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Entanglement in macroscopic systems
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We present a theoretical study of entanglement in ensembles consisting of an arbitrary number of particles.
Multipartite entanglement criteria in terms of observables are formulated for a fixed number of particles as well as
for systems with a fluctuating particle number. To access the quality of the verified entanglement, the operational
measure of the entanglement visibility is introduced. As an example, we perform an analytical characterization
of quantum systems composed of interacting harmonic oscillators and witness the entanglement via energy
measurements. Our analysis shows that the detectable entanglement decays for macroscopic particle numbers
without the need for decoherence processes and for all considered coupling regimes. We further study thermal
states of the given correlated system together with the temperature dependence of entanglement.
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I. INTRODUCTION

In the early days of quantum physics, entanglement was
one of the new concepts that enriched the scientific dispute
which addressed the question of whether or not quantum
theory could be a valid description of nature [1,2]. Since those
days, entanglement has been a subject of many studies in
mathematical and applied physics. In particular, the question
of nonlocality has been considered to falsify classical local-
hidden-variable models of quantum physics [3–5], which has
been demonstrated in pioneering experiments [6,7] and recent
loophole-free implementations [8–10]. Nowadays, quantum
properties of systems are no longer limited to purely aca-
demic investigations [11]. Rather they serve as resources
for quantum technologies, such as quantum computation and
communication [12–14]. In addition, entanglement has shown
its usefulness in metrology [15–18], and unexpected relations
to other fields of physics are currently explored; see, e.g.,
Refs. [19,20].

The phenomenon of entanglement requires at least two
systems which are quantum correlated—i.e., they are not
separable. Yet, the richness and complexity of inseparability
is only truly recognizable if a manifold of individual particles
is jointly considered [21–25]. The number of different forms
of multipartite entanglement rapidly increases with the size
of the system and, therefore, the computational effort to treat
entangled many-body quantum systems [26,27]. In particular,
a collection of a macroscopic number of particles seems to
go beyond the scope of current methods to characterize them.
Nonetheless, some theoretical and experimental approaches
tackle such sophisticated problems [25,27–34].

In addition to the many-particle approach studied in this
work, other macroscopic properties of inseparable systems
have been investigated [35]. For example, one can consider
large distances between or high masses of entangled systems
[36,37], or one infers entanglement at high temperatures
[38,39]. The latter relation inspired the idea to relate entan-
glement with thermodynamics [40–43]. This includes investi-
gations of phase transitions [44,45] and energy differences that
arise from quantum correlations [29,46]. Moreover, a method
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has been recently introduced which connects a defined notation
of macroscopicity to the geometric entanglement of the
system [47]. In addition, coarse graining of measurements has
been identified as one source which diminishes entanglement
between two macroscopic ensembles [48–52].

Along with entanglement, other measures of quantumness
have been investigated to characterize the classical or quantum
origin of correlations; see Ref. [53] for a review. Quantum
correlations beyond entanglement have sometimes a higher
importance for applications in quantum information [54]
and quantum optics [55,56]. Also, it has been shown that
the structural properties of entanglement are more important
resources for quantum computation than its magnitude [57,58].

The vast number of studies also demonstrates that en-
tanglement becomes increasingly relevant for different areas
of physics. However, the detection of this quantum property
remains a cumbersome task. Among the manifold of proposed
entanglement probes [59], the entanglement witness approach
is one of the best established ones [60,61]; see also Ref. [62]
for an early experimental application to multipartite systems.
The construction and optimization of such witnesses has been
intensively studied, e.g., in Refs. [63–67]. The witnessing
method also allows for the formulation of Bell-like entan-
glement tests [68]. In Ref. [29], we introduced a systematic
technique to formulate multipartite entanglement witnesses.
The experimental application gave a deeper insight into the
complex structure of multimode light fields [25,27].

In this work, we consider the problem of detecting entan-
glement in systems with a macroscopic particle number. We
formulate general methods to witness multipartite entangle-
ment and apply them to a system that consists of interacting
harmonic oscillators, including full analytical results. In the
first step, we analyze entanglement in systems with an
arbitrarily large but fixed number of particles. Beyond that,
we characterize entanglement in systems which can have a
fluctuating number of particles in a second step. Especially
for the latter case, we derive an approach that allows for the
construction of entanglement tests.

This work is organized as follows. In Sec. II, we recapitulate
a technique for detecting entanglement which is applied to
the case of fixed particle numbers. This section also includes
the introduction of the notion of a separable spectrum of
an operator and the entanglement visibility. An ensemble
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of a fixed number of interacting particles is characterized
in Sec. III. Starting from a detailed analysis of the bipartite
scenario, we characterize full and partial entanglement as a
function of the particle number and the coupling strength.
In Sec. IV, we construct a method to verify entanglement
in ensembles which have a random particle number using
the Fock-space formalism. It is particularly applied to study
the temperature dependence of entanglement in the given,
correlated system. We conclude in Sec. V.

II. PRELIMINARIES

In this section, we present the basic concepts used.
Previously formulated entanglement criteria are described
in Sec. II A. The operational measure of entanglement is
introduced in Sec. II B. Eventually, the considered physical
model is discussed in Sec. II C.

A. Entanglement detection

We consider an N -fold tensor-product Hilbert space H⊗N

for a system of N particles. We suppose that all individual
particles are described by (or embedded into) a continuous-
variable Hilbert space H. A pure, fully separable state is a
normalized tensor-product vector,

|ψ (sep)〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉. (1)

Mixed, fully separable states ρ̂(sep) are a convex combination
of those pure ones [69],

ρ̂(sep) =
∫

dP (ψ (sep))|ψ (sep)〉〈ψ (sep)|, (2)

with P being a probability distribution over the set of
pure states (1). Full separability serves—for most parts of
this work—as our fundamental reference for a classically
correlated system since any other form of partial entanglement
necessarily excludes full separability.

Independently of the form of multipartite entanglement,
witnesses can be used to verify such quantum correlations
[60,61]. The construction of witnesses can be done in several
ways; see, e.g., Refs. [63–66]. The approach we pursue is
based on the so-called separability eigenvalue problem [29],
which is described in the following.

A state ρ̂ is entangled if and only if there exists a Hermitian
operator L̂ such that

〈L̂〉ρ̂ < λ(sep)
min , (3)

where λ
(sep)
min denotes the minimal expectation value that can

be attained for a separable state [29,64]. We can assume that
L̂ is a positive semidefinite operator [66]. The left-hand side
of inequality (3) relates to the measurement that is conducted
in an experiment. The right-hand side, however, has to be
obtained from theory.

For determining λ
(sep)
min , we introduced the separability

eigenvalue equations [29],

L̂ψ1,...,ψj−1,ψj+1,...,ψN
|ψj 〉 = λ(sep)|ψj 〉, (4)

for all 1 � j � N and partially reduced operators
L̂ψ1,...,ψj−1,ψj+1,...,ψN

, which are defined as

L̂ψ1,...,ψj−1,ψj+1,...,ψN

= tr1 · · · trj−1trj+1 · · · trN

[
L̂

(
j−1⊗
i=1

(|ψi〉〈ψi |) ⊗ 1̂

⊗
N⊗

i=j+1

(|ψi〉〈ψi |)
⎞
⎠
⎤
⎦, (5)

where 1̂ is the identity operator of the single-particle space
H. The operator (5) is a function of the N − 1 states |ψi〉
(i �= j ), which is indicated by its index, and it maps the j th
single-particle state |ψj 〉 ∈ H to an element of H, which is
used to formulate the separability eigenvalue equations (4)
[70]. In addition, the value λ(sep) in Eq. (4) is referred to as
the separability eigenvalue, and the normalized product vector
|ψ (sep)〉 = ⊗N

i=1 |ψi〉 is the separability eigenvector.
We can define the separable spectrum, which is the set of

all separability eigenvalues,

σ (sep)(L̂) = {λ(sep) : λ(sep) solves (4)}. (6)

It is similar to the concept of a spectrum σ (L̂) for the standard
eigenvalue problem L̂|ψ〉 = λ|ψ〉. The desired minimal bound
λ

(sep)
min in the entanglement condition (3) is the minimal

separability eigenvalue λ(sep) [29], i.e., the minimum of the
separable spectrum,

λ(sep)
min = min σ (sep)(L̂). (7)

The method of separability eigenvalue equations has been
used—beyond its experimental application [25,27,71]—to
characterize the emission of semiconductor structures [72,73],
to formulate entanglement quasiprobabilities [74–76], and to
classify quantum channels [77].

B. Entanglement visibility

In order to access the quality of the verified entanglement in
terms of inequality (3), we define the entanglement visibility
for a state ρ̂ as

V (ent) = λ
(sep)
min − 〈L̂〉ρ̂

λ
(sep)
min + 〈L̂〉ρ̂

. (8)

The nominator directly relates to our entanglement criterion
(3), and it is invariant under positive scaling and translation
transformations of the operator L̂ [78]. The quantity V (ent)

resembles the visibility or contrast as it is used in optics.
The larger the value V (ent) > 0, the more significant is the
entanglement verification in terms of L̂, whose expectation
value is then sufficiently well separated from the bound
λ

(sep)
min ; cf. inequality (3). A value close to zero indicates

that the resolution of a detection device, measuring 〈L̂〉ρ̂ , is
not sufficient to significantly verify entanglement. In addition,
V (ent) � 0 means that no entanglement could be detected via
the observable L̂.

The quantity V (ent) serves as an operational measure of
entanglement [79]; i.e., an unsuccessful test (V (ent) � 0) does
not imply separability since another choice of L̂ might identify
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entanglement. Its operational meaning relates to a specific,
performed measurement of the observable L̂. Yet, if one
maximizes this contrast over the operators L̂, then V (ent) can
be related to witness-based entanglement monotones [80,81].
The here-defined entanglement visibility has been recently
applied to characterize the emission of entangled light from
a microcavity in an optical resonator pumped by a frequency
comb [82].

The observable L̂ can detect entanglement via condition
(3) if and only if the eigenspace to the minimal eigenvalue
contains no separable state [83]. Suppose λmin = min σ (L̂)
is the minimal standard eigenvalue of L̂. Then λmin < λ

(sep)
min

is required to ensure that inequality (3) can be satisfied in
principle. We can also conclude that the maximal visibility (8)
is attained for states which are eigenvectors to the minimal
eigenvalue,

V (ent)
max = max

ρ̂
{V (ent)} = λ

(sep)
min − λmin

λ
(sep)
min + λmin

� V (ent), (9)

because the expectation value of L̂ is λmin for those states and
V (ent) decreases for increasing expectation values.

C. System of interacting oscillators

Now, we introduce our physical model that is particularly
characterized in this work (see Fig. 1). We consider a system
of N particles with identical masses m which propagate
in an external, one-dimensional potential V (x). A second-
order expansion of the potential around a minimum (x =
0) yields a quadratic function, V (x) ∝ x2. In addition, all
particles interact pairwise with each other. The strength of
this interaction depends on the distance between the particles,
|xi − xj |. In first-order approximation, this gives a linear force
and a quadratic interaction contribution to the energy.

In conclusion, the N -particle Hamiltonian of the considered
system reads

Ĥ =
N∑

i=1

(
− h̄2∂2

xi

2m
+ m�2x2

i

2

)
+ κ

4

N∑
i,j=1

(xi − xj )2. (10)

Here κ � 0 is the coupling constant and � is the eigen-
frequency of the external potential. The first sum in this
Hamiltonian presents the local Hamiltonian for each individ-
ual particle. The second sum describes the interaction part

FIG. 1. Schematic sketch of the model for N = 3 particles (A,
B, and C). They are trapped in an external potential V (x) ∝ x2. Each
of the particles interacts with any other (dashed arrows), which is
described with a force Fj→i = −κ(xi − xj ), which acts on particle i

due to the influence of particle j (i,j ∈ {A,B,C}).

between the particles, which induces the entanglement as we
demonstrate; see also Ref. [84].

To quantify the relative interaction strength, we can intro-
duce the ratio R between the interaction parameter κ and the
coupling m�2 to the external potential,

R = κ

m�2
� 0. (11)

A value R = 0 corresponds to a noninteracting system. The
region R 	 1 (i.e., a value close to zero) defines the weak-
coupling regime. The balanced and strong-coupling cases are
represented by R ≈ 1 and R � 1, respectively.

In addition, in our system of coupled harmonic oscillators
(10), some characteristic dimensions emerge for the position
x, the energy E , and—for Sec. IV—the temperature T . Those
basic units of the system are

ux =
√

h̄

m�
, uE = h̄�, uT = uE

k
, (12)

where k denotes the Boltzmann constant. These units serve as
our scaling parameters throughout this work.

It is also worth mentioning that the given system consists
of N distinguishable particles. Entanglement in systems of
indistinguishable particles can be also treated [85]. We derived
the corresponding entanglement conditions together with a
modified version of the separability eigenvalue equations,
which takes the exchange symmetry of bosons and fermions
into account, and compared the resulting forms of entangle-
ment [86]. Hence, for our fundamental studies in this work, it
is sufficient to focus on the case of distinguishable particles.

III. ENTANGLEMENT FOR FIXED NUMBERS
OF PARTICLES

In this section, we use the introduced methods to charac-
terize the system under study. We start with a two-particle
entanglement in Sec. III A. In Sec. III B, we then analyze
the entanglement in the many-particle case. In addition, we
consider partial entanglement in Sec. III C.

A. Two-particle entanglement

In this first step, we characterize the entanglement of
the bipartite system, N = 2, which gives some first hints
towards the multipartite entanglement properties. Here, the
subsystems are labeled as A and B. We apply the entanglement
condition (3) using the Hamiltonian (10), L̂ = Ĥ , by solving
the separability eigenvalue equations (4) for this observable
(Appendix B).

Let us recall some properties of a noninteracting system,
which can be described by a vanishing coupling ratio (11),
R = 0. The time-independent Schrödinger equation—the
eigenvalue problem Ĥ |ψ〉 = E |ψ〉—of the Hamiltonian (10)
can be solved in that case by separation of variables. The
eigenstates are products of Hermite functions h(n),

ψ (R=0)(xA,xB) = h(nA)

(
xA

ux

)
h(nB )

(
xB

ux

)
, (13)

and the eigenvalues are given by the sum

E (R=0) = h̄�
(
nA + 1

2

) + h̄�
(
nB + 1

2

)
, (14)
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for nA,nB ∈ N and using the unit ux in Eq. (12); cf. also
Appendix A. Without interaction, the total system is an
uncorrelated ensemble of two particles.

For interacting particles, R > 0, we get the general, exact
solutions in Appendix B. The eigenfunctions and eigenvalues
take the forms

ψ(xA,xB) = h(n‖)

(
xA + xB√

2ux

)
h(n⊥)

(
4
√

1 + 2RxA − xB√
2ux

)
,

(15)

where n‖,n⊥ ∈ N, and

E = h̄�
(
n‖ + 1

2

) + h̄�
√

1 + 2R
(
n⊥ + 1

2

)
, (16)

respectively. The index “‖” or “⊥” label the contribution
which is parallel or perpendicular to (1,1)T in the xA−xB

plane, respectively. In contrast to these solutions of the
standard eigenvalue problem, the separability eigenfunctions
and separability eigenvalues are

ψ (sep)(xA,xB) = ψA(xA)ψB(xB)

= h(nA)

(
4
√

1 + RxA

ux

)
h(nB )

(
4
√

1 + RxB

ux

)
(17)

and

E (sep) = h̄�
√

1 + R
(
nA+ 1

2

) + h̄�
√

1 + R
(
nB+ 1

2

)
, (18)

respectively (Appendix B). Note that the separability eigen-
states (17) and eigenvalues (18) are not simply the solutions
in Eqs. (13) and (14) for the uncorrelated case.

In Fig. 2, eigenfunctions (15) and separability eigenfunc-
tions (17) are compared in the balanced interaction regime,
R ≈ 1. The correlations between the subsystems A and
B are visible for the standard eigenstates (Fig. 2, left),
because the symmetry axes are parallel and perpendicular

to (1,1)T—the diagonal direction in the xA−xB plane. In
contrast, the separability eigenfunctions (Fig. 2, right) have
the symmetry axes xA and xB , which is a result of their
product structure [Eq. (17)]. Moreover, the entangled states
(15) are antisqueezed and squeezed in the directions parallel
and perpendicular to (1,1)T, respectively, in comparison with
their separable counterparts (17); see the scaling of their
arguments, 1 � 4

√
1 + R � 4

√
1 + 2R. The Gaussian wave

functions with the lowest energies, n‖ = 0 = n⊥ and nA =
0 = nB , are the Einstein-Podolsky-Rosen-entangled ground
state and the uncorrelated “separable ground state”.

In addition, we plotted the first elements of the energy
spectrum σ (Ĥ ) and the separable energy spectrum σ (sep)(Ĥ )
[cf. Eq. (6)] in Fig. 3. The standard energy levels (left)
are smaller in terms of absolute values and have a smaller
difference between them when comparing with the case of
separability (right). In both cases, entanglement and separa-
bility, the energy from the interaction, R > 0, leads to an
increase of the ground-state energy compared to the case
R = 0 (dashed lines). The difference of the energies of the
ground state and the separability ground state is negative,
	E = Emin − E (sep)

min < 0. This means that entanglement relates
to a diminished ground-state energy of |	E |, which is the basis
of the entanglement criterion (3) applied to the Hamiltonian.

Let us now quantify the entanglement of the system in terms
of the entanglement visibility (8), which is maximized for the
entangled ground state,

V (ent)
max =

√
1 + R − 1

2 (1 + √
1 + 2R)√

1 + R + 1
2 (1 + √

1 + 2R)
, (19)

and shown in Fig. 4. From ∂RV (ent)
max > 0 it follows

that this visibility is a monotonically increasing function
with the minimum V (ent)

max = 0 for R = 0. For a weak coupling,
the entanglement visibility is quite small, which means that
the employed device to measure the energy has to be able

FIG. 2. Left: First four eigenstates (15) of the time-independent Schrödinger equation. The entanglement of those states is directly
highlighted by the symmetries along the diagonal and antidiagonal axes. Right: First four separability eigenstates (17) of the solutions of the
separability eigenvalue problem of the Hamiltonian Ĥ . Those product states exhibit a symmetric behavior with respect to the horizontal and
vertical axes. In both cases, we use a coupling ratio R = 1.5.
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FIG. 3. Energy scheme for a balanced interaction scenario, R =
1.5 (entanglement left and separability right). For comparison, the
energy spectrum without interaction, R = 0, is also depicted (dashed
lines).

to resolve small energy differences 	E to significantly verify
entanglement. Let us stress that the operational meaning of
V (ent) is based here on the measurement of the total energy,
which is given by the two-particle Hamiltonian in Eq. (10) for
N = 2. Finally, for diverging interaction rations, we approach
limR→∞ V (ent)

max = 3 − 2
√

2 in Fig. 4.

B. Macroscopic entanglement

Now, we consider arbitrary particle numbers N . From
Appendix B, we get the separability eigenvalues

E (sep) = h̄�
√

1 + (N − 1)R
N∑

j=1

(
nj + 1

2

)
, (20)

FIG. 4. The maximal entanglement visibility V (ent)
max as a function

of the interaction strength R. Entanglement is verified, V (ent)
max > 0, for

allR > 0. The dashed lines depict the limits forR → 0 andR → ∞.

FIG. 5. The visibility V (ent)
max [Eq. (22)] is shown as a function of

the number of particles, 1 � N � 1000. Strong (R = 10, top, blue
line), balanced (R = 1, middle, dark gray line), and weak (R = 0.1,
bottom, orange line) interaction scenarios are depicted. Additionally,
the curves are individually plotted in the insets. V (ent)

max for the optimal
particle number (23) is shown as a dashed, light gray line.

where nj is the excitation number of the j th mode, as well as
the (standard) eigenvalues

E = h̄�

(
n‖+1

2

)
+h̄�

√
1+NR

N−1∑
i=1

(
ni,⊥+1

2

)
, (21)

where the integers n‖ denote the excitations along the axis
(1, . . . ,1)T and ni,⊥ are the excitations of the N − 1 perpen-
dicular directions to the axis (1, . . . ,1)T of the multimode
position space (x1, . . . ,xN )T.

The resulting maximal entanglement visibility of the
ground state (n‖ = 0 and ni,⊥ = 0 for all i) of the Hamiltonian
(10) is given by

V (sep)
max = N

√
1+(N−1)R−(

1+(N−1)
√

1+NR
)

N
√

1+(N−1)R+(
1+(N−1)

√
1+NR

) . (22)

It is worth pointing out that the minimal energy (21) and
the minimal energy for separable states (20) have the same
asymptotic and diverging behavior, (h̄�/2)N

√
1 + NR for

N � 1. In Fig. 5, we show this visibility for different
interaction scenarios as a function of the number of particles.
We study the strong interaction, R � 1, weak interaction,
R 	 1, and balanced interaction regime, R ≈ 1. Note that
noninteger N values are interpolated by directly inserting those
numbers into formula (22). This point is discussed in more
detail in Sec. IV.

One can see in Fig. 5 that a stronger coupling yields a higher
entanglement visibility. That is, curves for larger R values are
above those for smaller ones. Yet, the distributions for smaller
R have a larger width than those for stronger coupling (insets
in Fig. 5). This means that the visible entanglement for weak
coupling is less vulnerable to a change of the particle number.
In the noninteracting limit, we get limR→0 V (ent)

max = 0 as the
ground state becomes factorizable. Also, even for an infinite
interaction strength the entanglement visibility is bounded,
limR→∞ V (ent)

max = (
√

N − √
N − 1)2.

062116-5



J. SPERLING AND I. A. WALMSLEY PHYSICAL REVIEW A 95, 062116 (2017)

In addition, one can optimize the entanglement visibility
over the number of particles for a given coupling ratio R.
From 0 = ∂NV (ent)

max and after some standard algebra, we get
three solutions. The one which is physical is

Nopt = 1 + 2R + √
5 + 4R

2R . (23)

Hence, we can predict the number of particles for a given
interaction strength which yields an optimal entanglement
visibility (dashed curve in Fig. 5).

Further on, we observe—independently of the coupling
regime—a decay of the entanglement visibility to zero in the
limit of a macroscopic particle number,

lim
N→∞

V (ent)
max = 0; (24)

cf. also Fig. 5. This means that no entanglement can be detected
with our energy measurement in this limit. Let us emphasize
the following two facts. First, for all finite N values, the
visibility is greater than zero, which proves that entanglement
is present. Second, the decay of observable entanglement in
the macroscopic limit [Eq. (24)] happens without the need for
employing an additional decoherence mechanism [87,88].

C. Partial entanglement

In addition, let us also consider partial entanglement for
a system consisting of N particles. One can collect those
particles in K subsystems, which consist of Nj particles for
j = 1, . . . ,K . A pure, partially separable state takes the form

|ψ (N1,...,NK )〉 = ∣∣ψ (N1)
1

〉 ⊗ · · · ⊗ ∣∣ψ (Nk)
K

〉
, (25)

where |ψ (Nj )
j 〉 ∈ H⊗Nj is an arbitrary state in the j th, Nj -

particle subsystem. Mixed, partially separable states are
elements of the convex hull of pure state density operators,
|ψ (N1,...,NK )〉〈ψ (N1,...,NK )|—similarly to the case of full separa-
bility in Eq. (2).

The minimal energy for such a K partition is given by

E (N1,...,NK )
min = h̄�

2

K∑
j=1

√
1 + (N − Nj )R

+ h̄�

2

K∑
j=1

(Nj − 1)
√

1 + NR; (26)

see Appendix B. Figure 6 shows the maximal entanglement
visibility for partial entanglement,

V (K)
max = E (N1,...,NK )

min − Emin

E (N1,...,NK )
min + Emin

, (27)

for N = 1024 particles. The bipartition (K = 2), consisting of
512 particles in each subensemble, has the smallest visibility.
The highest value is attained for the full partition, K = 1024.
This results from the fact that a splitting of a given K partition
into a finer one, which increases K , implies that an inseparable
state in the original partition is also entangled in the finer
one [24]. This proof of principle shows that we are able
to infer partial entanglement beyond bipartitions and full
inseparability.

FIG. 6. Maximal entanglement visibility (26) for a balanced
coupling (R = 1), N = 210 particles, and a K partition with N1 =
· · · = NK = N/K .

IV. ENTANGLEMENT FOR UNKNOWN
PARTICLE NUMBERS

From the practical point of view, one cannot truly distin-
guish, for example, the case of N from the case of N ± 1
particles for N � 1. Thus, in order to consider a system with
such an unknown number of particles, we have to go beyond the
restriction of fixed particle numbers. In general, a consistent
quantum description of systems with an arbitrary number
of particles is given in terms of Fock spaces—representing
the second quantization. An introduction to entanglement
in this second quantization can be found in Ref. [89], and
a comprehensive comparison between the first and second
quantization (for light fields) is conducted in Ref. [90].

Let us emphasize some differences of our approach
to typically assumed scenarios. The treatment of a fixed
number of partitions is the traditional ansatz when studying
entanglement. Also, in the second quantization, one typically
considers entanglement between two or more ensembles of
different kinds of particles. Or, as it is done in quantum optics,
the entanglement is determined between multiple distinct
optical modes, which consists of an arbitrary number of
photons per mode. By contrast, we study the entanglement
of particles within one ensemble to characterize the quantum
correlations.

In Sec. IV A, we briefly recall the quantum physical
formalism of the second quantization. A method to construct
entanglement criteria is derived in Sec. IV B. Finally, we apply
this technique to thermal states in the system of interacting
oscillators under study in Sec. IV C.

A. Second quantization

Let us start with a brief recapitulation of the standard
technique to describe many-particle spaces mathematically.
The Fock space H is defined as the direct sum of all individual
N -particle spaces,

H =
∞⊕

N=0

H⊗N. (28)
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In general, we use the boldface notation when addressing
quantities in this Fock space. A pure state in the Fock space,
|ψ〉 ∈ H, is the direct sum of the unnormalized N -particle
states |ψ (N)〉 ∈ H⊗N . One writes this direct sum in the vector
form

|ψ〉 =

⎛
⎜⎜⎜⎝

|ψ (0)〉
|ψ (1)〉
|ψ (2)〉

...

⎞
⎟⎟⎟⎠. (29)

Here, |ψ (N)〉 represents the N -particle state or, equivalently,
the N -particle wave function, ψ (N)(x1, . . . ,xN ). It is worth
mentioning that the zero-particle component is a complex
number, |ψ (0)〉 = ψ (0) ∈ C = H⊗0, and is referred to as the
vacuum contribution. The probability pN to have N particles
is given by the squared norm of the N -particle component,

pN = 〈ψ (N)|ψ (N)〉 � 0. (30)

The overall normalization of the state reads

〈ψ|ψ〉 =
∞∑

N=0

〈ψ (N)|ψ (N)〉 =
∞∑

N=0

pN = 1. (31)

A linear operator L̂ : H → H is described through its
components L̂(M,N), which map an M-particle state to an
N -particle state,

L̂ =

⎛
⎜⎜⎜⎝

L̂(0,0) L̂(0,1) L̂(0,2) · · ·
L̂(1,0) L̂(1,1) L̂(1,2) · · ·
L̂(2,0) L̂(2,1) L̂(2,2) · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠. (32)

It is worth mentioning that an operator is a Hermitian one
if and only if L̂(M,N)† = L̂(N,M) for all M,N ∈ N, and it is
a block-diagonal operator if and only if L̂(M,N) = 0 for all
M �= N . Let us consider some examples of operators which
are important for our following considerations.

The density operator of a mixed state is an operator ρ̂ in the
Fock space which describes a convex combination of pure
states |ψ〉〈ψ|, where 〈ψ| = (〈ψ (0)| 〈ψ (1)| · · · ). The
particle-number operator N̂ has the following block-diagonal
form,

N̂ =

⎛
⎜⎜⎜⎝

0 0 0 · · ·
0 1̂ 0 · · ·
0 0 2 1̂⊗2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ = ⊕∞

N=0(N 1̂⊗N ), (33)

using the single-particle identity operator 1̂. The expectation
value N = 〈N̂〉ρ̂ is the mean particle number of the state ρ̂.
Note that the particle number should not be confused with
the excitation number. Another block-diagonal operator is the
Hamiltonian of the system under study,

Ĥ =
∞⊕

N=0

Ĥ (N), (34)

where Ĥ (N) denotes the N -particle Hamiltonian in Eq. (10)
with an additional superscript “(N )” for indicating the particle

number. Note that for N = 0, the sums that define Ĥ (N) are
empty, which yields Ĥ (0) = 0.

B. Entanglement conditions

1. Separable states in the Fock space

To formulate entanglement conditions, the considered
notion of separability has to be defined. For simplicity, we
restrict ourselves to the case of full separability. Hence, a pure
separable state is the direct sum of N -particle product states,

|ψ (sep)〉 =

⎛
⎜⎜⎜⎜⎜⎝

ψ (0)∣∣ψ (1)
1

〉∣∣ψ (2)
1

〉 ⊗ ∣∣ψ (2)
2

〉∣∣ψ (3)
1

〉 ⊗ ∣∣ψ (3)
2

〉 ⊗ ∣∣ψ (3)
3

〉
...

⎞
⎟⎟⎟⎟⎟⎠ =

∞⊕
N=0

|ψ (N,sep)〉, (35)

where |ψ (N,sep)〉 = |ψ (N)
1 〉 ⊗ · · · ⊗ |ψ (N)

N 〉; cf. Eq. (1). In other
words, |ψ (sep)〉 is factorizable for each individual particle
number N > 1. Analogously to the case of a fixed particle
number [Eq. (2)], a mixture of pure states yields the notion of
mixed separable states in Fock spaces.

2. Construction of entanglement criteria

Now, we introduce a method to construct entanglement
criteria of the form (3) in Fock spaces. This enables us to
verify entanglement between particles in a system without
a fixed number of particles. In particular, we derive the
resulting separability eigenvalue equations, similar to Eq. (4),
for computing the desired bounds for separable states. Since
similar derivation can be found in Refs. [24,29,66,83], let us
concisely formulate the main steps only.

From the convexity and closure property of the set of
separable states and the application of the Hahn-Banach
separation theorem, it follows that a state ρ̂ is entangled if
and only if there exists a Hermitian operator L̂ such that

〈L̂〉ρ̂ < λ(sep)
min , (36)

where λ
(sep)
min is the minimal expectation value of L̂ for separable

states.
The latter bound is attained for pure states (35), which are

the extremal points of the set of all separable states. Thus, λ(sep)
min

can be obtained from the minimization of

λ(sep) = 〈ψ (sep)|L̂|ψ (sep)〉 (37)

subjected to the constraint of normalization [Eq. (31)],

〈ψ (sep)|ψ (sep)〉 − 1 ≡ 0. (38)

In addition, we also include another restriction.
As we mentioned initially, we do not restrict ourselves to

a single particle number N . Yet, let us assume a given mean
particle number N , which allows for arbitrary fluctuations of
the particle number as long as N remains constant. Hence, the
second constraint is

〈ψ (sep)|N̂|ψ (sep)〉 − N ≡ 0. (39)

In recent work [67], additional constraints have been also
used to formulate and apply so-called ultrafine entanglement
witnesses for other systems.
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In order to perform the optimization (37) under the
constraints (38) and (39), we can apply the method of Lagrange
multipliers, which are labeled μ1 for Eq. (38) and μN for
Eq. (39). Similarly to the approach in Ref. [24], this optimiza-
tion over all 〈ψ (N)

j | directly yields our generalized separability

eigenvalue equations for an operator L̂ in Eq. (32) as

∑
M

⎛
⎝⊗

i<j

〈
ψ

(N)
i

∣∣
⎞
⎠
⎛
⎝⊗

i>j

〈
ψ

(N)
i

∣∣
⎞
⎠L̂(N,M)

(⊗
i

∣∣ψ (M)
i

〉)

= (μ1 + μNN )

⎛
⎝∏

i �=j

〈
ψ

(N)
i

∣∣ψ (N)
i

〉⎞⎠∣∣ψ (N)
j

〉
, (40)

where j,N ∈ N and 1 � j � N [91]. Applying 〈ψ (N)
j | to the

Fock separability eigenvalue equations (40), summing over
N , and using Eqs. (37)–(39), we find

λ(sep) = μ1 + μNN. (41)

From this relation and using the minimal Fock separability
eigenvalue (41), we can compute the desired bound for the
entanglement condition (36).

3. Application to block-diagonal operators

The Fock separability eigenvalue Eq. (40) are obviously
more complex than those in Eq. (4) for a fixed particle
number N . For simplifying this problem, we focus on block-
diagonal operators. In particular, the Hamiltonian in Eq. (34)
is considered. In this case, L̂ = Ĥ , Eq. (40) reduces to

Ĥ
(N)

ψ
(N)
1 ,...,ψ

(N)
j−1,ψ

(N)
j+1,...,ψ

(N)
N

∣∣ψ (N)
j

〉

= (μ1 + μNN )

⎛
⎝∏

i �=j

〈
ψ

(N)
i

∣∣ψ (N)
i

〉⎞⎠∣∣ψ (N)
j

〉
, (42)

for all N and j and using the reduced operators as defined
in Eq. (5). Hence, for such block-diagonal operators, the
problem of solving Eq. (40) reduces to solving the separability
eigenvalue equations (4) for all N individually.

The analytical solutions for the Hamiltonian under study are
extensively discussed in the previous sections and Appendix B.
Thus, we get for each N the minimal separability eigenvalues

μ1 + μNN = h̄�

2
N
√

1 + (N − 1)R = E (N,sep)
min . (43)

The norm of the N -particle component can be identified with
the probability (30) to have N particles. Therefore, the Fock
separability eigenvalue (41) for the block-diagonal operator Ĥ
is the convex combination

E (sep) =
∞∑

N=0

E (N,sep)
min pN. (44)

Moreover, the constraints (38) and (39) rewrite as

1 ≡
∞∑

N=0

pN and N ≡
∞∑

N=0

NpN, (45)

respectively.

To apply the entanglement criterion (36) for L̂ = Ĥ , the
desired bound λ

(sep)
min = E (sep)

min has to be obtained from the
general solutions in Eq. (44) by minimizing over the probabil-
ities pN . A generalized version of this convex minimization
problem is solved in Appendix C. In particular, it is shown
that we can take pN = 0 for all N except for the consecutive
integers �N� and �N� + 1 for which holds �N� � N <

�N� + 1. From the solution of the linear problem in Eq. (45),
we then get the probabilities p�N� and p�N�+1, and we can
finally conclude

E (sep)
min = h̄�

2
((�N� + 1 − N )�N�

√
1 + (�N� − 1)R

+ (N − �N�)(�N� + 1)
√

1 + �N�R). (46)

In summary, E (sep)
min in Eq. (46) is the minimal energy of the

system which can be attained for a separable state in the Fock
space with a mean particle number N .

4. Example: Entanglement of the ground state

One can also obtain the (standard) ground state of the
Hamiltonian Ĥ , conditioned to mean particle number N , via
the eigenvalue problem. Analogously to the algebra performed
for separable states, this yields the minimal energy which can
be attained for arbitrary states as

Emin = h̄�

2
((�N�+1−N )(1+(�N�−1)

√
1+�N�R)

+ (N−�N�)(1+�N�
√

1+(�N�+1)R)). (47)

Together with Eqs. (8) and (46), this allows one to compute
the maximal entanglement visibility V (ent)

max .
The dependency of this visibility on the mean particle

number N is shown in Fig. 7. The ground state of the
considered system is entangled for any mean particle number

FIG. 7. The maximal entanglement visibility V (ent)
max is depicted

as a function of N for different R values. Here, the noninteger
interpolation in the earlier Fig. 5 is corrected to capture the true
functional relation for mean particle numbers N . For scenarios where
we have a particle number less than or equal to 1, no entanglement
can be detected for any coupling for our choice of an observable,
L̂ = Ĥ .
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larger than 1. The nontrivial functional relation in Fig. 7
is uncovered by solving the Fock separability eigenvalue
equations (41) for the Hamiltonian Ĥ . Compared to Fig. 5,
we have the same values for the integers, i.e., N = �N�, and
we do not have to make any ad hoc interpolation for noninteger
particle numbers.

C. Entanglement of thermal states

Let us now demonstrate how to infer entanglement of mixed
states in systems with fluctuating particle numbers. For this
reason, we consider the thermal (equilibrium) state of this
interacting system. This thermal state is defined as [92–94]

ρ̂ = 1

Z
e−α N̂−β Ĥ , (48)

where α = −μ/(kT ) (μ, chemical potential, T , temperature,
and k, Boltzmann constant) and β = 1/(kT ). Furthermore, the
partition function Z is given by

Z = tr(e−α N̂−β Ĥ ). (49)

Using the previously computed energy eigenvalues of our
system and

∑∞
n=0 e−t(n+1/2) = (2 sinh[t/2])−1 (t > 0), the

partition function reads

Z =
∞∑

N=0

�N [R], with

�N [R] = e−αN

2 sinh[βuE/2]

(
1

2 sinh[βuE
√

1+NR/2]

)N−1

.

(50)

The mean particle number N is given by

〈N̂〉ρ̂ = −∂α ln[Z] = 1

Z

∞∑
N=0

N�N (R). (51)

We can apply −∂β(sinh[βt])−1 = t coth[βt](sinh[βt])−1,
which can be used to express the mean energy of the thermal
state as

〈Ĥ〉ρ̂ = −∂β ln[Z]

= h̄�

2

(
coth

[
h̄�

2kT

]
+ 1

Z

∞∑
N=0

(N−1)
√

1+NR coth

×
[

h̄�
√

1+NR
2kT

]
�N [R]

)
. (52)

Based on this mean energy and the minimal energy (46) of
separable states, we can finally compute the entanglement
visibility (8) of the thermal state for the given mean particle
number N .

The entanglement visibility of the thermal state (48)
is depicted in Fig. 8. The dependency of the normalized
temperature T/uT [see Eq. (12) for the definition of uT ] and the
mean particle number N is shown in a range of two orders of
magnitude. The thermal state can be entangled, which is clear
when considering that a small temperature yields the (pure)
entangled ground state; cf. Fig. 7. In addition, with increasing
temperature the entanglement visibility also decays, which

FIG. 8. The entanglement visibility V (ent) of a thermal state as
a function of N and T for R = 1. With increasing temperature,
the detection of entanglement becomes unsuccessful, V (ent) � 0.
However, the boundary V (ent) = 0 increases in the depicted range
with the mean number of particles.

also confirms the intuition that a hotter system is less entangled
than a very cold one, e.g., a condensate. One has to keep in
mind the operational meaning of the entanglement visibility
V (ent) for the specific measurement of the total energy Ĥ , which
does not exclude the possibility that entanglement persists in
regions where V (ent) � 0 in Fig. 8. Applying our approach to
another observable L̂ might also identify the entanglement for
other regions in the N−T plane.

Let us emphasize that entanglement of thermal states
has been considered before, for example, in Refs. [84,95].
However, there the focus of attention is restricted to thermal
states for a fixed number of particles—similar to our approach
in Sec. III. Here, we are able to certify entanglement—already
with the single observable Ĥ—in thermal equilibrium for
temperatures T > 0 even if the precise number of particles
is undetermined.

V. CONCLUSIONS

In summary, we studied entanglement properties of macro-
scopic systems. We followed two approaches. First, the
entanglement of systems with a fixed particle number was
considered. Second, the entanglement-detection problem was
treated in systems with fluctuating particle numbers.

We established the operational notion of entanglement
visibility to quantify the detectable entanglement for a given
observable. Moreover, we formulated a technique to construct
entanglement criteria in compound systems with an unknown
number of parties. These techniques have been applied to
identify different types of multiparticle entanglement, includ-
ing bipartite, full multipartite, and partial entanglement. In
particular, we studied a system which consists of an arbitrary
number of harmonic oscillators which interact with each other.

For example, the energy spectrum restricted to separable
states and the general spectrum have been compared. Further-
more, we determined the influence of the coupling strength
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on the entanglement. We showed for our system that the
verifiable entanglement goes to zero for a macroscopic number
of particles. This vanishing entanglement visibility has been
demonstrated without introducing attenuation mechanisms
or imperfections of the measurement. Finally, we identified
entanglement of the thermal state of this correlated system.

Let us point out that we characterized a specific physical
system. In some second-order approximation, this system
resembles the basic physics of any other ensemble of quantum
particles. Yet, the general validity of the found dependencies
of entanglement on, for example, the particle number requires
additional research beyond the detailed and analytical studies
presented here. Our derived methods can be, in principle,
applied to other scenarios of interacting particles and may
serve as a starting point for such investigations.
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APPENDIX A: HERMITE FUNCTIONS

Let us recall some basic properties of Hermite functions.
The Hermite functions h(n) are defined as

h(n)(ξ ) = 1√
2nn!

√
π

(ξ − ∂ξ )ne−ξ 2/2, (A1)

for n ∈ N. Two examples are h(0)(ξ ) = π−1/4 exp(−ξ 2/2)
and h(1)(ξ ) = √

2π−1/4ξ exp(−ξ 2/2). Each element of this
orthonormal basis solves a differential equation,

1
2

(
ξ 2 − ∂2

ξ

)
h(n)(ξ ) = (

n + 1
2

)
h(n)(ξ ). (A2)

In addition, they satisfy the recursion relations

ξh(n)(ξ ) =
√

nh(n−1)(ξ ) + √
n + 1h(n+1)(ξ )√

2
, (A3a)

∂ξh
(n)(ξ ) =

√
nh(n−1)(ξ ) − √

n + 1h(n+1)(ξ )√
2

. (A3b)

The first- and second-order moments of ξ and ∂ξ

are 〈ξ 〉h(n) = 〈∂ξ 〉h(n) = 0, 〈ξ 2〉h(n) = −〈∂2
ξ 〉h(n) = n + 1/2, and

〈ξ∂ξ 〉h(n) = 1/2 = −〈∂ξ ξ 〉h(n) .
For our solutions in Appendix B, we need an operator with

a displaced and rescaled potential,

L̂ = −1

2
∂2
ξ + r

2
(ξ − ξ0)2 + c, (A4)

with r > 0. After a translation and a rescaling, we get

L̂ − c√
r

= −1

2
(∂ 4√r[ξ−ξ0])

2 + 1

2
( 4
√

r[ξ − ξ0])2, (A5)

which has the same form as the operator in Eq. (A2). Note
that ∂xf (x − x0) = ∂x−x0f (x − x0). Therefore, the eigenvalue
problem L̂ψ(ξ ) = λψ(ξ ) has the solutions

ψ(ξ ) = h(n)( 4
√

r[ξ − ξ0]) and λ = √
r
(
n + 1

2

) + c, (A6)

for n ∈ N. See also Ref. [96] for a more general treatment.

APPENDIX B: MULTIPARTITE SOLUTIONS

Here, we compute the exact solutions of the separability
eigenvalue problem for the Hamiltonian (10), including the
solutions for partial separability, in detail. The Hamiltonian in
the natural units (12) reads as

η̂ = Ĥ

uE
= 1

2

∑
1�i�N

( − ∂2
ξi

+ ξ 2
i

) + R
2

∑
1�i<j�N

(ξi − ξj )2,

(B1)

with ξi = xi/ux ; R is defined in Eq. (11). The rescaled
Hamiltonian (B1) can be also written as

η̂ = −1

2
∇T

�ξ ∇�ξ + 1 + NR
2

�ξT�ξ − R
2

�ξT�n�nT�ξ, (B2)

with �ξ = (ξi)Ni=1 and a constant vector �n = (1)Ni=1.
Now, we consider a K-partition I1: · · · :IK of the set

{1, . . . ,N}, where each subset Ij consists of Nj elements.
We define �ξj = (ξi)i∈Ij

and �nj = (1)i∈Ij
, which yields

η̂ = 1

2

K∑
i=1

( − ∇T
�ξi
∇�ξi

+ (1 + NR)�ξT
i
�ξi

)

− R
2

∑
1�i�K

�ξT
i �ni �nT

i
�ξi − R

∑
1�i<j�K

�ξT
i �ni �nT

j
�ξj . (B3)

We may separate parts that are parallel to �nj from those that
are perpendicular (�nT

j �nj = Nj ),

ξ
(‖)
j = �nT

j
�ξj√
Nj

and �ξ (⊥)
j =

(
Idj − �nj �nT

j

Nj

)
�ξj , (B4)

with the Nj × Nj identity matrix Idj . This allows one to bring
the Hamiltonian in the form

η̂ = 1

2

K∑
i=1

( − ∇T
�ξ (⊥)
i

∇�ξ (⊥)
i

+ (1 + NR)�ξ (⊥)
i

T�ξ (⊥)
i

)

+ 1

2

K∑
j=1

( − ∂2
ξ

(‖)
j

+ (
1 + (N − Nj )R

)
ξ

(‖)
j

2)

−R
∑

1�i<j�K

√
NiNjξ

(‖)
i ξ

(‖)
j . (B5)

In the following step, we analyze the reduced operator
η̂ψ1,...,ψj−1,ψj+1,...,ψK

[Eq. (5)]. For a clearer overview, all terms
that do not depend of the remaining degree of freedom j are
denoted as “constj ”. We get

η̂ψ1,...,ψj−1,ψj+1,...,ψK

= 1

2

( − ∇T
�ξ (⊥)
j

∇�ξ (⊥)
j

+ (1 + NR)�ξ (⊥)
j

T�ξ (⊥)
j

)
+ 1

2

( − ∂2
ξ

(‖)
j

+ (
1 + (N − Nj )R

)
ξ

(‖)
j

2)

−R
√

Nj

⎛
⎝∑

i �=j

√
Ni〈ξ (‖)

i 〉ψi

⎞
⎠ξ

(‖)
j + constj . (B6)
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The Nj − 1 degrees of freedom �ξ (⊥)
j are not influenced by

the other subsystems. The parallel component ξ
(‖)
i , however,

is displaced, which can be seen in the form

η̂ψ1,...,ψj−1,ψj+1,...,ψK

= 1

2

( − ∇T
�ξ (⊥)
j

∇�ξ (⊥)
j

+ (1 + NR)�ξ (⊥)
j

T�ξ (⊥)
j

) − 1

2
∂2
ξ

(‖)
j

+ 1+(N−Nj )R
2

⎛
⎝ξ

(‖)
j −

R
∑

i �=j

√
NiNj 〈ξ (‖)

i 〉
ψ

(‖)
i

1 + (N − Nj )R

⎞
⎠

2

+ constj . (B7)

Hence, the solutions in terms of displaced Hermite functions
(Appendix A) have the mean position

〈ξ (‖)
j 〉

ψ
(‖)
j

=
R
√

Nj

∑
i �=j

√
Ni〈ξ (‖)

i 〉
ψ

(‖)
i

1 + (N − Nj )R

⇔ 1 + NR√
Nj

〈ξ (‖)
j 〉

ψ
(‖)
j

= R
K∑

i=1

√
Ni〈ξ (‖)

i 〉
ψ

(‖)
i

= c, (B8)

where the center part is independent of j and defines
the constant c. Thus, we have 〈ξ (‖)

j 〉
ψ

(‖)
j

= √
Njc/(1 + NR),

which can be inserted into the above definition of c,

c = R
1 + NR

K∑
i=1

Nic = NR
1 + NRc, (B9)

where we used
∑K

i=1 Ni = N . Equation (B9) is only fulfilled
if c = 0. This results in 〈ξ (‖)

j 〉
ψ

(‖)
j

= 0 for all j .

Taking this information and Appendix A into account, we
can directly solve the eigenvalue equations (4) of the operator
(B6). This yields the wave functions of the separability
eigenvectors,

ψ (I1:···:IK )(�ξ ) = ψ1(�ξ1) · · · ψK (�ξK ), with

ψj (�ξj ) = ψ
(⊥)
j (�ξ (⊥)

j )ψ (‖)
j (ξ (‖)

j ),

ψ
(‖)
j (ξ (‖)

j ) = h(n(‖)
j )( 4

√
1 + (N − Nj )Rξ

(‖)
j ),

ψ
(⊥)
j (�ξ (⊥)

j ) = h(�n(⊥)
j )( 4

√
1 + NR�ξ (⊥)

j ), (B10)

where n
(⊥)
j ∈ N and �n(⊥)

j ∈ NNj −1. Here, h(�n(⊥)
j ) is a product of

Nj − 1 (for each degree of freedom of �ξ (⊥)
j ) Hermite functions

of the orders as defined by �n(⊥)
j . Also, we get the separability

eigenvalues

λI1:···:IK = 〈η̂〉ψ (I1:···:IK ) =
K∑

j=1

√
1 + NR

(
|�n(⊥)

j |1 + Nj − 1

2

)

+
K∑

j=1

√
1 + (N − Nj )R

(
n

(‖)
j + 1

2

)
, (B11)

where |�n(⊥)
j |1 denotes the 1-norm of �n(⊥)

j .
For a trivial partition, K = 1 or I1 = {1, . . . ,N}, the

separability eigenvalue equations coincide with the standard
eigenvalue equations of the rescaled Hamiltonian (B1). Thus,

the eigenfunctions and eigenvalues can be obtained as special
cases of Eqs. (B10) and (B11),

ψ(�ξ ) = h(n(‖))(ξ (‖)
j )h(�n(⊥))( 4

√
1 + NR�ξ (⊥)) (B12)

and

λ = √
1 + NR

(
|�n(⊥)|1 + N−1

2

)
+
(

n(‖) + 1

2

)
. (B13)

Full separability, K = N or Ij = {j}, can be also directly
concluded. In this case, one should point out that Nj = 1 and
thus ξ

(‖)
j = ξj and �ξ (⊥)

j is a zero-dimensional vector (i.e., a
vanishing contribution). We obtain from Eqs. (B10) and (B11)
the following:

ψ (sep)(�ξ ) =
N∏

j=1

h(nj )( 4
√

1 + (N − 1)Rξj ), (B14)

and

λ(sep) =
N∑

j=1

√
1 + (N − 1)R

(
nj + 1

2

)
, (B15)

where we skipped the superscript “(‖)”.

APPENDIX C: MINIMIZATION
AND CONVEX FUNCTIONS

Let us show that the separability eigenvalue (44) con-
strained to a mean particle number N /∈ N is attained for a
mixture of N ∈ {�N�,�N�}, using the floor function (�x� =
max{n ∈ N : n � x}) and the ceiling function (�x� = min{n ∈
N : n � x}). For N ∈ N, we have N = N . We prove a more
general statement.

Suppose the following: f is a convex function, f [px +
(1 − p)] � pf [x] + (1 − p)f [y] for all 0 � p � 1; f is not
an affine function, f [x] �= t1x + t0 for all t1 and t0; and a �
a′ � x � b′ � b. We can always write

a′ = qa + (1 − q)b and b′ = ra + (1 − r)b, (C1)

with 0 � q � r � 1 to ensure 0 < b′ − a′ = (q − r)(b − a).
It is obvious that f and any affine function can only have

up to two points in common (intersection with a secant). Let
g and g′ be two affine functions for which holds f [a] = g[a]
and f [a′] = g′[a′] and analogously for b and b′. Thus, we can
write

g[x] = f [a]
b − x

b − a
+ f [b]

x − a

b − a
,

g′[x] = f [a′]
b′ − x

b′ − a′ + f [b′]
x − a′

b′ − a′ . (C2)

Inserting the convex decomposition of a′ and b′ in Eq. (C1)
and using the convexity of f [x] itself (at the points x = a′ and
x = b′), one directly finds that

g′[x] � g[x], (C3)

where the decomposition x = px + (1 − p)x is helpful.
Inequality (C3) states that the minimal energy (convex

function f ) is attained for the two integer values (intersection
points a′ and b′) that are closest to N (argument x). In detail,
more narrow bounds a′ and b′ result in the interpolation of f [x]
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with a better and smaller value g[x] compared to g′[x] for any
a � a′ and b � b′. Also note that any convex combination with

more than two elements yields a set conv{(x,f [x]) : x ∈ N}
which is bounded by secants.

[1] E. Schrödinger, Die gegenwärtige Situation in der Quanten-
mechanik, Naturwiss. 23, 807 (1935).

[2] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered com-
plete?, Phys. Rev. 47, 777 (1935).

[3] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics
(Long Island City, N.Y.) 1, 195 (1964).

[4] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed
Experiment to Test Local Hidden-Variable Theories, Phys. Rev.
Lett. 23, 880 (1969).

[5] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,
Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[6] A. Aspect, P. Grangier, and G. Roger, Experimental Tests of
Realistic Local Theories via Bell’s Theorem, Phys. Rev. Lett.
47, 460 (1981).

[7] A. Aspect, J. Dalibard, and G. Roger, Experimental Test of
Bell’s Inequalities Using Time-Varying Analyzers, Phys. Rev.
Lett. 49, 1804 (1982).

[8] B. Hensen et al., Loophole-free Bell inequality violation using
electron spins separated by 1.3 kilometres, Nature (London)
526, 682 (2015).

[9] M. Giustina et al., Significant-Loophole-Free Test of Bell’s
Theorem with Entangled Photons, Phys. Rev. Lett. 115, 250401
(2015).

[10] L. K. Shalm et al., Strong Loophole-Free Test of Local Realism,
Phys. Rev. Lett. 115, 250402 (2015).

[11] J. P. Dowling and G. J. Milburn, Quantum technology: The
second quantum revolution, Philos. Trans. R. Soc. London A
361, 1655 (2003).

[12] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
U.K., 2000).

[13] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[14] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[15] G. Tóth, Multipartite entanglement and high-precision metrol-
ogy, Phys. Rev. A 85, 022322 (2012).

[16] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W.
Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher
information and multiparticle entanglement, Phys. Rev. A 85,
022321 (2012).

[17] L. Maccone, Intuitive reason for the usefulness of entanglement
in quantum metrology, Phys. Rev. A 88, 042109 (2013).

[18] M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A.
Acín, and M. Lewenstein, Random Bosonic States for Robust
Quantum Metrology, Phys. Rev. X 6, 041044 (2016).

[19] D. Harlow, Jerusalem lectures on black holes and quantum
information, Rev. Mod. Phys. 88, 015002 (2016).

[20] R. Cowen, The quantum source of space-time, Nature (London)
527, 290 (2015).

[21] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[22] M. Huber and J. I. de Vicente, Structure of Multidimensional
Entanglement in Multipartite Systems, Phys. Rev. Lett. 110,
030501 (2013).

[23] F. Levi and F. Mintert, Hierarchies of Multipartite Entanglement,
Phys. Rev. Lett. 110, 150402 (2013).

[24] F. Shahandeh, J. Sperling, and W. Vogel, Structural Quantifica-
tion of Entanglement, Phys. Rev. Lett. 113, 260502 (2014).

[25] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and
C. Fabre, Multipartite Entanglement of a Two-Separable State,
Phys. Rev. Lett. 117, 110502 (2016).

[26] G. Adesso, A. Serafini, and F. Illuminati, Quantification and
Scaling of Multipartite Entanglement in Continuous Variable
Systems, Phys. Rev. Lett. 93, 220504 (2004).

[27] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and
C. Fabre, Full Multipartite Entanglement of Frequency-Comb
Gaussian States, Phys. Rev. Lett. 114, 050501 (2015).

[28] S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps,
P. K. Lam, and H.-A. Bachor, Programmable multimode
quantum networks, Nat. Commun. 3, 1026 (2012).

[29] J. Sperling and W. Vogel, Multipartite Entanglement Witnesses,
Phys. Rev. Lett. 111, 110503 (2013).

[30] M. Chen, N. C. Menicucci, and O. Pfister, Experimental
Realization of Multipartite Entanglement of 60 Modes of a
Quantum Optical Frequency Comb, Phys. Rev. Lett. 112,
120505 (2014).

[31] J. Roslund, R. Medeiros de Araújo, S. Jiang, C. Fabre, and N.
Treps, Wavelength-multiplexed quantum networks with ultrafast
frequency combs, Nat. Photonics 8, 109 (2014).

[32] G. H. Aguilar, S. P. Walborn, P. H. Souto Ribeiro, and L. C.
Céleri, Experimental Determination of Multipartite Entangle-
ment with Incomplete Information, Phys. Rev. X 5, 031042
(2015).

[33] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Freely
Scalable Quantum Technologies Using Cells of 5-to-50 Qubits
with Very Lossy and Noisy Photonic Links, Phys. Rev. X 4,
041041 (2014).

[34] R. McConnell, H. Zhang, J. Hu, S. Ćuk, and V. Vuletić,
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