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It has been found via numerical simulations that the geometric phase (GP) and fidelity susceptibility (FS) across
the quantum critical points exhibit some universal scaling laws. Here we propose a singular function expansion
method to find their exact singular forms and the related coefficients across the critical points. For models where
the gaps are closed and reopened at special points (k0 = 0,π ), scaling laws can be found as a function of the
system length N and parameter deviation λ − λc, where λc refers to one of the critical parameters. Although the
GP and FS are defined in totally different ways, we find that these two measurements are essentially determined
by the same physics, and as a consequence, their coefficients are closely related. Some of these exact relations are
found in the anisotropic XY model and extended Ising models. We also show that the constant term in FS may
be accompanied by a discontinuous jump across the critical points and, thus, does not have a universal scaling
form. These findings should be in contrast to the cases where the gaps are not closed and reopened at the special
points, in which some of the above scaling laws may break down as a function of the system length. Finally,
we investigate the second-order derivative of GP, which may also exhibit some scaling laws across the critical
point. These exact results can greatly enrich our understanding of GP and FS in the characterization of quantum
phase transitions and may even find important applications in related physical quantities, such as entanglement,
discord, correlation, and quantum Euler numbers, which may also exhibit scaling laws across the critical points.
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I. INTRODUCTION

Ever since its theoretical discovery [1], the geometric phase
(GP) has permeated different branches of physics, including
ultracold atoms [2–4], quantum computation [5–8], condensed
matter physics [9–13], and even chemistry physics [14–16], as
an important tool to study the geometric properties of wave
functions [17–19]. It can even be used to diagnose topological
phase transitions [20–22], which is beyond the accessibility
of the Landau theory of phase transition. Across the critical
points the derivative of the GP exhibits some universal scaling
laws [23–25], which are derived exactly in this paper. In recent
years this phase has also been directly measured in experiments
[3,26–29], and due to the geometric origin, it is shown to be
robust against external perturbation.

The fidelity susceptibility (FS), based on the overlap
between two ground-state wave functions, is another way
beyond the Landau paradigm to characterize quantum phase
transitions [30–44]. This phase is not defined along a closed
trajectory in parameter space, thus it is not directly related
to the global geometric feature of the ground state. However,
since the structures of the ground states in two phases are
different in the sense of different order parameters or different
topologies, the FS also exhibits some scaling laws across
the critical points; see reviews in Refs. [25] and [32]. This
work explores the relations between these two quantities in
the characterization of quantum phase transitions.

In previous literature, all the scaling laws in various models
are exploited by numerical simulations [23–25,30–44], thus
our understanding of these laws is still greatly limited. In
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this paper these scaling laws are obtained exactly using a
singular function expansion method, in which the coefficients
of the divergent terms, constant terms, and next leading
terms are determined analytically. We show that the above
two measurements—the GP and FS—for quantum phase
transitions are essentially determined by the same physics
across the critical points, thus their coefficients also have some
intimate relations. We find that the coefficients of the divergent
terms reflect only how and in what way the energy gap is
closed and reopened during phase transitions, thus they do
not carry information about the topological properties of the
ground-state wave functions. In the XY model and extended
Ising model, the gap is closed and reopened linearly as a
function of the momentum k at the critical point, and we
find that the coefficients of the divergent terms are purely
determined by the slope of this energy gap. The coefficients
of the divergent terms are exactly equal to 0 when the GP and
FS are calculated along the phase boundaries; otherwise, they
will always be nonzero when two phases are crossed. We also
find that the constant term in FS may be accompanied by a
discontinuous jump across the critical points and, thus, does
not have a universal scaling form. When the gap is closed and
reopened not at the special points (k0 = 0, ± π ), some of the
scaling laws may not exist as a function of the system length,
thus some of the intimate relations between the coefficients in
the GP and FS may break down. This method is powerful and
can also be used to study the higher-order derivative of the
GP, which may also have some scaling behaviors. The exact
relations obtained in this work can provide new insight into
the characterization of quantum phase transitions using the GP
and FS.

The rest of this paper is organized as follows. In Sec. II,
we illustrate our major idea using the anisotropic XY model,
in which several general universal scaling laws are derived
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exactly when the critical point is approached along different
directions as a function of the system parameters. In Sec. III we
investigate the fate of these scaling laws in an extended Ising
model, in which the phase boundaries are controlled by two
independent parameters. We finally discuss the second-order
derivative of the GP and comment on the applicability of our
method in other related quantities in Sec. IV.

II. XY MODEL

We first illustrate the basic idea using the anisotropic XY
model [45–49],

H = −
M∑

j=−M

(
1 + γ

2
σx

j σ x
j+1 + 1 − γ

2
σ

y

j σ
y

j+1 + λσ z
j

)
, (1)

where λ is the Zeeman field, γ is the anisotropy in the x-y
plane, and N = 2M + 1 is the total number of sites. This
model reduces to the transverse Ising model when γ = ±1.
To define the geometry phase, a circuit of the Hamiltonian is
constructed as follows [23–25]:

Hφ = R†
φHRφ, Rφ =

M∏
j=−M

exp

(
i

2
φσz

j

)
. (2)

The above Hamiltonian can be diagonalized by the standard
Jordan-Wigner transformation, which transforms the spin
model to the p-wave tight-binding model, and then by
Bogoliubov transformation [48–50], which transforms the
tight-binding model from real space to momentum space. The
final Bogoliubov–de Gennes (BdG) equation reads as

HBdG =
∑

k

�
†
k

(
εk ie−i2φ	k

−iei2φ	k −ε−k

)
�k, (3)

where εk = λ − cos(k), 	k = − sin(k), and �
†
k = (c†k,c−k) in

the Nambu basis, with c
†
k and ck being the fermion creation

and annihilation operators, respectively. The corresponding
ground state is written as

|g〉 =
∏
k>0

(
cos

(
θk

2

)
+ ie−i2φ sin

(
θk

2

)
c
†
kc

†
−k

)
|0〉, (4)

where the relative phase is defined by

cos θk = εk

ξk

, sin θk = 	k

ξk

, (5)

and the energy gap is defined as ξk =
√

ε2
k + |	k|2. With this

ground-state wave function the GP is determined [23–25],

�g = −
∑
k>0

π

M
(1 − cos θk), (6)

which can be regarded as the summation of all solid angles for a
spin- 1

2 electron in a “magnetic field” B = (Re	k,Im	k,εk)[1].
This phase, acquired by a closed loop in the parameter space,
has a topological origin [23] and is robust against noise [51,52].
We are mainly interested in the first-order derivative of the GP
across the critical points, which reads as

d�g

dλ
= π

M

∑
k>0

1

ξk

(
1 − ε2

k

ξ 2
k

)
. (7)

(a)

(b) (c)

1

XX class

FIG. 1. (a) Phase diagram of the XY model. When γ = 0, the
system belongs to the XX universal class. Solid red lines represent
the gapless boundaries. In each phase,W denotes the winding number
due to chiral symmetry. (b, c) Typical band gap near λ = ±1, γ �= 0
and γ = 0, |λ| < 1, respectively.

The phase diagram for this model is presented in Fig. 1,
which is determined by εk = 0 and 	k = 0 simultaneously,

thus the energy gap is closed (ξk =
√

ε2
k + |	k|2 = 0). There

are two cases. When λc = ±1 the gap is closed and reopened
at k0 = 0 (for λc = 1) and k0 = π (for λc = −1); see a typical
example in Fig. 1(b). Hereafter these two points, k0 = 0,π ,
are called special points throughout this paper, since their
features are totally different from those when the gap is closed
and reopened at some other momenta in (0,π ). These two
boundaries are independent of γ , thus the phase transitions
are controlled by only a single parameter λ. However, when
γ = 0, the pairing term disappears and the XY model reduces
to a single-particle model after Jordan-Winger transformation,
which is always gapless when |λ| < 1. This boundary is
generally called the XX universal class, which contains two
gapless points at k0 = ± arccos(λ) [see Fig. 1(c)]. Note that
the BdG equation possesses chiral symmetry S = σx at φ = 0,
where σx is the Pauli matrix and SHBdGS† = −HBdG; this
model belongs to the topological BDI class in one spatial
dimension [53,54], which is characterized by the winding
number

W = 1

2πi

∮
dkq−1dq, (8)

where q = εk + i	k . The corresponding winding number in
each phase is also shown in Fig. 1.

We first consider the scaling law of Eq. (7) at the critical
point when λc = 1 as a function of the system length N . Near

this critical point, limk→0 ξk = |γ k| and limk→0(1 − ε2
k

ξ 2
k

) = 1,

thus we have the following singular function expansion, which
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FIG. 2. Basic idea of the singular function expansion method.
When the singular function (here 1/ξk , for example) is balanced out
by another much simpler singular function (1/|γ k|), their difference
Lλ(k) is general finite in the whole k space. The simpler singular
function can be used to determine the divergent term and the
corresponding coefficient in GP and FS.

is the key mathematical trick used in this paper:

1

ξk

= χk − Lλ(k), χk = 1

|γ |k . (9)

Here Lλ(0) = 0 and Lλ(k) is always finite in the whole
parameter space (see Fig. 2). The divergent behavior of χk

fully reflects the linear closing and reopening of the energy
gap as a function of k across the critical point. The first term
is the harmonic number and in the large-N limit,

π

M

∑
k>0

1

|γ |k → 1

|γ |
(

1 + 1

N

)
(� − ln 2 + ln N ), (10)

where � = 0.5772 . . . is the Euler-Mascheroni constant. The
remaining part converges very rapidly and in the large-N limit
it can be expressed as an integration in momentum space:

C =
∫ π

0
dk

[
1

ξk

(
1 − ε2

k

ξ 2
k

)
− χk

]
= ln(4|γ |/π ) − 1

|γ | . (11)

Thus the constant term is independent of the system length N .
Collecting all these results together yields

d�g

dλ
|λ=λc

= α1 ln N + β1 + . . . , (12)

where we find analytically that

α1 = 1

|γ | , β1 = � − ln 2

|γ | + ln 4|γ |
|γ | − 1 + ln π

|γ | , (13)

and the next leading term is 1
|γ |

ln N
N

.
In the thermodynamic limit (N → ∞), where the sum-

mation of k can be replaced with an integration over the
momentum space, we try to study the scaling law of the GP
as a function of the deviation δλ = λ − 1 (for λc = +1). We
need a slightly different singular function expansion,

d�g

dλ

∣∣∣∣
N→∞

=
∫ π

0

[(
1

ξk

(
1 − ε2

k

ξ 2
k

)
− χk

)
+ χk

]
dk, (14)

where

χk = 1√
(δλ)2 + (δλ + γ 2)k2

. (15)

This singular function ensures that the first part of Eq. (14) is
always finite when δλ approaches 0. We may verify easily that

lim
δλ→0

lim
k→0

(
1

ξk

(
1 − ε2

k

ξ 2
k

)
− χk

)
= finite. (16)

The second part in the above integral [Eq. (14)] can be
evaluated as∫ π

0
χkdk = − 1

|γ | ln |λ − 1| + ln(2π |γ |)
|γ | + . . . . (17)

The first integral in general cannot be computed analytically,
yet at the critical point (λc = +1), it can be computed exactly
by setting δλ = 0. We find that∫ π

0
dk

(
1

ξk

(
1 − ε2

k

ξ 2
k

)
− χk

)

=
∫ π

0
dk

γ 2 sin2(k)

((1 − cos(k))2 + γ 2 sin2(k))3/2 − 1

|γ |k

= ln 4|γ | − ln π − 1

|γ | . (18)

Gathering all these results together gives d�g

dλ
|N→∞ =

α2 ln |λ − 1| + β2 + . . . , where

α2 = − 1

|γ | , β2 = ln(8γ 2)

|γ | − 1

|γ | , (19)

The next leading term is 3
2|γ |2 (λ − 1) ln |λ − 1|, which should

be important when considering the second-order derivative of
the GP; see the discussion in Sec. IV.

The scaling of the GP along the γ direction at γ = 0 may
also be computed, which we find

d�g

dγ

∣∣∣∣
|λ|<1

= π

M

∑
k>0

γ (λ − cos(k)) sin(k)2

((λ − cos(k))2 + γ 2 sin(k)2)3/2 = 0.

(20)
Note that the geometric phase is a function of γ 2, thus the
first-order derivative of the GP with respect to γ will be
proportional to γ , which will be 0 exactly when γ = 0 at
the phase boundary.

We are also interested in the first-order derivative of the GP
along the phase boundary λ = 1, which is determined as

d�g

dγ
|λ=1 =

∫ π

0

γ ( − 1 + cos(k)) sin(k)2

((1 − cos(k))2 + γ 2 sin(k)2)3/2 dk

= 2|γ |
γ (1 − γ 2)

− 2γ arcsin(
√

γ 2 − 1)

(γ 2 − 1)3/2
. (21)

The above result is finite in the whole parameter regime. We
also find that limγ→0

d�g

dγ
|λ=1 = 2sgn(γ ), which changes sign

across the phase boundary at γ = 0. The phase boundaries at
γ = 0 and |λ| < 1 have similar features. The geometric phase
can be computed exactly in this limit [5,24],

�g = −
∫ π

0

(
1 − λ − cos(k)

|λ − cos(k)|
)

dk = −2 arccos(λ), (22)
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when γ = 0. Thus the first-order derivative of �g along the
phase boundary can be computed as

d�g

dλ
|N→∞ = 2√

1 − λ2
, (23)

which is also finite in the parameter regime λ ∈ (−1,1). In the
above analysis we compute only the geometric phase along the
phase boundary in the thermodynamic limit; the summation
of k in a finite system should also be finite. In this regard, the
α coefficients (see also the discussion below) can be exactly
equal to 0, which is verified to be a rather general conclusion
with the model in Sec. III.

These findings, to the leading terms, are quantitatively
consistent with the numerical results in [24]. We find that
in these two scaling laws, α1 ≡ −α2 exactly. Note that |γ | is
nothing but the slope of the energy gap as a function of k during
the closing and reopening at the critical point (see Fig. 1), thus
α1 and α2 are determined only by the inverse of this slope,
which is the physical meaning of these two constants. This
picture is always correct even for more complicated models
as long as the gap is closed and reopened at the special points
in a linear manner, and the phase transitions may belong to a
different universal class when the gap is closed and reopened in
some different ways. For λc = ±1, the two β constants should
be unique functions of γ and, thus, should be unique functions
of α, and the sign of these β constants depends strongly on
the value of α. Moreover, we also have two intriguing limits
for these constants. When γ → ∞, all four constants will
approach 0 in the manner of 1

|γ | , while at the opposite limit,
γ → 0, these four constants will approach ∞. At both limits,
αi/βi ∼ 1/ ln(γ ), i = 1,2. This can be understood as follows.
When γ → ∞, the contribution of the divergent term should
be very small and the major contribution to the GP comes
from the constant term; however, when γ → 0, the system
approaches a totally different universal class, in which case
the divergent of the constant term β is much faster than the
divergent term, thus these two limits are governed by totally
different physics.

This method can also be applied to study the scaling of FS,
defined as

|〈g(λ)|g(λ + dλ)〉| = 1 − N�F dλ2/2, (24)

across the critical point [32,55]. For model 3, we have

�F = 1

4N

∑
k>0

(
dθk

dλ

)2

= 1

4N

∑
k>0

1

ξ 2
k

(
1 − ε2

k

ξ 2
k

)
. (25)

This expression is quite similar to Eq. (7) except the (γ k)−2

divergence at the critical point; for this reason the singular
function should be chosen as χk = 1

γ 2k2 . Similarly, we first
consider the scaling law as a function of the system length N ,
in which the summation of k gives

1

4N

∑
k>0

1

γ 2k2
= N

96γ 2
− 1

8π2γ 2
+ 1

8π2γ 2N
+ . . . , (26)

thus α′
1 = 1/(96γ 2), and the remaining part gives

1

8π

∫ π

0

[
1

ξ 2
k

(
1 − ε2

k

ξ 2
k

)
− χk

]
dk ≈ 1

8π2γ 2
+ γ 2 − 3

64|γ |3 .

Collecting these results yields

�F |λ=λc
= α′

1N + β ′
1, where β ′

1 = γ 2 − 3

64|γ |3 . (27)

In the thermodynamic limit, the FS as a function of the
deviation δλ = λ − 1 is computed in a similar way with the
singular function χk = 1/(δλ2 + (δλ + γ 2)k2), and we have
the following singular function expansion:

�F = 1

8π

(∫ π

0

[
1

ξ 2
k

(
1 − ε2

k

ξ 2
k

)
− χk

]
dk +

∫ π

0
χkdk

)
.

(28)
The second integral can be computed exactly,

1

8π

∫ π

0
χkdk = tan−1(π

√
λ − 1 + γ 2/(λ − 1))

8π (λ − 1)
√

λ − 1 + γ 2

= α′
2

|λ − 1| − 1

8π2γ 2
− sgn(λ − 1)

32|γ |3 + . . . ,

(29)

where α′
2 = 1/(16|γ |). The first part can also be computed

exactly at the critical point, and finally, we have

β ′
2 = γ 2 − 3

64|γ |3 − 1

32|γ |3 sgn(λ − 1); (30)

thus we find a different scaling law, �F |N→ = α′
2/|λ − 1| +

β ′
2, where β ′

2 has a discontinuous jump across the phase
boundary owing to the appearance of the absolute symbol
in the denominator [56] (see numerical simulation in Fig. 3).
The jump can be extremely large when |γ | is small. This
jump has been ignored in previous numerical simulations due
to its minor role in the divergent behavior of FS when γ is
not small enough and λ − λc approaches 0, thus, differently
from the conclusion in Ref. [57], we conclude that the FS
across the critical point may not have a universal form. Note
that the jump of β ′

2 can be absorbed into the singular function
by assuming α′

2 to be a λ dependent parameter [56], that is,
α′

2 = α′
2(λc) + dα′

2/dλ|λc
(λ − λc). Similarly to the preceding

discussion, we find that these two constants approach 0 when
γ → ∞ and ∞ when γ → 0. From this result we can also
see that the logarithmic divergence in FS is also purely from
the linear closing of the energy gap at the critical point, and
some different scaling laws can be found, for instance, in
the Dicke model [58,59] and Lipkin-Meshkov-Glick model
[60–62], where the gaps are closed and reopened in some
different ways. Thus these coefficients do not directly carry
information on the global topology of the ground-state wave
function.

The coefficients of the divergent terms may be written in a
compact way as

α2 = −α1, α′
1 = 1

96
α2

1, α′
2 = 1

16
|α1|, (31)

which are always correct for a system with the gap closed and
reopened in a linear way at the special points. The latter two
equations also indicate the general relation α′

1 = 8
3 (α′

2)2. Thus
these quantities, although defined in totally different ways,
actually describe the same physics—the slope of the energy
gap as a function of k at the critical point. Besides, from the
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standard scaling ansatz [32,63,64],

�F |λ=λc
∼ N2/ν−D, �F |N→∞ ∼ |λ − λc|Dν−2, (32)

where ν denotes the critical exponent for the coherent length.
For one spatial dimension, D = 1, our analytical results show
the critical exponent ν = 1 exactly. This quantity can also be
obtained from the GP, where ν = |α1/α2| = 1.

We may also compute the FS along the phase boundary.
When λ = 1, we have

�F |λ=1 = 1

4N

∑
k>0

(
dθk

dγ

)2

= sgn(γ )
∫ π

0

(1 − cos(k)) sin(k)

(1 − cos(k))2 + γ 2 sin(k)2

= sgn(γ )
2 ln(|γ |)
γ 2 − 1

, (33)

which is also finite along the phase boundary. Differently from
the GP, this quantity will diverge when the critical point γ = 0
is reached. Similarly, we can also calculate the FS along the
phase boundary at γ = 0 and |λ| < 1, which can be written as

�F |γ=0 = 1

4N

∑
k>0

γ (λ − cos(k)) sin(k)

(λ − cos(k))2 + γ 2 sin(k)2
= 0, (34)

because the phase transition takes place at γ = 0 in the XX
model.

−5 −4 −3 −2 −1
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−1

0

1

2

−1 −0.5 0 0.5 1
−0.06

−0.04

−0.02

0

0.02

0.04

(a)

(b)

FIG. 3. (a) Fidelity susceptibility �F across the critical point in
the XY model for λ < 1 and λ > 1. (b) Jump of β ′

2 in the two phases,
where α′

2 is assumed to be a λ independent constant.

FIG. 4. Scaling laws when approaching the critical point in the
thermodynamic limit (N → ∞, λ = λc) along different directions.
For the red arrows we calculate GP and FS as a function of N and
λ − λc, while for the blue arrows we compute F1 and F2 [defined
in Eq. (35)] where both N and λ are variable parameters, keeping
Nη(λ − λc) a small fixed constant.

These results, together with the GP along the phase
boundaries in Eqs. (21)–(23), yield the basic conclusion that
the GP and FS along the phase boundaries will always be finite,
thus the α coefficients will be nonzero only when two different
phases are crossed. This conclusion will also be examined
carefully in the extended Ising model in Sec. III.

In the above discussion we have investigated the scaling
laws approaching the critical point when either the size N or
the parameter λ − λc is fixed; see the red arrows in Fig. 4. It is
also interesting to investigate the possible scaling laws when
both these parameters are considered variable parameters. We
consider the following two scaling functions:

F1 = dψg

dλ
|λ − dψg

dλ
|λc

, F2 = �F |λ − �F |λc
. (35)

We show that to the leading term these two functions should
be unique functions of Nη(λ − λc), where η is determined in
a very straightforward way. These two scaling functions are
determined only by the divergent term since the constant terms
are independent of N when the system length is large enough
[see the technique first used in Eq. (11), where the summation
is replaced with an integration]. For F1 we find

F1 = 2π
∑

k

1√
dx2 + N2γ 2k2

− 1

N |γ k|

= 2π
∑

k

N |γ k| −
√

dx2 + N2γ 2k2√
dx2 + N2γ 2k2N |γ k|

 −
N∑

n=1

dx2

8n3π2|γ |3  −
∞∑

n=1

dx2

8n3π2|γ |3 , (36)

where dx = N (λ − λc) is treated as a small number and the
Taylor expansion to the leading term is carried out separately
in the numerator and denominator in the third line. Moreover,
the summation of n is extended from N to infinite due to the
fast convergence of the series. We then find analytically that

F1 = −ζ (3)|N (λ − λc)|2
8π2|γ |3 , (37)

where ζ (n) is the zeta function, thus η = 1 exactly. This result
is consistent with the numerical finding in [24] and [57]. The
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second quantity can be computed in the same way, and we find

F2 = N

4

∑
k

1

dx2 + N2γ 2k2
− 1

(N |γ k|)2

 −
∞∑

n=1

Ndx2

64π4γ 4n4
 −|(λ − λc)N3/2|2ζ (4)

64π4|γ |4 . (38)

Thus we have η = 3/2. Let us mention that these results
indicate that both F1 and F2 are unique functions of Nη(λ −
λc)/γ η′

, where η′ = 3/2 for F1 and η′ = 2 for F2.

III. EXTENDED ISING MODEL

For the XY model in Sec. II, the phase transition is
controlled by only a single parameter, λ or γ , and we have
obtained some general conclusions in regarding the phase
transitions across the phase boundaries as well as along the
phase boundaries. Unfortunately we do not find the divergent
behavior across the phase boundary at γ = 0 [see Eq. (20)].
Next we examine the validity of these general relations in a
more general model, which can be captured by the following
extended Ising model [57,62,65–67]:

H = −
M∑

j=−M

(
λ1σ

x
j σ x

j+1 + λ2σ
x
j−1σ

z
j σ x

j+1 + σ z
j

)
. (39)

This model can also be solved exactly using the same method
discussed in Sec. II. In the single-particle picture [Eq. (3)] the
three-site interaction is equivalent to the next-nearest-neighbor
hopping and pairing determined by λ2, thus we have

	k =
2∑

n=1

λn sin(nk), εk = 1 −
2∑

n=1

λn cos(nk). (40)

The closing of the energy gap determined by 	k = 0 and εk =
0 simultaneously yields the following three phase boundaries:

Line AC: k0 = 0, 1 − λ1 − λ2 = 0; (41)

Line AB: k0 = π, 1 + λ1 − λ2 = 0; (42)

Line BC: k0 = cos−1

(
λ1

2

)
, λ2 = −1, |λ1| < 2. (43)

The corresponding phase diagram is presented in Fig. 5. In
this model the phase with a large winding number is allowed,
which has been reported by Niu et al. [65] to host multiple
Majorana fermions in an open chain when W = 2.

Due to the presence of two parameters in determining
the phase boundaries, the divergence of GP and FS depends
strongly on how and along which direction the critical
boundary is crossed. Consider a line across the boundary
AC along the θ direction (see point D in Fig. 5), with the
dashed line assumed to be λ2 = tan(θ )λ1 + d Then we find
the coordinate of D = ( 1−d

1+tan(θ) ,
d+tan(θ)
1+tan(θ) ). With the previous

method we have (α2 > 0)

α2 = −α1 = + |1 + tan(θ )|
|1 + d + 2 tan(θ )| , (44)

from which we see that α2 = −α1 = ∞ when tan(θ ) =
− d+1

2 and α2 = −α1 = 0 when along the phase boundary

+1

+1

-1

-1

A

B C

O

D

FIG. 5. Phase diagram of the extended Ising model. The different
phases are distinguished by the winding number W . Conditions for
the phase boundaries determined by the gap closing and reopening
are shown in Eqs. (41) to (43).

(θ = −π/4 or 3π/4), since no phases are crossed. When
θ = π/2, we have α2 = −α1 ≡ 1

2 , which is independent of
the other parameters. The other two coefficients can also be
defined straightforwardly using Eq. (31). The constants β1

and β2 in this extended model can no longer be computed
analytically, however, they can still be computed exactly with
the technique in Eq. (11) using numerical methods.

Along the boundary BC, we find

dψg

dλ1
= −π (1 + λ2)

M

∑
k>0

(λ1 + 2λ2 cos(k)) sin(k)2

ε2
k + |	k|2

(45)

and

�F |λ1 = (1 + λ2)2

4N

∑
k>0

sin(k)2

ε2
k + |	k|2

. (46)

In the above two equations we find that when λ2 = −1, their
results are exactly equal to 0. Thus we find that the conclusions
about the GP and FS along the phase boundaries obtained in
the XY model (see Sec. II) are also true in this general model;
that is, the coefficients of the divergent terms are exactly equal
to 0, and the GP and FS are always finite.

We next point out that the scaling laws as a function of
N across the phase boundary BC along the λ2 direction is
broken down since the gap is not closed and reopened at special
points. A typical result for the GP and FS is presented in
Fig. 6, in which we find that at some “magic point” when
k = 2πn/N → k0, a “pulse” in these two quantities can be
found. This is different from the previous model, where the
critical point at k0 = 0 or k0 = π is not sampled during the
summation of k. The analogous features can also be found in
other extended models [57,62,66,67] if 	k and εk in the BdG
equation can equal 0 simultaneously. The breakdown of this
scaling law also indicates the failure of Eq. (32) and the scaling
of F1 and F2 in Eq. (35).
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FIG. 6. Breakdown of scaling laws for (a) d�g

dλ2
and (b) �F |λ2 as a

function of the system length N across the boundary BC. We set λ1 =√
5

2 + 2
5 to avoid the singular point k0. The solid line is α1 ln(N ) + β1

in (a) and α′
1N + β ′

2 in (b), where α1 = | sin(k0)| and α′
1 = 1

192 are
determined using the singular function expansion method. The two
β constants are fitted using the lowest bound of the data.

However, similar scaling laws can still be found as a
function of the deviation δλ = λ2 + 1 (line BC). In the vicinity
of k0 the gap can be approximated as

ξ 2
k ≈ a + b(k − k0) + c(k − k0)2, (47)

where c = 2 − 2 cos(2k0), b = 2δλ sin(2k0), and a = δλ2,
with cos(k0) = λ1/2 and b2 − 4ac < 0 for ∀ k when δλ �= 0.
This series expansion is different from the previous ones due to
the appearance of the linear term b. Note that when k0 = 0 or π ,
the contribution of the numerator in the integral is always equal
to 1; however, here the numerator then becomes important, and
the singular function should be chosen as χk = sin2(k0)

ξk
for the

GP and χk = sin2(k0)
ξ 2
k

for the FS. Thus the final coefficients αi

are no longer purely determined by the slope c. With these
singular functions we find

d�g

dλ2
= α2 ln |λ2 + 1| + β2, (48)

�F |λ2 = α′
2

|λ2 + 1| + β ′
2, (49)

where

α2 = − 2√
4 − λ2

1

, (50)

α′
2 =

π/2 − arctan
(
λ1/

√
4 − λ2

1

)
8π

. (51)

The intimate relations in Eq. (31) due to the contribution of the
numerator at nonspecial k0 are no longer true. Nevertheless,
we still find that α2 and α′

2 are closed related by the following
identity due to the same origin of divergence as discussed
before:

α2 = − 1

| sin(8πα′
2)| . (52)

The above result is correct only when λ1 is not very close to
±2 (points B and C in Fig. 6), in which case some of the
constants may approach ∞.

IV. DISCUSSION AND CONCLUSION

Here a general method to obtain the exact scaling laws
for the GP and FS across the quantum phase transitions is
presented. These scaling laws are independent of the choice of
singular functions χk , since for different singular functions (for
instance, χk → χk + fk , where fk is finite in the momentum
space), their divergent behavior near the critical points which
determine the scaling laws is exactly the same. Moreover, this
method can be applied not only to the first-order derivative
of the GP but also to their higher-order derivatives across the
critical point. For instance, for Eq. (1),

d2�g

dλ2
|λ=1 = − 3

2|γ |3 ln N + β3, (53)

with β3 = 3(ln π
|γ | −(�+3 ln 2−4))

2|γ |3 − 1
2|γ | + . . . , which has the same

form as d�g

dλ
|λ=1. However, for the deviation δλ = λ − 1 in

the thermodynamic limit, it takes another intriguing form after
singular function expansion,

d2�g

dλ2
|N→∞ = − 1

|γ |(λ − 1)
+ 3 ln(|λ − 1|)

2|γ |3 + β ′
3, (54)

where β ′
3 = (3 ln π2

2 + 4)/(2|γ |3) − 1/(2|γ |). The two singu-
lar functions in Eq. (54) arise from the derivative of the leading
term, ln |λ − 1|, and the next leading term, 3

2|γ |2 (λ − 1) ln(|λ −
1|). The jump of constant β ′

3 is absent [56] due to the lack
of an absolute symbol in denominator. We therefore see that
although the first-order derivative of the GP as a function of the
system length N and deviation δλ have the same logarithmic
divergence, their second-order derivatives take some totally
different forms.

The second-order derivative of the GP can be used to
calculate the scaling laws across the phase boundary at γ = 0
in the XY model (see Fig. 1). We note that the GP in Eq. (21) is
a function of γ 2 and the phase transition between W = 1 and
W = −1 takes place at γ = 0, thus the first-order derivative
of GP, proportional to γ , should be exactly equal to 0. This
is different from the extended Ising model, in which the
first-order derivative of GP already exhibits divergent behavior.
To this end, we compute

d2�g

dγ 2

∣∣∣∣
|λ|<1

=
∫ π

0

(
2γ 2 sin(k)2 − ε2

k

)
εk sin(k)2

(
γ 2 sin(k)2 + ε2

k

)5/2
dk, (55)

where εk = λ − cos(k) [see Eq. (3)]. When γ = 0, the
singular point takes place at k0 = arccos(λ) in the
form of sin(k)2(λ − cos(k))3/|λ − cos(k)|5 = sin(k)2sgn(λ −
cos(k))/(λ − cos(k))2 when |λ| < 1. This singular point is
removed by the γ term. To compute the scaling law of the
above equation with respect to γ , we define the singular
function using the method in Eq. (47) as

χk = sin(k0)2

a + b(k − k0) + c(k − k0)2
, (56)

where a = γ 2(1 − λ2), b = 2γ 2λ(1 − λ), and c = 1 − λ2 −
γ 2 + 2γ 2λ2. We may check that b2 − 4ac = −4γ 2(1 −
γ 2)(1 − λ2)2 < 0, thus this singular function will always be
well defined when γ �= 0. Then the above result can be
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written as

d2�g

dγ 2
||λ|<1 = −

∫ k0

0
χkdk +

∫ π

k0

χkdk + const. = α4

|γ | + β4,

(57)

where

α4 =
arctan

(
b−2ck0√
4ac−b2

) + arctan
(

b+2c(π−k0)√
4ac−b2

)
√

1 − λ2

−
2 arctan

(
b√

4ac−b2

)
√

1 − λ2
. (58)

The corresponding constant β4 needs to be com-
puted numerically; see our numerical simulation in
Fig. 7.

These results also reveal a close relation between the con-
stants β and α, and in the simplest XY model, β can be a unique
function of α. Their relations are derived exactly in this paper;
they have not been considered in previous literature [5,25,57].
It is quite possible that the β constants may also reveal
some important properties of the system during the quantum
phase transitions. We, finally, emphasize that this method is
powerful and can also be adapted to study the scaling laws
of entanglement [55,68–73], quantum discord and correlation
[74–76], and geometric Euler number [63,77,78] across the
quantum critical points and study relations, which will be
investigated in future. These exact results can greatly enrich

−0.01 −0.005 0 0.005 0.01

−10

−8

−6

−4

FIG. 7. Second-order derivative of GP as a function of γ for the
XY model with λ = 0.5. The solid red line and open blue symbol
represent the results from exact numerical integration and singular
function expansion, respectively.

our understanding of the GP and FS in the characterization of
quantum phase transitions.
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