS sets are pretty
small. Disparately, for the 3D space, we are unaware of a
master set and of the few known 3D KS sets, no one is small
and all of them are critical and cannot be lessened.

Since it would be very important to find more 3D KS sets
to gain a better insight into the structure of contextual KS
sets and enable new breakthroughs in their generation and
application algorithms and programs, in this section we give
MMP representations and KS hypergraphs of the four known
(the only known ones) 3D KS sets and one that was claimed
to be of such kind (the Yu-Oh 13-set), but is not, as we show
below.

The full specification of all vertices (their vector com-
ponents) is, as shown by Larsson [64] and Pavičić, Merlet,
McKay, and Megill [34], indispensable “for an experimental
realization, which involves procedures equivalent to basis
rotations” ([65], p. 332, end of the 1st par.). For example,
spin-1 particle flying through a sequence of generalized
Stern-Gerlach devices whose filters or paths correspond to
three orthogonal eigenprojections of the spin observable [33]
and we would not have a correct measurement statistics if we
ignored some of the vertices present in particular edges.

As shown in Fig. 19, Bub’s [46], Conway and Kochen’s
[49], Peres’ [43], original Kochen and Specker’s [30] KS sets

and Yu and Oh’s non-KS set [66], have 49, 51, 57, 192,
and 25 vertices, respectively (and 36, 37, 40, 118, and 16
edges, respectively). In Fig. 19, the vertices that share only
one edge are denoted by fully grayed dots and gray ASCII
characters. If we ignored them in an implementation, we would
be left with 33, 31, 33, 117, and 13 vertices, but then the
measurements would give us incorrect data as we explained
above. Surprisingly, in all presentations of their KS sets, the
aforementioned authors simply dropped the (gray) vertices
that shared only one edge in an attempt to present their KS
sets as being smaller and therefore more attractive for possible
implementations.

Yet, all those vertices or vectors have definite vector
components in the coordinatization they made use of. Thus, it
is just the visual presentation of these KS sets in the original
papers and subsequent reviews in numerous articles and books
of these sets that are misleading, not the actual structures of
them (which are perfectly correct).

Yu and Oh published a paper [66] in which they introduced
a set with 13 vertices which they call a 13-ray set: 13-vertex
set in our notation. The set is displayed in Fig. 19 where the
13 vertices are shown as red dots (in online version; black dots
in printed version). Yu and Oh dropped the vertices that share
only one edge, shown as gray dots in the figure (12 of them),
following the aforesaid manner. In our figure, we see that after
restoring the dropped vertices it is possible to assign 0’s and 1’s
to vertices from all edges. So, the Kochen-Specker Theorem 1
tells us that Yu-Oh’s 13-vertex set is not a KS set. Actually,
Yu and Oh themselves cite the Bell-Kochen-Specker theorem
in the same wording as in Theorem 1 and admit that their set
satisfies the conditions of the theorem ([66], p. 3, top). That
can be formulated as the following lemma.

Lemma 5. Yu-Oh’s 13-vertex set is not a KS set.
Proof. It is possible to assign 0’s and 1’s to vertices in such

a way that no two orthogonal directions are both assigned 1
and no three mutually orthogonal directions are all assigned 0
as shown by encircled 1’s in Fig. 19. �

Yu and Oh admit the validity of Lemma 5 as follows:
“The KS value assignments to the 13-ray set are possible;
i.e., no logical contradiction can be extracted by considering
conditions 1 and 2 (of Theorem 1) only.” Yet, they claim
to have “proved the original KS theorem” [66]. However,
Lemma 5 appears to prove the contrary. This may be the
result of misapplied terminology. In the paper they proceed
to define a new kind of contextuality through their inequalities
(2), (3), and (4) applied to their 13-non-KS-set, and then they

FIG. 19. Four 3D KS sets: Bub’s 49-36, Conway-Kochen’s 51-37, Peres’ 57-40, and original Kochen-Specker’s 192-118, and Yu-Oh’s
non-KS set named “13-vertices (-rays) set” according to 13 red (online; black in print) vertices; the components of each vector (vertex, ray)
are from the set {0, ± 1, ± 2}; 1̄ and 2̄ stand for −1 and −2, respectively.
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mistakenly claim that their proof of such a newly defined
contextuality amounts to the proof of the Kochen-Specker
theorem. Only a KS set can be a proof of the KS theorem since
a violation of conditions 1 and 2 of the theorem is tantamount
to a definition of a KS set and therefore no non-KS can prove
the theorem since it does not violate them [67]. This does not
mean that the contextuality Yu and Oh proved for their 13-set is
wrong. This only means that via such a contextuality for their
13-set one cannot prove the Kochen-Specker theorem simply
because the set is not a KS set.

Hence, we are left with the four big KS sets as the only
known 3D KS sets. (Gould and Aravind have proven that the
so-called Penrose’s 3D KS set is isomorphic to Peres’ one
[68].) It is well known that all of them are critical and our
program STATES01 confirms that. So, we cannot use them to
generate smaller KS sets. (By the way, Yu-Oh’s 13-vertex set
is a subset of Peres’ critical set and its criticality is yet another
avenue of proving that Yu-Oh’s set cannot be a KS set and
therefore that it cannot prove the KS theorem [67].) But when
we look at their MMP hypergraphs we notice that the number
of gray dots, i.e., the number of vertices that share only one
edge, increases with the total number of vertices within a
KS set, in contrast to the opposite trend of KS sets from the
4D 60-105 class; cf. red circles in 29-16, 30-16, 31-18, and
60-40 in Fig. 6. In particular, there are 16, 20, 24, and 75
such vertices (gray dots) in Bub, Conway-Kochen, Peres, and
Kochen-Specker’s hypergraphs in Fig. 19, respectively.

Therefore, we conjecture that more complex noncritical
KS sets, interwoven similarly to higher-dimensional KS sets,
with comparatively low number of vertices, approximately 50,
might be found on clusters and supercomputers and used to
generate smaller 3D KS criticals. This is a work in progress.

XIII. DISCUSSION

In the past 10 years, the exploration and generation of con-
textual sets, in particular, Kochen-Specker (KS) sets, received
a lot of attention (see Sec. I) both for their possible applications
and implementations and for their further theoretical usage and
development in quantum mechanics and quantum information.
The approaches to generation of KS sets diversified and many
partial results were achieved, recently. Therefore, we have
focused our efforts on the unification of results, features,
structure, and mutual relations of different KS sets as well as
on the development of technique and method of their arbitrary
exhaustive generation and handling.

In pursuing this goal, we have concentrated neither on
immediate experimental implementation (small sets) nor on
the standard parity-proofs-based algorithms. Instead, we have
made use of the general MMP hypergraph language by means
of which we generated a large number of additional types
of contextual KS critical sets and numerous nonisomorphic
instances within each of them, which mostly cannot be
generated by other known algorithms. The approach also gave
us the results we were not originally concerned with, such as an
abundance of small KS sets, and in addition provided us with
an explanation why the other approaches, like parity-proof
ones, failed to spot them; it turns out that only a very few KS
sets have a parity proof (in some classes under 1% of sets and
in some none at all) what makes them completely invisible for

the parity-proof-based algorithms and programs, predominant
in the literature.

Instead of parity proofs of only some KS sets with a
particular structure, the MMP hypergraph algorithms and
methods enable direct numerical proofs of the KS theorem
for any chosen KS set via literal verifying of KS theorem
conditions: program STATES01 gives a maximal number of
1’s for a chosen KS set and after deleting all edges that
contain these 1’s at least one edge should remain. This is
all automated, but the user can easily check the output MMP
hypergraph strings by hand. When the MMP hypergraphs are
drawn as figures, the proofs also become “visual” as indicated
in Figs. 1(a) and 3 (26-13) by dashed red ellipses.

We developed the hypergraph approach to KS sets intro-
duced in Sec. II from the lattice theory of Hilbert spaces and
the way of assigning of 0-1 states to vertices of hypergraphs
we took over from the methods of dealing with discrete
states defined on those lattices. In particular, we redesigned
our programs for analyzing the Hilbert lattice features and
turned them into the programs we used to build up an
MMP-hypergraph-based language (specified in Sec. II) for
generating, analyzing, filtering, and modifying KS sets. We
made use of this language to obtain numerous KS sets and
classes and their features in 4D (in Secs. IV, V, VI, and VII),
6D (in Sec. VIII), 8D (in Sec. IX), 16D (in Sec. X), and 32D
(in Sec. XI) Hilbert spaces. We also reviewed the 3D KS sets
in Sec. XII. In the table in Fig. 20 we list the most important
properties of critical KS sets we obtained and compare them
with ones obtained previously.

The large variety of KS sets we obtain provide a much
greater choice for KS experiments and insight into their
properties and the properties of gates that handle them as well
as the properties of quantum sets in general. While smaller KS
sets are currently preferred for a feasibility of experimental
implementations, in the future other sets that are intrinsically
different (i.e., nonisomorphic) may become desirable for more
sophisticated experiments, verification of the KS theorem with
different setups, etc., especially because bigger sets do not
require higher efficiency of measurements but only a higher
number of measurements. Since the sets we found are critical,
there will be no redundancy in any experimental setup making
use of them.

Finally, we want to stress that our generation of KS sets
in 16D and 32D spaces allowing for their implementation by
means of four and five qubits, respectively, is (as, actually, all
generations in this paper) vector or vertex based and therefore
complementary to a recent operator-based generation of KS
sets for four, five, and six qubits (explicitly, and more of
them, in principle) by Waegell and Aravind [69]. Building a
correspondence between the two approaches (via eigenvectors
of their operators) is a work in progress so that we, as of yet,
cannot say to which extent our results overlap. We can only
say that we have not obtained KS criticals with nine edges
(bases, in their terminology) for four and five qubits, as they
have. Our minimal number of edges for the corresponding two
classes is 11, as shown in the tables in Figs. 15, 17, and 20.
We did not include 16D and 32D KS criticals with nine edges
from [69] into our tables because we were not able to find out
whether they, respectively, belong to the 80-265 and 160-661
classes or not.
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FIG. 20. List of properties of generated critical KS sets and their comparison with the previously obtained sets; “na” stands for “not
applicable,” e.g., for the biggest known classes; “2?” refers to the claim in [53] that the operators defining the 300-675 might be redefined
to allow a representation via 2 qubits; ∗ in 0.14∗ for 300-675 indicates unevenly distributed parity proofs: all lower criticals have it while all
higher ones (211-127 to 283-188) lack it; “edges share �2 v” = edges share 2 or more vertices, i.e., intersect each other two or more times;
“new types” “0” for, e.g., 24-24 means that there are no new types of 24-24 KS criticals in this paper (they are only elaborated on and discussed
here); “18.3” (for 60-74) means: 28 (new types obtained in this paper; others were obtained in [27,38,50,51]) / 153 (total number of types) =
18.3%; “100”(for 236-1216) means that all types are from this paper; “new sets” give number of sets obtained in this paper.

The generation of KS critical sets we presented in this
work is, with our algorithms and programs, straightforward
but demanding and CPU-time consuming. The jobs require
cluster and grid calculations and even with them it might take
months to obtain a required or desired particular set which
might be needed in elaboration, confirmation, or checking par-
ticular assumptions about construction, unification, geometry,
computation, or implementation of contextual sets. We provide
samples of the KS criticals in the MMP hypergraph notation
in the Supplemental Material [28]. They are just a tiny fraction
of TBs of data we generated but the reader can obtain any KS
sets from us upon “appropriate” request (e.g., the 60-74 file
has 231 GB). Also, the reader may generate any KS set by
making use of our programs that are freely available at our
repository http://goo.gl/xbx8U2.
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APPENDIX: MMP HYPERGRAPH STRINGS REFERRED
TO IN THE ARTICLE

1. Section IV

Master set 60-75: 1234, 5678, 9ABC, DEFG, HIJK,
LMNO, PQRS, TUVW, XYZa, bcde, fghi, jklm, maSK,
lZRJ, kYQI, jXPH, ieWO, hdVN, gcUM, fbTL, nopq,
rstu, vwxy, yuqG, xtpF, wsoE, vrnD, pdYC, qeZB,
ocXA, nba9, uROC, tQNB, sPM9, rSLA, wUHC, xVIA,
yWJ9, vTKB, jgEB, liGA, khF9, mfDC, pLJ8, qMI7,
nNH6, oOK5, vhX8, ygY5, xfZ6, wia7, ukc6, rjd7,
tlb5, sme8, UQG8, TRF7, VPD5, WSE6, tXW4, rZU3,
sYT2, uaV1, ofQ1, piP3, ngR4, qhS2, xjO2, wkL4,
vlM1, ymN3, eHF1, cJD2, bIE3, dKG4.

Master set 60-74: 1234, 5678, 9ABC, DEFG, HIJK,
LMNO, PQRS, TUVW, XYZa, WOGC, VNFB, UMEA, TLD9,
aSK8, ZRJ7, YQI6, XPH5, bcde, fghi, jklm, mie4,
lhd3, kgc2, jfb1, ndIB, oeJA, pcK9, qbHC, reF8,
sdE5, tbD6, ucG7, rfY9, uhXA, tiaB, sgZC, nkT8,
plV6, qmU7, ojW5, piRE, ogSD, qhQF, nfPG, smNK,
ujLI, rlMH, tkOJ, sTQ1, uVS4, tUP3, rWR2, oYN3,
nZM4, qaL2, pXO1, qpon, utsr, vePL, wcQM, xbRN,
ydSO, vkYE, yjZF, wmXD, xlaG, wfVJ, xgUI, yiTH,
vhWK, x954, vB71, yA62, wC83.
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60-39: 4123, 3hsS, SQRP, PcwO, OLMN, NiX5, 5786, 6teF, FDEG, GVgp, pnqo, oabA, ABC9, 9fxK, KHIJ,
JUd4,,, bcde, ujHZ, 8vTl, 2mMn, 7IRq, EyY1, WLrB, QCkD, IlXt, Uxj7, buE5, n8QH, 1KcT, arKk, hnUE,
m5Ww, t1gQ, yHiA, 7Dsc, Of8Y, VbI2, Z2Dv, AtOU.

60-41: 2341, 1gQt, t6eF, FjBS, SydM, MLON, NiX5, 5mWw, whCI, I7Rq, qnpo, oAba, arkK, Kfx9, 9EPl,
l8Tv, vZD2,,, 5678, 9ABC, DEFG, HIJK, PQRS, bcde, VgpG, hs3S, 2mMn, EyY1, WLrB, JUd4, QCkD, Uxj7,
buE5, n8QH, 1KcT, 9Zdq, 7Dsc, CTuM, Of8Y, VbI2, iTFq, BcnX.

2. Section V

Master set 60-105: 1234, 5678, 9ABC, DEFG, HIJK, LMNO, PQRS, TUVW, XYZa, bcde, fghi, jklm, nopq,
rstu, vwxy, 12FG, 12RS, 13MO, 13UW, 14gh, 14pq, 23fi, 23no, 24LN, 24TV, 34DE, 34PQ, 56JK, 56VW,
57EG, 57Ya, 58kl, 58oq, 67jm, 67np, 68DF, 68XZ, 78HI, 78TU, 9ANO, 9AZa, 9BIK, 9BQS, 9Ccd, 9Cnq,
ABbe, ABop, ACHJ, ACPR, BCLM, BCXY, DERS, DFYa, DGde, DGtu, EFbc, EFrs, EGXZ, FGPQ, HIVW, HJQS,
HKhi, HKsu, IJfg, IJrt, IKPR, JKTU, LMZa, LNUW, LOlm, LOru, MNjk, MNst, MOTV, NOXY, PSkm, PSxy,
QRjl, QRvw, TWce, TWwy, UVbd, UVvx, Xagi, Xavy, YZfh, YZwx, bctu, bdwy, benq, cdop, cevx, ders,
fgsu, fhvy, fipq, ghno, giwx, hirt, jkru, jlxy, jmoq, klnp, kmvw, lmst.

Master set 24-24 as a subgraph of the master set 60-15 with original complex vector components: 1234,
5678, 9ABC, DEAC, FG9B, 9CHI, ABJK, HJKI, DFGE, 58JI, 67HK, 56GE, 78DF, LMNO, N4BC, O39A, 1MKI,
2LHJ, 1LFE, 2MDG, 57O4, 68N3, NO34, 12LM.{1=(1,0,0,0), 2=(0,1,0,0), L=(0,0,1,0), M=(0,0,0,1),
5=(1,1,i,i), 6=(1,-1,i,-i), 7=(1,1,-i,-i), 8=(1,-1,-i,i), N=(1,1,0,0), O=(1,-1,0,0), 3=(0,0,1,1),
4=(0,0,1,-1), D=(1,0,i,0), F=(0,1,0,i), G=(1,0,-i,0), E=(0,1,0,-i), 9=(1,1,i,-i), A=(1,1,-i,i),
B=(1,-1,i,i), C=(1,-1,-i,-i), H=(1,0,0,i), J=(1,0,0,-i), K=(0,1,i,0), I=(0,1,-i,0)}

20-11a with coordinatization from 60-105: 1234, 5678, 19A8, 5BC4, DEFG, HIJK, 6BDF, A7HJ, C3HI,
29DE, HKDG.{1=(1,0,0,0), 2=(0,1,0,0), 9=(0,0,1,0), 5=(1,1,i,i), 6=(1,-1,i,-i), B=(1,1,-i,-i),
C=(1,-1,0,0), 3=(0,0,1,1), 4=(0,0,1,-1), A=(0,1,0,i), 7=(1,0,-i,0), 8=(0,1,0,-i), H=(1,1,i,-i),
I=(1,1,-i,i), J=(1,-1,i,i), K=(1,-1,-i,-i), D=(1,0,0,i), E=(1,0,0,-i), F=(0,1,i,0), G=(0,1,-i,0)}

18-9 with coordinatization from 60-105: 1234, 1567, 869A, BACD, ECFG, H3IF, H4B9, 25ED,
87IG.{1=(1,0,0,0), 2=(0,1,0,0), 5=(0,0,1,0), H=(1,-1,0,0), 3=(0,0,1,1), 4=(0,0,1,-1),
8=(1,0,-1,0), 6=(0,1,0,-1), 7=(0,1,0,1), B=(1,1,-1,-1), 9=(1,1,1,1), A=(1,-1,1,-1),
E=(1,0,0,-1), C=(0,1,1,0), D=(1,0,0,1), I=(1,1,1,-1), F=(1,1,-1,1), G=(1,-1,1,1)}

20-11b with coordinatization from 60-105: 1234, 1567, 2589, ABCD, EFGH, 8IFH, ADI9, J7EH, J6CD,
K4GH, K3BD.{1=(1,0,0,0), 2=(0,1,0,0), 5=(0,0,1,0), K=(1,1,0,0), 3=(0,0,1,1), 4=(0,0,1,-1),
J=(1,0,-1,0), 6=(0,1,0,-1), 7=(0,1,0,1), A=(1,1,-1,-1), B=(1,-1,-1,1), C=(1,1,1,1),
D=(1,-1,1,-1), 8=(1,0,0,-1), I=(0,1,1,0), 9=(1,0,0,1), E=(1,1,1,-1), F=(1,1,-1,1),
G=(1,-1,-1,-1), H=(1,-1,1,1)}

3. Section VI

38-19: 4123,3C6L,LVYE,EDGF,FOQP,PZaS,SNRJ,JIKH,HTXM,M794,,,5678,9ABC,B5N1,8OA2,TUVW,baXG,ZYcI,
QKbU,cRDW

42-21: 2143,36CP,PIOe,eGcW,WVXU,ULdg,gFHa,aRZY,YbfT,TJNS,S8A2,,,5678,9ABC,DEFG,HIJK,LMNO,479Q,
15BR,Qbcd,EVMZ,DKfX.

48-25: 1243,36CP,Pcde,eVUX,XQYZ,ZmiE,EFGD,DabO,OMNL,LIhk,kjgR,R5B1,,,5678,9ABC,HIJK,479Q,28AS,
SJTU,RVNW,GHfg,Sahi,Fjdl, cTYW,SfMl,RKmb.

221-127: ++S++T++U++V, ++V++5++6++7, ++7+j+k+’’, +’’+z+!+‘, +‘+^+_++R, ++R++O++P++Q, ++Q+g+i+h,
+h+V+e+>, +>+<+=+?, +?|}+T, +T+R+m+S, +SQ#++E, ++E++C++D++F, ++Fy+fz, zRt++8, ++8++9++B++A,
++A+b+c+a, +a{+/J, JN>+M, +M+L++3+|, +|+{+~+}, +}+&+’+(, +(D+d++L, ++L++K++M++N, ++NU;S, S!+s@,
@f+Ed, dcu++H, ++HBI+$, +$+%++4+#, +#AL+B, +B+9+A+[, +[+@+\+], +]+w+y+x, +x6^E, ECs+o, +o+p+q+r,
+r+I+J+K, +K+G++J+H, +H-+:+8, +8VW&, &$+W%, %O+P++G, ++GXYZ, Zn+3h, hgxi, iP+t++S , , , ++G++H++I++J,
++1++2++3++4, +-+/+:+;, +)+*+;+~, +s+t+u+v, +l+m+n++U, +d+e+f++B, +X+Y+Z++A, +W+n+!++A,
+V+Z+z++6, +U+i+\++6, +N+O+P+Q, +F+c++6++I, +C+D+E+J, +6+7+8+[, +5+W++2++6, +3+4+(++A, ~+1+2++I,
_‘{+v, ]^+*++1, @[\+Y, =>?+k, <\+2++5, /:;++P, ’()*, #-+u++O, ‘‘*+K+>, !+J+Q++R, wx+7++F,
vx+U+>, stu<, ru+4+q, pq?++5, o)+‘++J, mn++9++T, l*+y+_, jk[+t, ef(+b, ab@+{, TU+g++H, Pv+M+^,
NR+I++M, Mq++M++O, KL-++7, w+P+=++U, &:+U+%, HI’+x, GNry, EFQ(, M/+4+E, QT+a+’, Tf+l++D,
Su+D++Q, CD+J++8, F+f+[+_, t+3+B++N, s+K++F++K, u+#+>++C, 9+3+J+f, 8k++F++V, 7+p++8++K, 6=+@++B,
^+O+d+j, 5H++P++V, IKh++R, 79O++C, H{+A++B, 5n=+X, JZ+<++S, MS]++D, 9L++9++L, $^+[++E, G+o+(++C,
k+3+T+^, +I+V+(++S, Or+K+d, 4=+w++E, 3G+e++K, 2:+X++5, 1Cw+^.
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4. Section VII

40-23: 3124, 49AB, BaVL, LMNE, ECD8, 8567, 7IJK, KRSQ, QOPH, HFG3,,, TUV6, WXP5, YZSD, abXG,
cZN2, deR1, ebMJ, dWCA, cUIF, cbOC, daYI, WSLF, eZVP. 1=(1,0,ω2,ω2), 2=(1,ω,0,-ω2), 3=(1,-ω,-ω2,0),
4=(0,1,-ω,ω), 5=(1,ω,0,-ω), 6=(1,0,ω,ω), 7=(0,1,-1,1), 8=(1,-ω,-ω,0), A=(1,0,0,0), B=(0,1,-ω2,1), C=(0,0,0,1),
D=(1,-1,-ω2,0), E=(1,-ω2,-1,0), F=(1,ω,0,-1), G=(0,1,-ω,ω2), H=(1,0,ω2,1), I=(1,0,1,1), J=(1,1,0,-1), K=(1,-1,-1,0),
L=(1,ω2,0,-ω2), M=(0,1,-ω,1), N=(1,0,1,ω2), O=(1,-ω2,-ω2,0), P=(1,ω2,0,-1), Q=(0,1,-1,ω), R=(1,0,1,ω), S=(1,1,0,-ω),
U=(0,1,-ω2,ω2), V=(1,-ω2,-ω,0), W=(0,0,1,0), X=(1,1,0,-ω2), Y=(1,0,ω2,ω), Z=(0,1,-ω2,ω), a=(1,0,ω,ω2), b=(1,-1,-ω,0),
c=(1,-ω,-1,0), d=(0,1,0,0), e=(1,0,ω,1)

49-27: 3241, 1675, 5XHW, WCLn, nEmj, jiIc, caZb, blJD, DghO, OPQN, NRS9, 98A3,,, 3BCD, 3EFG,
4HIJ, 4KLM, TUVS, 5YFZ, aUGM, dOEH, deCZ, dRfM, geXK, 6kfh, 6UCI, lkFL, 7RBm. 1=(0,0,0,1), 3=(1,0,0,0),
4=(0,0,1,0), 5=(1,1,-ω,0), 6=(1,ω2,-ω2,0), 7=(1,ω,-1,0), 9=(0,1,-1,-ω2), B=(0,1,ω2,ω), C=(0,1,1,1), D=(0,1,ω,ω2),
E=(0,1,1,ω), F=(0,1,ω,1), G=(0,1,ω2,ω2), H=(1,-1,0,ω), I=(1,-ω2,0,ω2), J=(1,-ω,0,1), K=(1,-ω2,0,1), L=(1,-ω,0,ω),
M=(1,-1,0,ω2), N=(1,-1,-1,0), O=(1,0,1,-ω), R=(1,0,1,-ω2), S=(1,1,0,ω2), U=(1,0,ω2,-ω2), W=(1,0,ω,-ω), X=(0,1,ω,ω),
Z=(1,-1,0,1), a=(1,1,-ω2,0), b=(1,0,ω2,-1), c=(0,1,ω2,1), d=(1,1,-1,0), e=(1,0,1,-1), f=(0,1,1,ω2), g=(1,ω2,-1,0),
h=(1,-ω2,0,ω), j=(1,0,ω,-ω2), k=(1,0,ω2,-ω), l=(1,ω,-ω2,0), m=(1,-ω,0,ω2), n=(1,ω,-ω,0)

5. Section IX

8D �: 12345678,89ABCDEF,FGHI4JKL,L7MNBOPQ,QERSI3TU,UK6VNAWX,XPDYSH2Z,ZTJ5VM9a,aWOCYRG1.
8D �: 12345678, 89ABCDEF,FGHIJKL1,L2MRVYaE,KM3NSWZD,JRN4OTXC,IVSO5PUB,HYWTP6QA,GaZXUQ79.,
Coordinatization for �: 1=(0,0,0,0,0,0,0,1), 2=(0,0,0,0,0,0,1,0), 3=(0,0,0,0,0,1,0,0), 4=(0,0,0,0,1,0,0,0),

5=(0,0,1,1,0,0,0,0), 6=(0,0,1,-1,0,0,0,0), 7=(1,1,0,0,0,0,0,0), 8=(1,-1,0,0,0,0,0,0), 9=(0,0,0,0,0,0,1,1), A=(0,0,1,1,1,-1,0,0),
B=(1,1,0,0,0,0,-1,1), C=(1,1,0,0,0,0,1,-1), D=(0,0,1,0,-1,0,0,0), E=(0,0,0,1,0,1,0,0), F=(0,0,1,-1,1,1,0,0), G=(0,0,0,1,1, 0,0,0),
H=(0,0,1,1,-1,1,0,0), I=(1,0,0,0,0,0,1,0), J=(0,0,1,0,0,-1,0,0), K=(1,0,0,0,0,0,-1,0), L=(0,1,0,0,0,0,0,0), M=(0,0,1,0,1,0,0,0),
N=(0,0,0,1,0,0,0,0), O=(1,-1,0,0,0,0,-1,-1), P=(0,0,0,0,1,1,0,0), Q=(1,-1,0,0,0,0,-1,1), R=(1,0,0,0,0,0,0,1), S=(0,1,0,0,0,0,0,-1),
T=(0,1,0,0,0,0,-1,0), U=(0,0,1,-1,1,-1,0,0), V=(0,0,1,-1,-1,1,0,0), W=(1,1,0,0,0,0,1,1), X=(0,0,1,0,0,1,0,0), Y=(1,0,0,0,0,0,0,-1),
Z=(1,-1,0,0,0,0,1,-1), a=(0,0,1,1,-1,-1,0,0)

Coordinatization for �: 1-8—as for �, 9=(1,1,0,0,0,0,-1,1), A=(0,0,1,1,1,-1,0,0), B=(0,0,0,0,0,0,1,1), C=(0,0,1,-
1,1,1,0,0), D=(0,0,0,1,0,1,0,0), E=(0,0,1,0,-1,0,0,0), F=(1,1,0,0,0,0,1,-1), G=(0,0,1,0,0,-1,0,0), H=(1,0,0,0,0,0,0,1),
I=(0,0,0,1,0,0,0,0), J=(1,-1,0,0,0,0,-1,-1), K=(0,1,0,0,0,0,-1,0), L=(0,0,1,0,0,1,0,0), M=(0,0,1,-1,1,-1,0,0), N=(1,-
1,0,0,0,0,-1,1), O=(0,0,0,1,1,0,0,0), P=(0,0,1,1,-1,-1,0,0), Q=(1,-1,0,0,0,0,1,-1), R=(1,0,0,0,0,0,-1,0), S=(0,0,1,0,1,0,0,0),
T=(0,1,0,0,0,0,0,-1), U=(1,1,0,0,0,0,1,1), V=(0,0,0,0,1,1,0,0), W=(0,0,1,1,-1,1,0,0), X=(1,0,0,0,0,0,0,-1), Y=(0,1,0,0,0,0,0,0),
Z=(0,0,1,-1,-1,1,0,0), a=(1,0,0,0,0,0,1,0).

6. Section X

16D 80-21: Zbhjprsv$(*-:<=@, HIPQZbdehjlmpqvx, Zehmoqwxz!’’#’)>?, 12457BCGLMPQZbdm,
378GIJKLOPUVXgik, 12346789ACEGJKOV, 16ACNOVWXYakny!#, HIKLMPQRTUVWbhlm, KRVWXYabcfghiklm,
129AKRVWbhlmqrv’’, 37BFXYfgstvwxy’’#, 123456789ABCDEFG, 23ABCDEG$%:;<>?@, Xafiuwy!$()/:;=?,
46CEpsuwxyz!$(/;, ILQTnot#%&’*<=?@, 5BDFLMNRSTUWrsz’’, 5BDFHINPQRSWpqvx, XYacfgik$%&(*/;@,
HIKLMOPQSTUW&(;@, 16ACXYadeklm%&/;.

16D 80-20: 123456789ABCDEFG, HIJKLMNOPQRSTUFG, VWXYZabcdeRSTUDE, fghijklmndeQABCG,
opqrstmn456789BC, uvwxyz!’’jklbce3E, #$%&()’’ilYZacde, *-z!stghjkmn89BC, /:;<qrstfghXPQ2D,
=;<xyoprtWOU5679, >?-$%&’()w!WZaOT, ()vwz!’’plnceMN7C, @?;<*-vwxyz!ghjk, >=:fVWIJKLMNRS1A,
<’y’’rshikYaeLS49, >=<&)xgkVWHKNOTU, ?*’v!ofnZJPS17BG, /uXbHOPQTU23DEFG, :#&(u’’XYcINP12EF,
@?*-&(uvwz!XIN2E.

16D 80-19a: 123456789ABCDEFG, HIJKLMNOPQRSDEFG, TUVWXYZabcdefgRS, hijklmnofgNOPQFG,
pqrsdeLM9ABCDEFG, tuvwpqrsdeJKLMPQ, xyz!’’#vwbc5678BC, $%&’()xyz!’’#Zabc, *-/:()’’#smnoXYMO,
;</:rklmnoMN3478, =<:&’)z!#loWacIS, >?*-hijnUVXYfgNO, </%)!’’uwqjkoegAC, ?=-’)!#uvVWYIS9C,
=*-/:moTXYHS2468, >*twrnUXMN3478AB, @UVWXYZabcIR1357, @%&(xy’’TZcHKQREG, ?*pjUYefJQ2358EF.

16D 80-19b: 123456789ABCDEFG, HIJKLMNO9ABCDEFG, PQRSTUVWXYZaNO78, bcdefghijklmLM56,
nopqfghijklmXYZa, rstuvwxyVWKM46FG, z!’’#vwxy12345678, ‘‘#xypqjklmZaJO38,
$%&’(uimYaJN28EG,)*-/:’(thmUWYZCD, ;</:!#stwyIJ23BD, :z#swxoqdeglRSTW, =>*-%&’(bcdePQST,
:$rsoqceglQRTWAG, ?@><)-/$&(ruHM45, >*%(opflPQSTXYZa, ?@;<)/:$rstuRUVW, *-:’(!’’tvybcPQUW,
<)beQSHKLM14569D.

16D 72-11 4-gon: 34AC1256789BEFGD, DEFGXYZabcdeUVWT, TUVWHJKLMOPQRSNI,
IN*-&#$zswnq4AC3,,, fghijklmnopqreSW, stuvwklmnopqrdRV, xyz!uvwqrcOPQVBC, ‘‘#$%hijopbLMNW9A,
&’(%twnrZaKN78FG,)’(!gjmpXYJQ56FG, *-)’’xyfjmoHQ12AC.
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16D 72-11 5-gon: 9ABC12345678EFGD, DEFGXYZabcdTUVWe, eWxyz!’’#$Mstuvwr, rstuvwnopqNOmRSl,
lmRSfghijkPQABC9,,, HIJKLMNOPQRSTUVW, %&’!’’#$pqtuvwdLV, ()z$oswkbcKS78FG, ()’#nqvjZaJR56FG,
*-%&#quhiYIV34BC, *-xy$stfgXHW12BC.

16D 74-13 6-gon: 12FG34569ADE8BC7, 78BC()*’’’#bcghia, abcghiXYZdefklmj, jklmnopqrstuUVWT,
TUVWHKLNOQJMPRSI, IJMPRS:-/$vw2FG1,,, vwxyrstulmVWDEFG, z!’’#pqtukmUW9ABC, $%&’defghiNOPQRS,
-/*&xyYZcfhi56FG, :()%z!KLMQRS34BC, XZbcefgiHJLMOPQS, notuZbeiklJLOSUV.

16D 76-15 7-gon: imghjVWM7FlXPACk, klXPAC)*-$%S:&’/, /:&’;<’’#b1NO9BGx, xNO9BGdHQ2DEuJLq,
quJLnrIKpst3456o, opst3456wcfTUYZ(, (wcfTUYZyvaemghi,,, 123456789ABCDEFG, HIJKLMNOPQBCDEFG,
RSTUVWXYZOPQAEFG, abcdefghYZNQ89DG, vwrstumefhUZKL56, yz!’’#$%&’(mefgUY, -wprtujfRUXZKL46,
;<)*z!&’npsuJK36.

7. Section XI

160-21: 123456789ABCDEFGHIJKLMNOPQRSTUVW, 3XY45Za8b9CDEcdFIJKefghiMRjklmTW, nopqrstuvwxyz!’’#9I
JK$%&jklm’()*-, /:;<=>?@[\]^_‘{|}~+1+2+3+4+5+6+7+8+9+A+B+C+D+E, +F+G+H+I+J+K+L+M23+N4+O679AB+PD
FGJ+QLNOPQSUV, 2+NXY45+O679A+PDEcdIJ+QKL$Q&jklm’SV-, 123XYa8bAB+PDEJ+QK~+R+S+T+3+4+5+U+8+V+W+X+B
+C+D+Y, noqruwy’’38CFfiM+Z%O+ajkl+bmS(T)U*+cV, +G+H+d+J+e+K+f+g+NXY+OZab+Pcd+Qefghi+Z$%+ajm’),
/+h;+i+j>+k@+l\+m^_+n{+o+F+Gop+d+pqr+J+qv+ewx!+M, nqrvxyz#13+NY457Z8b9ABCDEdFGHIJ+QK,
2679AIJKLMN$%OPQR&jklm’S(T)U*V-W, +r\^+s+n‘|+o2367Za8bACFeN%+ajl(T)U*+cW, +t/+h:+j=+u>
+l[+r\+v_+n‘+w+R+S+2+T+3+4+x+U+6+7+8+9+D+y+z, +t/;+!+l[]+m13XY46ZaABCEcdGHM+Z+aR+bT+cW,
~+R+2+3+U+6+’’+#+8+V+A+B+Y+E+y+zfg+ZN$OQRjkS(T)+c-, +u>@+$+l[]+m+v_+n‘{+%|+o1+NY+PcGIJgLi’S)*-,
+F+&no+H+’+dstv+e+Kwxy+M+w+R+2+4+5+x+U+6+(+V+A+C+D+)+Y+E, 3XY4589CDEcdFIJKfghLiMQRjklmSTVW,
+F+&no+’p+pq+Irs+qtuvwx+Lyz!+M’’#&kl+b(*+c-, +t+h+!+i+j+u+k+$+l+r+m+s+v+n+%+o+w+R+S+T+x+U+’’+#+
(+V+W+X+)+Y+y+z.
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Found. Phys. 41, 883 (2011).
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