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Retardation of quantum uncertainty of two radiative dipoles
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In this paper we consider the excitation of one quantum dipole by another in the deep quantum limit. We use a
full quantum mechanical theory to describe the interaction of the dipoles through the electromagnetic field. Our
nonperturbative analytical calculations result in the exact solution. We show that minimal quantum uncertainty
of the dipole oscillation amplitudes, taken at different times, have a retarded character. It is demonstrated that the
commutator of the dipole oscillation amplitudes becomes nonzero inside the light cone only. Moreover, due to
radiation in free space the value of the commutator has a global maximum.
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I. INTRODUCTION

In classical electrodynamics it is impossible to have an
interaction with a speed that is greater than the speed of
light in a vacuum [1–4]. In quantum electrodynamics the
problem is more difficult. Even considering electromagnetic
waves in empty space one can find nonlocal quantities such as
the correlation between the electric fields [5–9]. Nevertheless
the existence of these quantities does not contradict causality
insofar as physical values separated by spacelike intervals
commute [5–9]. In terms of quantum mechanics this means
that two measurements do not affect each other so long as they
are separated by a spacelike interval [5–9].

When we consider the interaction of the electromagnetic
field with a medium the situation becomes much more compli-
cated. The causality problem in quantum electrodynamics was
first considered by Fermi [10]. In his paper he calculated the
dependence on time of the energy transfer probability between
two atoms and obtained retardation of the energy transfer.
However, during these calculations, performed according to
perturbation theory, the rotating wave approximation (RWA)
was used, the Coulomb interaction and the term proportional to
the square of vector potential were omitted and the summation
over the photon modes was extended to the negative region of
the wave number’s absolute values. More precise calculations
were performed in [11]. Here the RWA was not used but
rather the right Hamiltonian for a two-level system (TLS)
interacting with an electromagnetic field. The Weisskopf-
Vigner theory was applied and the wave number was extended
to negative values. As a result the calculated energy transfer
probability is zero outside the light cone. The weakest point
of these calculations is an extension of the wave number’s
absolute values to the negative region. Regardless of the other
approximations used, it is this extension which leads to the
retarded probability of the energy transfer. For example, in [12]
using the extension of the wave numbers to negative values
and RWA, but not perturbation theory, it was shown that the
energy transfer probability is retarded. However, in [13–16] it
was shown that if one does not use the wave number extension
to negative values then the resultant probability is not retarded.
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The initial conditions in the mentioned works [10–16] are
chosen such that there are no photons in the system, the first
atom is in an excited state and the second atom is in its ground
state. The final state is set to be with no photons in the system,
the first atom in its ground state and the second atom in an
excited state. In [14–16] it was suggested that consideration of
a more general class of the final states can possibly regain the
retardation, even when the wave number extension is not used.
In Refs. [17,18] it was independently considered the final state
to be with the second atom in the excited state, but with the
photons and the first atom in arbitrary states. Summing over
these final states, the retarded probability for the excitement of
the second atom was obtained. In the mentioned works [17,18]
this probability was calculated up to the fourth order of the
interaction constant. In [18] it was proved that the retardation
is conserved in all orders.

The exact solution of the problem concerning two TLSs
that interact through the electromagnetic field is difficult;
moreover, the exact excitation probability is obtained so far
only in one dimension [19]. This is because the radiating TLS is
a nonlinear system. This makes it necessary to use perturbation
theory. However, if harmonic oscillators are considered instead
of a TLS the whole system appears to be linear and the
eigenstates can be found exactly. From the practical point of
view a harmonic oscillator both quantum and classical can
be treated as a model for the wide class of physical objects
including the electric field of plasmonic nanoparticles [20–26],
the electromagnetic field of plasmonic nanostructures [27] and
the excitations of quantum wells [28]. At the same time, as far
as we know, there is no exact solution of the Fermi problem
concerning two linear emitters.

In this paper we consider the radiation of two dipole
harmonic oscillators and the retardation character of the
physical quantities of the system. We find that the quantity
which preserves retardation and characterizes the interaction
of two radiating quantum systems is the minimal quantum un-
certainty for those systems. Applying the Fano diagonalization
method [29–31], we find the eigenmodes of the system. Using
the eigenmode representation, we introduce annihilation and
creation operators for the eigenstates of the system. We prove
that this quantization procedure is canonical. Then we consider
the dynamics of the minimal quantum uncertainties of the
physical quantities of the two harmonic oscillators. We show
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that these quantum uncertainties are zero when the dipoles
are separated by a spacelike interval. Thus, the states of the
two dipole harmonic oscillators cannot influence each other
superluminally through the electromagnetic field and can be
measured with arbitrary precision when they are separated by
a spacelike interval. We also show that each of these minimal
quantum uncertainties, as a function of time, has a global
maximum. The obtained results may be useful in connection
with recent works concerning the transfer of purely quantum
quantities such as entanglement [32–50].

II. DETERMINATION OF THE DRESSED EIGENSTATES
OF THE SYSTEM

Now we find the eigenmodes of the system consisting of
two radiative dipoles. The dressed states of the system, as
we will show below, include the electromagnetic field and
the dipole oscillations. In the dressed state representation the
Hamiltonian of the system takes the diagonal form. After the
diagonalization procedure we will quantize the system and
introduce the equal time commutation relations (ETCR) for
collective annihilation and creation operators.

If the size of an object is much less than the characteristic
wavelength then the dipole approximation gives the leading
contribution to the radiated field (if the dipole transition is
allowed). There are a lot of systems which correspond to this
condition: atoms, plasmon nanoparticles, quantum dots with
the optical transition frequency, etc.

We consider two pointlike dipole harmonic oscillators,
interacting via the electromagnetic field. The first dipole is
at 0 and the other is at R. We will use the signature (+ − −−).
The Lagrangian of the system is

L = Lem + Lint + Lmat, (1a)

where Lem is the Lagrangian of the electromagnetic field
[1,2].

Lem = − 1

16π

∫
d3r{FμνF

μν}, (1b)

where Fμν = ∂μAν − ∂νAμ is the tensor of the electromag-
netic field. Aμ = (ϕ,A) is the 4-vector of the electromagnetic
field where ϕ is the scalar potential and A is the vector
potential. The Lagrangian Lint describes the coupling between
the electromagnetic field and the dipoles [1,2],

Lint = −1

c

∫
d3r{jμAμ}, (1c)

where jμ = (cρ,j) is the 4-vector of the current where ρ is the
charge density and j is the charge current density. In our case
the current density is j(r,t) = eṘ1(t)δ(r) + eṘ2(t)δ(r − R)
and the charge density is ρ(r,t) = −eR1(t) · ∇δ(r) − eR2(t) ·
∇δ(r − R). Here R1 and R2 are the oscillation amplitudes of
the first and the second dipole, respectively, e is charge. The
mass of both dipoles is m and their transition frequency is ω0.
Then the nonrelativistic Lagrangian of the dipoles Lmat is

Lmat = mṘ1(t)
2

2
− mω2

0R1(t)
2

2
+ mṘ2(t)

2

2
− mω2

0R2(t)
2

2
.

(1d)

We introduce a dipole moment d and the dimensionless
oscillation amplitudes of the dipoles r1 and r2 according to the
expressions d = el, R1(t) = lr1(t) and R2(t) = lr2(t). For our
purposes it is more convenient to represent the Lagrangian (1a)
in terms of scalar and vector potentials:

L =
∫

d3r

{
[∇ϕ(r,t) + Ȧ(r,t)/c]

2

8π
− [∇ × A(r,t)]2

8π

}
+ ml2ṙ1(t)2

2
− ml2ω2

0r1(t)2

2
+ ml2ṙ2(t)2

2
− ml2ω2

0r2(t)2

2

+
∫

d3r{A(r,t) · dṙ1(t)δ(r)/c + ϕ(r,t)r1(t)d · ∇δ(r) + A(r,t) · dṙ2(t)δ(r − R)/c + ϕ(r,t)r2(t)d · ∇δ(r − R)}. (2)

Note that the first two terms inside the integral in (2) is
(E2 − B2)/8π because E(r,t) = −∇ϕ(r,t) − Ȧ(r,t)/c and
B(r,t) = ∇ × A(r,t). We will assume that h̄ = c = 1, and that
the system parameter ml2 = 1. We use the Euler-Lagrange
equations,

d

dt

δL

δȦ(r,t)
= δL

δA(r,t)
,

d

dt

δL

δϕ̇(r,t)
= δL

δϕ(r,t)
,

d

dt

δL

δṙ1(t)
= δL

δr1(t)
,

d

dt

δL

δṙ2(t)
= δL

δr2(t)
,

and obtain the equations of motion from the Lagrangian (2) in
the Coulomb gauge ∇ · A(r,t) = 0,

r̈1(t) + ω2
0r1(t) + d · [Ȧ(0,t) + ∇ϕ(0,t)] = 0,

r̈2(t) + ω2
0r2(t) + d · [Ȧ(r,t) + ∇ϕ(r,t)] = 0,

Ä(r,t) − 	A(r,t) − 4πdṙ1δ(r) − 4πdṙ2δ(r − R)

+∇ϕ̇(r,t) = 0,

	ϕ(r,t) − 4πr1(t)d · ∇δ(r) − 4πr2(t)d · ∇δ(r − R) = 0.

(3)

Note that including the electromagnetic field degrees of
freedom in consideration implies that the field is not the
external force for the dipoles. Instead, we need to consider the
dipole and field degrees of freedom on equal footing. To do
this we go to the frequency-momentum domain. Then Eq. (3)
takes the form,

(
ω2

0 − ω2
)
r1(ω) − id ·

∫
d3k(ωA(k,ω) − kϕ(k,ω)) = 0,

(
ω2

0−ω2
)
r2(ω) − id ·

∫
d3k(ωA(k,ω)−kϕ(k,ω))eik·R = 0,
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(k2 − ω2)A(k,ω) + iωdr1(ω)

2π2
+ iωdr2(ω)

2π2
e−ik·R

+ kωϕ(k,ω) = 0,

k2ϕ(k,ω) + ik · dr1(ω)

2π2
+ ik · dr2(ω)

2π2
e−ik·R = 0. (4)

The electromagnetic field equations obtained from (4) are

ϕ(k,ω) = −i
k · d
k2

r1(ω)

2π2
− i

k · d
k2

r2(ω)

2π2
e−ik·R,

(k2 − ω2)A(k,ω) = − iωr1(ω)

2π2

(
d − k(k · d)

k2

)
−

− iωr2(ω)

2π2

(
d − k(k · d)

k2

)
e−ik·R. (5)

As a result the vector potential is found to be

A(k,ω) = − iω

k2 − ω2 − i0kω

r1(ω)

2π2

(
d − k(k · d)

k2

)

− iω

k2 − ω2 − i0kω

r2(ω)

2π2

(
d − k(k · d)

k2

)
e−ik·R

+ Z⊥(k)δ(k − ω) + Z∗
⊥(−k)δ(k + ω), (6)

where Z⊥(k)δ(k − ω) and Z∗
⊥(−k)δ(k + ω) are, respec-

tively, the positive frequency and negative frequency solu-
tions of the uniform wave equation in momentum space:
(k2 − ω2)Z⊥(k)δ(k − ω) = 0. Note that these uniform solu-
tions are transverse.

Next we obtain the closed equations for the dipole harmonic
oscillators by inserting expressions (5) and (6) into the first and
the second equation of (4),

D(ω)r1(ω) + M(ω)r2(ω) + iω

∫
d3kZd(k)δ(k − ω)

+ iω

∫
d3kZ∗

d(k)δ(k + ω) = 0,

D(ω)r2(ω) + M(ω)r1(ω) + iω

∫
d3kZd(k)eik·Rδ(k − ω)

+ iω

∫
d3kZ∗

d(k)e−ik·Rδ(k + ω) = 0. (7)

Here we have introduced the functions,


(ω) = 2

3π
P

∫ +∞

0
dk

k2d2(k2 − 3ω2)

k2 − ω2 − i0kω
,

�(ω) = 2

3
d2ω2,

D(ω) = ω2 + i�(ω)ω − 
(ω) − ω2
0,

V (ω) = ω3d2
⊥

(
1

ωR
+ i

ω2R2
− 1

ω3R3

)

+ω3d2
‖

(
− 2i

ω2R2
+ 2

ω3R3

)
,

M(ω) = V (ω)eiωR,

Zd(k) = d · Z⊥(k), Z∗
d(k) = d · Z∗

⊥(k), (8)

where 
(ω) is the Lamb’s shift, �(ω) is the damping constant,
V (ω) describes the interaction between dipoles, D(ω) is the

inverse response function of a dipole harmonic oscillator in
empty space (see Chap. 8 in [51] and Chap. 16 in [1]), d2

‖ =
(k · d)2/k2, and d2

⊥ = d2 − d2
‖ .

Taking the inverse transformation of the solution of Eq. (7)
we obtain

r1(t) = −i

∫
d3k

D(k) − M(k)eik·R

D2(k) − M2(k)
kZd(k)e−ikt + H.c.,

r2(t) = −i

∫
d3k

D(k)eik·R − M(k)

D2(k) − M2(k)
kZd(k)e−ikt + H.c.

(9)

Note that the functions D and M in Eq. (9) have the argument
k instead of ω. This happens because the right-hand parts of
Eq. (7) include the delta functions δ(k + ω) and δ(k − ω). Note
that Eq. (9) does not include a homogeneous part (the solution
with Z = 0) of Eq. (7). This is because the eigenfrequencies
of the homogeneous part of (7) are complex [in this regard see
the discussion after Eq. (76) in [29]].

We note that all expressions of (9) have poles both below
and above the real frequency axes. The pole that has the
positive imaginary part leads to the unphysical self-excitation
of the system. In addition, the Lamb’s shift 
(k) is equal
to infinity unless we cut off the integral in momentum space.
These problems of classical electrodynamics have been known
for a long time. They arise even in classical electrodynamics
with one dipole harmonic oscillator in empty space [2]. The
standard solution to the problem is to set the function �(k) to a
constant �(ω0), the Lamb’s shift 
(k) to zero (see Chap. 8
in [51], Chap. 16 in [1], and Chap. 9 in [2]). Setting the
Lamb’s shift to constant is also possible [52] (see also Chap.
16 in [1] and Appendix B in [51]), but we assume that
the value is small compared with ω0 and can be neglected.
We will use the same simplifications for the system under
consideration. In addition we set the function M(k) to the
function ReM(ω0) + iImM(ω0)k/ω0 [53].

After these replacements the denominator of the expres-
sions (9) takes the form,

(
k2 + i�(ω0)k − ω2

0

)2 − (ReM(ω0) + iImM(ω0)k/ω0)2.

(10)
Expression (10) as a function of k has only two pairs of roots
with a negative imaginary part Imk < 0. We also assume
that the real part of the roots are close to ω0 which leads
to the conditions �(ω0) � ω0 and ReM(ω0) � ω2

0. The last
inequality can be rewritten in the form R � λ(�(ω0)/ω0).
Thus, the inequality �(ω0) � ω0 determines the upper bound
of the dipole momentum [see Eq. (8)] and inequality R �
λ(�(ω0)/ω0) determines the lower bound of the distances be-
tween the dipoles. The four roots of Eq. (10) correspond to two
oscillating modes with decay rates [�(ω0) + ImM(ω0)/ω0]/2
and [�(ω0) − ImM(ω0)/ω0]/2, respectively (Fig. 1). The
difference between this and the decay rate of one oscillator
�(ω0) occurs because of the dipole-dipole interaction through
the electromagnetic field [53]. One can see from Fig. 1 that
when R = 0 the decay rate of one of the modes is zero. In this
case the homogeneous solution of Eq. (7) exists. However, the
case R = 0 is beyond our assumption (R � λ(�(ω0)/ω0)) and
we do not consider it here.
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FIG. 1. The dependence of the radiation decay rates for d⊥R
of two modes (thick solid red line and solid blue line) of the two
dipole system on the distance R between these dipoles in units of the
radiation decay rate of one radiative dipole in empty space (dashed
green line).

From the Lagrangian (2) one can obtain the canonical
conjugated momentums for the amplitudes of the dipole
harmonic oscillators,

p1(t) = ṙ1(t) + d · A(0,t),

p2(t) = ṙ2(t) + d · A(R,t). (11)

This can be expressed in terms of new variables Zd(k)e−ikt

and Z∗
d(k)eikt by using (6) and (9) as

p1 =
∫

d3k
D(0)(D(k) − M(k)eik·R)

D2(k) − M2(k)
Zd(k)e−ikt

+
∫

d3k
M(0)(D(k)eik·R − M(k))

D2(k) − M2(k)
Zd(k)e−ikt + H.c.

p2 =
∫

d3k
D(0)(D(k)eik·R − M(k))

D2(k) − M2(k)
Zd(k)e−ikt

+
∫

d3k
M(0)(D(k) − M(k)eik·R)

D2(k) − M2(k)
Zd(k)e−ikt + H.c.

(12)

In the same way one can use Eqs. (5), (6), and (9) to
obtain the expressions for the scalar potential U (r,t), the vector
potential A(r,t,) and the canonically conjugated momentum to
the vector potential (r,t) = (Ȧ(r,t) + ∇ϕ(r,t))/4π in terms
of new variables Zd(k)e−ikt and Z∗

d(k)eikt (see Appendix A).
The quantities Zd(k)e−ikt and Z∗

d(k)eikt can be regarded
as new dynamical variables which transform the Hamil-
tonian of the system into the diagonal form [31]. Thus
Eqs. (9), (12), (A2), and (A3) describe the transformation
from the old variables r1, r2, p1, p2, A, and  to the new
ones Zd(k)e−ikt and Z∗

d(k)eikt .
The transition to the quantum description can be done in

the standard canonical way [54]. First we find the Hamiltonian
of the system (2) in terms of the old variables,

H = (p1 − d · A(0))2

2
− D(0)r2

1

2

+ (p2 − d · A(R))2

2
− D(0)r2

2

2
− M(0)r1r2

+
∫

d3r
{

(4π − ∇ϕ)2

8π
+ (∇ × A)2

8π

}
. (13)

The first four terms represent the dipole oscillators’
energy, the fifth term is their electrostatic interaction energy,
and the last two terms are the electromagnetic field energy.
One can obtain the Hamiltonian of the system in terms
of the new variables Z⊥(k) and Z∗

⊥(k) by substituting the
expressions (9), (12), (A2), and (A3) into (13):

H = 4π2
∫

d3k(k2Z∗
⊥(k) · Z⊥(k)). (14)

Next we replace the variables Z⊥(k) and Z∗
⊥(k) with

quantum operators Ẑ⊥(k) and Ẑ+
⊥(k) and set the equal time

commutation relations,

[Ẑd(k),Ẑ+
d′ (k′)] = [d · Ẑ⊥(k),d′ · Ẑ+

⊥(k)]

= 1

4π2k

(
d · d′ − (k · d)(k · d′)

k2

)
δ(k − k′).

(15)

Having quantized the system we obtain from expressions (9)
and (12) the quantum amplitudes,

r̂1(t) = −i

∫
d3k

D(k) − M(k)eik·R

D2(k) − M2(k)
kẐd(k)e−ikt + H.c.,

r̂2(t) = −i

∫
d3k

D(k)eik·R − M(k)

D2(k) − M2(k)
kẐd(k)e−ikt + H.c.,

(16)

and canonical conjugated momentums of these dipoles,

p̂1 =
∫

d3k
D(0)(D(k) − M(k)eik·R)

D2(k) − M2(k)
Ẑd(k)e−ikt

+
∫

d3k
M(0)(D(k)eik·R − M(k))

D2(k) − M2(k)
Ẑd(k)e−ikt + H.c.,

p̂2 =
∫

d3k
D(0)(D(k)eik·R − M(k))

D2(k) − M2(k)
Ẑd(k)e−ikt

+
∫

d3k
M(0)(D(k) − M(k)eik·R)

D2(k) − M2(k)
Ẑd(k)e−ikt + H.c.

(17)

In a similar way one can obtain the quantum vector potential
Â(r,t) and its quantum canonical conjugated momentum

̂(r,t) = ( ˆ̇A(r,t) + ∇ϕ̂(r,t))/4π in terms of new operators
Ẑ⊥(k) and Ẑ+

⊥(k) (see Appendix A).
The geometric structure of the ETCR (15) provides the right

ETCR of the operators (16) and (17) and of the electromagnetic
field variables. Indeed, using the expressions,∫

d3k
(

d2 − (k · d)2

k2

)
= 2π

i

∫ +∞

0
dk

D(k) − D∗(k)

k
,

∫
d3k

(
d2 − (k · d)2

k2

)
eik·R = 2π

i

∫ +∞

0
dk

M(k) − M∗(k)

k
,

(18)

one can obtain the ETCR for the dipole variables (see
Appendix B),

[r̂j (t),p̂j ′(t)] = iδjj ′ , [r̂j (t),r̂j ′(t)] = 0, [p̂j (t),p̂j ′(t)] = 0,

(19)
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and for the electromagnetic field variables,

[Âα(r,t),̂β(r′,t)] = iδ⊥
αβ (r − r′), (20)

where δ⊥ is a transverse delta function [1] and α and β are the
components of the field. From (19) and (20) one can conclude
that the transition defined by expressions (16), (17), (A2),
and (A3) is a canonical transformation.

Introducing the annihilation and creation operators of
dipole excitation in the standard way,

â+
j = 1√

2ω0
(ω0r̂j + ip̂j ),

âj = 1√
2ω0

(ω0r̂j − ip̂j ), (21)

and substituting (16) and (17) into (21), we obtain the
expression for the creation and annihilation operators of the
dipoles in terms of new collective quantum operators,

â1(t) = −i√
2ω0

∫
d3k

(D(0) + ω0k)(D − Meik·R)

D2 − M2
Ẑd(k)e−ikt

+ −i√
2ω0

∫
d3k

M(0)(Deik·R − M)

D2 − M2
Ẑd(k)e−ikt

+ −i√
2ω0

∫
d3k

(D(0) − ω0k)(D∗ − M∗e−ik·R)

D∗2 − M∗2

× Ẑ+
d (k)eikt

+ −i√
2ω0

∫
d3k

M(0)(D∗e−ik·R − M∗)

D∗2 − M∗2
Ẑ+

d (k)eikt .

(22)

â2(t) = −i√
2ω0

∫
d3k

(D(0) + ω0k)(Deik·R − M)

D2 − M2
Ẑd(k)e−ikt

+ −i√
2ω0

∫
d3k

M(0)(D − Meik·R)

D2 − M2
Ẑd(k)e−ikt

+ −i√
2ω0

∫
d3k

(D(0) − ω0k)(D∗e−ik·R − M∗)

D∗2 − M∗2

× Ẑ+
d (k)eikt

+ −i√
2ω0

∫
d3k

M(0)(D∗ − M∗e−ik·R)

D∗2 − M∗2
Ẑ+

d (k)eikt .

(23)

Here and throughout the following, if the argument of the func-
tions D and M is not written, the argument is assumed to be k.

The quantum expression for (14) is

Ĥ = 4π2
∫

d3k
(
k2Ẑ+

⊥(k) · Ẑ⊥(k)
)
. (24)

This Hamiltonian appears to be the Hamiltonian of the set of
independent harmonic oscillators with unusual factor 4π2k2.
This factor is connected to the factor of the ETCR (15). One
can see that if we redefine the operators Ẑ⊥(k) and Ẑ+

⊥(k),
multiplying them by 2π

√
k, then the resulting operators will

obey the standard bosonic ETCR and will be described by the
standard bosonic Hamiltonian. The properties of the ground
state of the system are discussed in Appendix C.

The outcome of the above is that we have found the
canonical transformation (16)–(17) that leads the Hamiltonian
to the diagonal form. We have derived the eigenstates of the
system which are the dressed states and include the dipoles
and the electromagnetic field excitations.

III. RETARDATION OF THE QUANTUM UNCERTAINTY

Now we show that the quantum amplitudes of the dipoles
commute if they are divided by a spacelike interval. In other
words the commutator is a retarded function.

The minimal quantum uncertainty of the dipole amplitudes
and their velocities can be calculated from the commutators
by the following equations [55]:

min 	ri(t)	rj (0) = 1
2 |〈[r̂i(t),r̂j (0)]〉|,

min 	ri(t)	ṙj (0) = 1
2 |〈[r̂i(t), ˙̂rj (0)]〉|,

min 	ṙi(t)	ṙj (0) = 1
2 |〈[ ˙̂ri(t), ˙̂rj (0)]〉|, (25)

where brackets 〈〉 indicate to averaging over a given state of the
system. Expressions (16) and (17) and the ETCR (15) allow
us to find the commutators on the right-hand side of (25):

[r̂2(t),r̂1(0)] = 1

2πi

{∫ +∞

−∞
dk

[
V eik(R−t)

D2 − M2

]

−
∫ +∞

−∞
dk

[
V eik(R+t)

D2 − M2

]}
,

[ ˙̂r2(t),r̂1(0)] = 1

2πi

{∫ +∞

−∞
dk

[
kV eik(R−t)

D2 − M2

]

+
∫ +∞

−∞
dk

[
kV eik(R+t)

D2 − M2

]}
,

[ ˙̂r2(t), ˙̂r1(0)] = − 1

2πi

{∫ +∞

−∞
dk

[
k2V eik(R−t)

D2 − M2

]

+
∫ +∞

−∞
dk

[
k2V eik(R+t)

D2 − M2

]}
. (26)

The commutators (26) are c numbers. Therefore during the
calculations of the minimal quantum uncertainties (25) one can
omit the averaging over a given state 〈〉. One can see that (26)
displays the same problems as the classical expressions (9):
an infinitely large Lamb’s shift and a pole with a positive
imaginary part. Using the same methods to address these
problems we obtain that all of the poles of the right-hand
side of (26) can be found to be

k1,2 = −i
�(ω0)

2

[
1 + ImM(ω0)

ω0�(ω0)

]

±
√

ω2
0 + ReM(ω0) − (�(ω0) + ImM(ω0)/ω0)2

4
,

k3,4 = −i
�(ω0)

2

[
1 − ImM(ω0)

ω0�(ω0)

]

±
√

ω2
0 − ReM(ω0) − (�(ω0) − ImM(ω0)/ω0)2

4
. (27)

The sum under the square root in (27) is positive because of
the assumptions R � λ(�(ω0)/ω0) and �(ω0) � ω0. These
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FIG. 2. (a) The dependence on time of the minimal quantum
uncertainty of the dipole amplitudes (blue line) and its envelope (thick
red line) for d⊥R. The parameters of the system are Rω0 = 5 and
�/ω0 = 0.05. The retardation time tret is equal to R/c. At times
0 � t � tret the minimal quantum uncertainty 	r2(t)	r1(0) is zero.
(b) The dependence on time of the difference ξ (t) between the
minimal quantum uncertainties [see Eq. (33)] of the dipole amplitudes
in the cases of one dipole in empty space [min 	r(t)	r(0)] and two
dipoles separated by distance R [min 	r1(t)	r1(0)] (blue line) for
d⊥R. The envelope of this quantity (thick red line) is given by (34).
The parameters of the system are Rω0 = 5 and �/ω0 = 0.05. The
retardation time t∗

ret is equal to 2R. At times 0 � t � t∗
ret the difference

ξ (t) is equal to zero.

assumptions were discussed after the expression (10). Thus
the poles have a negative imaginary part which is defined by
the first term in each expression of (27) (Fig. 1). When dipoles
are separated by a spacelike interval |t | < R the contour of
the integrals (26) must lie in the upper half of the space.
Thus the integrals equal zero. This means that the minimal
quantum uncertainties caused by radiation is retarded with
retardation time tret [Fig. 2(a)]. Therefore the two quantum
dipole oscillators do not affect each other at times t � tret.

Figure 2(a) depicts the minimal quantum uncertainty of the
amplitudes of the two dipoles taken at different times. The
quantity is equal to zero when t < tret. After time t = tret the
minimal quantum uncertainty starts to oscillate with the period
π/ω0.

From (25) and (26) the envelope of the minimal quan-
tum uncertainty min 	r2(t)	r1(0) at times |t | > tret can be
obtained [thick red line in Fig. 2(a)]:

min 	r2(t)	r1(0) ∝ e− �(ω0)
2 (t−tret)sh

(
ImM(ω0)

2ω0
(t − tret)

)
.

(28)

It is interesting to note that the minimal quantum uncertainty
min 	r2(t)	r1(0) has a global maximum at the time tmax

[Fig. 2(a)]. The time tmax can be derived from (28)

tmax = R + 2ω0

ImM(ω0)
arcth

(
ImM(ω0)/ω0

�(ω0)

)
. (29)

The existence of the global maximum of the minimal quantum
uncertainty of the amplitudes of the two dipole oscillators
can be explained by considering two opposing processes.
On one hand the resonant interaction of the dipoles through
the radiation increase the minimal quantum uncertainty with
time [the second factor in (28)]. On the other hand the
radiation dissipation of the dipole energy reduces the quantum
uncertainty [the first factor in (28)].

The minimal quantum uncertainty also describes the in-
fluence of one dipole on another. To show this we consider
the quantum uncertainty of the dipole amplitude taken at
different times. Without loss of generality we consider the first
dipole. As mentioned earlier the quantum uncertainty of two
measurable quantities is expressed through the commutator in
the following way:

min 	r1(t)	r1(0) = 1
2 |〈[r̂1(t),r̂1(0)]〉|. (30)

The first expression of (16) can be used to find the commutator
on the right-hand side of Eq. (30),

[r̂1(t),r̂1(0)] = 1

2πi

{∫ +∞

−∞
dk

[
eikt

D

]
−

∫ +∞

−∞
dk

[
e−ikt

D

]

+
∫ +∞

−∞
dk

[
DV 2eik(2R+t)

D(D2 − M2)

]

−
∫ +∞

−∞
dk

[
DV 2eik(2R−t)

D(D2 − M2)

]}
. (31)

The commutator of the amplitudes taken at different times
for one dipole in empty space can be derived in the similar
way as we derived Eq. (32) for the two dipoles in empty space.
It has a form,

[r̂(t),r̂(0)] = 1

2πi

{∫ +∞

−∞
dk

[
eikt

D

]
−

∫ +∞

−∞
dk

[
e−ikt

D

]}
.

(32)

Figure 2(b) depicts the difference between the dipole
amplitude minimal quantum uncertainties in the case of one
dipole in empty space and two dipoles separated by distance R,

ξ (t) = |min 	r1(t)	r1(0) − min 	r(t)	r(0)|. (33)

Using the pole analysis of (31) similar to that given in
relation to (9) it is possible to distinguish some features of
the dynamics of this minimal quantum uncertainty (30). Up
until the retardation time t∗ret = 2R, the minimal quantum
uncertainty in the case of two dipoles behaves exactly as for one
dipole in empty space [Fig. 2(b)]. Indeed altering the dynamics
would require the radiated photon to travel from the first
dipole to the second one and back which would take time t∗ret.
After the retardation time t∗ret the quantity starts to oscillate
with frequency ω0. The envelope of this minimal uncertainties
difference ξ (t) at times t > t∗ret [Fig. 2(b)] can be obtained
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FIG. 3. The imaginary parts of the poles of the commutator (31)
normalized on �(ω0)/2 for d⊥R and the distance between two dipoles
is Rω0 = 5. The imaginary parts of the poles contributes to the decay
rates of the corresponding modes.

from expressions (30)–(33).

ξ (t) ∝ e− �(ω0)
2 (t−t∗ret)

[
ch

(
ImM(ω0)

2ω0
(t − t∗ret)

)
− 1

]
. (34)

This envelope has a global maximum at time t∗max = 2tmax,
where tmax is defined by (29).

The influence of one dipole by another may be illustrated
in another way. The poles of Eq. (31) determine the decay
of the commutator of the coordinate of the first dipole at
different times. The imaging parts of these poles are illustrated
in Fig. 3. We see that after time t = 2R/c the decay rates
which correspond to collective radiation modes appear. These
are the modes for which decay rates are shown in Fig. 1.
We see that collective quantum dynamics turns on when the
electromagnetic signal from the first dipole is reemitted by
another dipole and returns to the first one.

IV. CONCLUSION

The excitation of one quantum dipole by another is
considered in this paper. Employing the Fano diagonalization

method we pass from the classical Lagrangian of two dipoles
interacting via electromagnetic field to the Hamiltonian for
an infinite set of noninteracting oscillators. After the standard
quantization procedure we transform the dipole moment and
electromagnetic field operators to the creation and annihilation
operators of the eigenstates of the Hamiltonian. Using this, the
exact expressions for the commutators of the dipole amplitudes
are obtained. We characterize the influence of one radiative
quantum dipole on the other by the commutator of the dipole
amplitude operators taken at different time moments.

We prove that the commutators at the spacelike interval
are exactly equal to zero, e.g., the commutators are retarded
quantities. Since the expected values of the commutators
correspond to minimal quantum uncertainty for the dynamic
variables of the dipoles [56], the minimal quantum uncertainty
of these variables has a retarded character as well.

Thus, the ideal measurement of the amplitudes of
two dipoles can be performed with arbitrary accuracy
only if these measurements are separated by a spacelike
interval [56].

It has been demonstrated that the minimal quantum un-
certainty of the oscillation amplitudes of the two radiative
dipoles taken at different moments has a global maximum.
The maximum appears because of the two opposing processes.
The first process is the influence of one dipole on the
other through the electromagnetic field which increases the
oscillation amplitude of the second dipole. The second process
is the energy dissipation through radiation of the dipoles into
the free space, which reduces the oscillation amplitudes of
both dipoles.

The model considered in the paper appears to have an exact
solution. The solution can be useful for the consideration of the
nonretarded effects in quantum electrodynamics, for example,
entanglement.
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APPENDIX A: THE EXPRESSIONS FOR THE ELECTROMAGNETIC FIELD IN TERMS OF NEW
COLLECTIVE VARIABLES

Here we state the expressions for vector potential A(k,t) and its canonically conjugated variable,

(r,t) = δL

δȦ(r,t)
= Ȧ(r,t) + ∇ϕ(r,t)

4π
, (A1)

in momentum representation in terms of the new variables Z⊥(k) and Z∗
⊥(k). The derivation is lengthy, but straightforward. It

requires the substitution of expression (9) into (6). As a result one can obtain

A(k,t) =
(

k(k · d)

k2
− d

) ∫
d3s

D(s)(1 + ei(s−k)·R)

D2(s) − M2(s)

s2Zd(s)e−ist

k2 − s2 − i0ks

+
(

d − k(k · d)

k2

) ∫
d3s

M(s)(e−ik·R + eis·R)

D2(s) − M2(s)

s2Zd(s)e−ist

k2 − s2 − i0ks

+
(

k(k · d)

k2
− d

) ∫
d3s

D∗(s)(1 + e−i(s+k)·R)

D∗2(s) − M∗2(s)

s2Z∗
d(s)eist

k2 − s2 + i0ks

+
(

d − k(k · d)

k2

) ∫
d3s

M∗(s)(e−ik·R + e−is·R)

D∗2(s) − M∗2(s)

s2Z∗
d(s)eist

k2 − s2 + i0ks
+ Z⊥(k)e−ikt + Z∗

⊥(−k)eikt . (A2)
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Substitution of (A2), (5), and (9) into (A1) leads to the expression,

(k,t) =
∫

d3s
D(s)(1 + ei(s−k)·R)

D2(s) − M2(s)

ds2 − k(k · d)

k2 − s2 − i0ks

isZd(s)

4π
e−ist +

∫
d3s

M(s)(e−ik·R + eis·R)

D2(s) − M2(s)

k(k · d) − ds2

k2 − s2 − i0ks

isZd(s)

4π
e−ist

−
∫

d3s
D∗(s)(1 + e−i(s+k)·R)

D∗2(s) − M∗2(s)

ds2 − k(k · d)

k2 − s2 + i0ks

isZ∗
d(s)

4π
eist

−
∫

d3s
M∗(s)(e−ik·R + e−is·R)

D∗2(s) − M∗2(s)

k(k · d) − ds2

k2 − s2 + i0ks

isZ∗
d(s)

4π
eist − ik

4π
Z⊥(k)e−ikt + ik

4π
Z∗

⊥(−k)eikt . (A3)

The quantum expressions for the fields A(k,t) and (k,t) can be obtained directly form (A2) and (A3) by replacing the
variables A(k,t), (k,t), Z⊥(k), and Z∗

⊥(k) with the operators Â(k,t), ̂(k,t), Ẑ⊥(k), and Ẑ+
⊥(k).

The vector potential Â(k,t) is transverse whereas the field ̂(k,t) is not transverse. Nevertheless the commutation relation in
direct space remains the same as for the electromagnetic field in empty space,

[Âα(r,t),̂β

(
r′,t

)
] = iδ⊥

αβ

(
r − r′), (A4)

where δ⊥ is a transverse delta function [1] and α and β denote the components of the fields.

APPENDIX B: CONSERVATION OF THE COMMUTATION RELATIONS

Here we present the explicit derivation of the ETCR (19) from the Eqs. (15)–(17).We explicitly derive the equation
[r̂1(t),p̂1(t)] = i but all the others equalities (19) have been checked as well.

First, we substitute explicit expressions (16) and (17) for r̂1(t) and p̂1(t) in the left-hand side of (19) and obtain

[r̂1(t),p̂1(t)] =
[
−i

∫
d3k

D(k) − M(k)eik·R

D2(k) − M2(k)
kẐd(k)e−ikt ,

∫
d3k

D(0)(D∗(k) − M∗(k)e−ik·R) + M(0)(D∗(k)e−ik·R − M∗(k))
D∗2(k) − M∗2(k)

Ẑ+
d (k)eikt

]

+
[
i

∫
d3k

D∗(k) − M∗(k)eik·R

D∗2(k) − M∗2(k)
kẐ+

d (k)eikt ,

∫
d3k

D(0)(D(k) − M(k)eik·R) + M(0)(D(k)eik·R − M(k))
D2(k) − M2(k)

Ẑd(k)e−ikt

]

= −i

2π2

∫
d3k

(
d2 − (k · d)2

k2

)
(D(k) − M(k)eik·R)(D(0)(D∗(k) − M∗(k)e−ik·R) + M(0)(D∗(k)e−ik·R − M∗(k)))

(D2(k) − M2(k))(D∗2(k) − M∗2(k))
.

(B1)

We use Eq. (18) and arrive at

[r̂1(t),p̂1(t)] = −i

∫ +∞

0
dk

(D∗(k)D(0) − M∗(k)M(0))
(
D2(k) − M2(k)

) − (D(k)D(0) − M(k)M(0))
(
D∗2(k) − M∗2(k)

)
πik

(
D2(k) − M2(k)

)(
D∗2(k) − M∗2(k)

) =

= 1

π

∫ +∞

0

dk

k

(
D(k)D(0) − M(k)M(0)

D2(k) − M2(k)
− D∗(k)D(0) − M∗(k)M(0)

D∗2(k) − M∗2(k)

)

= 1

π
p.v.

∫ +∞

−∞

dk

k

(
D(k)D(0) − M(k)M(0)

D2(k) − M2(k)

)
. (B2)

Then we use the equation p.v. 1
x

= 1
x+i0 + iπδ(x) and obtain

[r̂1(t),p̂1(t)] = 1

π

∫ +∞

−∞

dk

k + i0

(
D(k)D(0) − M(k)M(0)

D2(k) − M2(k)

)
− 1

π

(
−iπ

D(0)D(0) − M(0)M(0)

D2(0) − M2(0)

)

= 1

π

∫ +∞

−∞

dk

k + i0

(
D(k)D(0) − M(k)M(0)

D2(k) − M2(k)

)
+ i. (B3)

The first integral on the right-hand side of the last equation
is zero because all the poles are below the real axis. The
discussion of the poles is presented in relation to Eq. (9) in the

manuscript. As a result, we prove that

[r̂1(t),p̂1(t)] = i. (B4)
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All the others equalities in (19) can be checked in a similar
way.

APPENDIX C: THE GROUND STATE OF THE SYSTEM

We define the vacuum state of the system |vac〉 as

Ẑ⊥(k)|vac〉 = 0. (C1)

The vacuum state |vac〉 is expressed in terms of the sum to
infinity of the initial Fock’s states of the dipoles and the
electromagnetic field. The physical reason why the vacuum
state |vac〉 contains an infinite number of initial Fock’s states
is that we do not exclude the counter-rotating terms. Indeed
one can see from the expressions (22), (23), and (C1) that

[â1(t)]n|vac〉 = 0, [â2(t)]n|vac〉 = 0, (C2)

for any n. Therefore the vacuum state |vac〉 that we define is
a so-called “dressed state” [57]. It is easy to see from (24)
and (C1) that vacuum |vac〉 obeys the equality,

Ĥ |vac〉 = 0, (C3)

which means that this state is the ground state of the system.
Consequently the vacuum state defined at any time, continues
to be the vacuum of the operator Ẑ⊥(k) at any other time. In
other words,

Ẑ⊥(k)e−iĤ t |vac〉 = 0, (C4)

for any time t . We note that the state |vac〉 is not a vacuum state
for either the dipoles or the electromagnetic field considered
separately [see Eq. (C2)].
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