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Probing Anderson localization using the dynamics of a qubit
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Anderson localization is a consequence of coherent interference of multiple scattering events in the presence
of disorder, which leads to an exponential suppression of the transmission. The decay of the transmission is
typically probed at a given energy or frequency. Here we show that this decay affects the dynamics of a qubit
coupled to the disordered system and we express the relaxation rate of the qubit in terms of the localization
properties. Conversely, adding static disorder to a channel coupled to a qubit will reduce the decoherence rate of
the qubit. Hence, when designing electrodes that couple to qubits, it is possible to improve their performance by
adding impurities to the channel.
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I. INTRODUCTION

The dynamics of simple quantum systems has emerged
as a powerful tool not only in the context of quantum
information processing [1], but more generally in new
quantum technologies [2,3], often referred to as the second
quantum revolution [4]. Both rely on coherent oscillations
between different quantum states. The decay of these oscil-
lations is a sign of decoherence, either through relaxation,
pure dephasing, or a combination of both. The decoherence
rate depends on the coupling to the environment. In solid-
state-based qubits, this environment can be electrical (for
instance, electrical leads or gates), magnetic (spins or magnetic
fluctuations), or vibrational (phonons). In cold atoms, the
decoherence environment is also given by optical absorption
and electromagnetic fluctuations. A great deal of recent
theoretical and experimental activity has focused on various
approaches to decreasing the decoherence rate [5–8].

In the pioneering work of Leggett and co-workers [9], the
authors demonstrated the crucial role of the environment in
the physics of small quantum systems. It was shown that the
coupling of a two-level system (TLS) to an open system of
either bosons (such as phonons) or electrons could effectively
suppress the tunneling of the TLS. The spin-boson model is
commonly studied in this context [10], and the environment
can be described by a spectral function with a power law and an
exponential cutoff. For more structured environments, less is
known about the decoherence rate [11]. The effect of intrabath
interactions was presented in [12], where the authors studied
the decoherence of two coupled spins coupled to the random
transverse Ising model. They found different decoherence rates
depending on the nature of the spin-bath spectrum.

In general, the decoherence dynamics of a single spin
attached to a bath has a long history [13]. Disordered spin
couplings have also been considered [14], as has the relation-
ship between level statistics of the bath and the decoherence
properties of the system [15]. More recently, the coupling of a
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single spin as a probe of many-body localization has also been
considered [16,17]. In other spin systems, the transmission
fidelity of a quantum state through a disordered spin chain has
been studied [18,19], as has quantum communication beyond
the localization length in disordered spin chains using repeated
quantum error corrections [20].

Other systems have been considered as well, including ion
traps [21] and mesoscopic detectors, where it was found that
the conductance is sensitive to the state of a TLS [22]. Here the
relaxation rate was found to be proportional to the resistance
of the measuring device and vanishes at zero temperature
due to the absence of thermal fluctuations [23]. The de-
pendence of the decoherence rate on other parameters such
as the gate voltage has also been measured in experimental
double-dot systems in isotopically pure silicon [24].

In this work, we consider a model of a double quantum dot
(TLS) first coupled directly to a semi-infinite chain (lead) and
then coupled to such a chain via a one-dimensional channel of
finite length, as illustrated in Fig. 1. The semi-infinite chain
is a periodic system without disorder. When the finite channel
is introduced, we consider first a periodic system without
disorder and then introduce disorder into the channel. This
allows us to probe the properties of the disordered chain
as a function of the length and mimics typical experimental
configurations, where the quantum system is weakly coupled
to a mesoscopic conductor before eventually reaching the lead.

In the limit of weak TLS-to-chain coupling, we find that the
decoherence time is given by τφ ∼ R, where R (resistance)
is the inverse transmission coefficient of the lead evaluated at
the eigenvalues of the TLS. This implies that τφ undergoes
mesoscopic fluctuations in analogy to mesoscopic conductors.
The fluctuations are a function of the eigenenergies of the TLS,
which depend on the TLS parameters, such as detuning and
on-site energies.

Interestingly, the TLS can also be used as a dynamic probe
for transport, since measuring the decoherence time is an
indirect measurement of the resistance of the lead, via τφ ∼ R.
Hence we have identified a way to use a time-dependent
measurement to obtain the static resistance of a disordered
quantum wire. Note that the dependence is opposite to the
usual resistance-fluctuation-induced dephasing, which scales
as τφ ∼ R−1 [22]. The difference in scaling is due to thermal
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FIG. 1. The TLS attached to a lead or a gate.

voltage fluctuations, which scale as δV ∼ RT , where T is the
temperature.

Finally, when the TLS is connected to a disordered lead, the
time dependence has recurring oscillations. These are similar
to oscillations observed in some spin-based qubits in double
quantum dots in the two-electron spin blockade regime, where
the electronic spins are coupled to a random nuclear spin
bath [25]. These oscillations can also be observed in other
regimes, beyond the two-electron spin blockade regime, when
the double quantum dot is coupled to a nuclear spin bath [26].
Our model can also be applied to spins coupled to a linear
disordered spin chain using a Jordan-Wigner transformation
[27,28].

The paper is organized as follows. In Sec. II, we briefly
review two elementary systems, i.e., the isolated two-state
system and the semi-infinite uniform chain, to remind the
reader of some known results and to establish notation. In
both cases, the Green’s function is presented. In Sec. III, we
couple these two systems, considering two cases: first, treating
the semi-infinite chain as a gate held at a controllable voltage
and, second, treating it as a lead at the same chemical potential
as the two-state system. In Sec. IV, we consider a tripartite
system, inserting a finite linear chain between the two-state
system and the infinite lead. Again, two cases are considered:
where the finite chain is ordered and where it is disordered.
In the final section, we summarize our findings and discuss
avenues for further work.

II. ISOLATED QUBIT AND SEMI-INFINITE LEAD

A. Isolated TLS

First we consider an isolated qubit, i.e., a TLS governed by
the Hamiltonian

HDD =
(

ε1 τ

τ ε2

)
=

(
ε0 + δ0/2 τ

τ ε0 − δ0/2

)
, (1)

where, for the uncoupled system, εi are the energies of the
basis states |εi〉, ε0 = (ε1 + ε2)/2 is the average energy, and
δ0 = ε1 − ε2 is the energy splitting. The coupling τ is taken to
be real and positive. It is convenient to also define the energy
splitting and the energies of HDD; these are δ =

√
δ0

2 + 4τ 2

and λ± = ε0 ± δ0/2. The corresponding Green’s function in
the uncoupled basis is given by

GDD(E) =
(

E − ε1 −τ

−τ E − ε2

)−1

. (2)

The components are easily evaluated; for instance,

GDD
12 (E) = τ

(E − ε1)(E − ε2) − τ 2

= τ/δ

E − λ+ + i0+ − τ/δ

E − λ− + i0+ , (3)

where the infinitesimal positive quantity 0+ gives the pole
prescription necessary to compute the retarded time-dependent
Green’s function. This is obtained by Fourier transformation,
giving zero for t < 0 while, for t > 0 (with h̄ = 1),

GDD
12 (t) =

∫ ∞

−∞
dE e−iEtGDD

12 (E)

= −2πiτ

δ
(e−iλ+t − e−iλ−t )

= −4πτ

δ
e−iε0t sin(δt/2). (4)

Similarly,

GDD
11 (t) = −2πi

δ
e−iε0t [δ cos(δt/2) − iδ0 sin(δt/2)]. (5)

In the context of qubit experiments, the most commonly
measured quantity is the occupation probability of one of
the states. If we consider a system in state |ε1〉 at t = 0,
then the probability of finding it in the state |ε2〉 at a later
time t is Pε2 (t) = |GDD

12 (t)|2/4π2. Since λ± are real, we get
oscillatory behavior, as expected. In most experiments on
coherent oscillations in TLSs (spin qubits or charge qubits),
Pε2 (t) is the quantity most commonly measured. Hence, many
of the graphs below display |GDD

12 (t)|.
When a qubit or TLS is coupled to a bath, one generally

introduces the reduced density matrix ρr of the TLS [9,10].
The decoherence rate is then associated with the decay of the
off-diagonal element ρr

12(t), while the relaxation rate is given
by the decay of the diagonal element ρr

11(t). In the situation
we consider here, all elements of ρr decay with the same rate
because we consider a weak tunneling coupling to the TLS.
Hence, the decoherence rate τ−1

φ , the relaxation rate, and the
population decay rate are all equal. Indeed, 4π2ρr

11 = |GDD
11 |2

and 4π2ρr
12 = GDD

11 GDD
12

∗
, and, as can be seen from (4) and

(5), the different components of GDD have the same decay
rates, as do the different components of ρr .

In the remainder of this paper, we will use the terminology
of decoherence rate τ−1

φ since it illustrates the coherent nature
of the oscillations of the TLS.

B. Semi-infinite chain

Let us now consider a uniform semi-infinite chain described
by the Hamiltonian

H∞ =

⎛
⎜⎜⎝

0 t0 0 . . .

t0 0 t0 . . .

0 t0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎠, (6)

with t0 taken real and positive. In fact, to reduce clutter,
throughout this paper we will take t0 as the unit of energy by
putting t0 → 1 in (6), so the semi-infinite chain bandwidth is
2. Energies and times are then dimensionless quantities and, to
recuperate dimensionful quantities, we must multiply (divide)
energies (times) by t0.

The Green’s function G∞(E) = (E − H∞)−1 can be de-
termined without difficulty (see, e.g., [29,30]); we are mainly
interested in the surface Green’s function (that for the first
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FIG. 2. Left: The real and imaginary parts of the energy-
dependent surface Green’s function GS

∞. Right: The time dependence
of the surface Green’s function evaluated analytically [(9), blue], as
well its asymptotic time dependence (∼t−3/2), and via numerical
evaluation of the Fourier transform of (7) (red). The excellent
agreement between the analytical and numerical curves was achieved
by integrating over a wide energy range (|E| � 1000) in order to
correctly capture the high-frequency oscillations shown on the right.

site), which is

GS
∞(E) = E − sgn(E + 2)

√
E2 − 4

2
. (7)

The square root is defined to have a positive-imaginary part if
its argument is negative, so

GS
∞(E) = E − i

√
4 − E2

2
if |E| < 2. (8)

The local density of states is given by −Im(GS
∞) and outside

the band GS
∞ → 0 as E → ±∞ (see Fig. 2).

The time-dependent Green’s function is the Fourier trans-
form of (7):

GS
∞(t) = TF

{
GS

∞(E)
} = −2πi

t
J1(2t). (9)

This result is similar to early results on harmonic chains,
such as the Rubin model [31], where a heavy mass M is
coupled to a semi-infinite chain, where the damping kernel is
given by

γ = mωL

Mt
J1(ωLt), (10)

which is equivalent to our (9) above. Here, ωL is the maximum
frequency. The very long time dependence will always be
bound by this limiting behavior, which determines how quickly
a state can escape to infinity (quantum diffusion). In this work,
however, we are more interested in the shorter time scales,
where the decoherence of the TLS is changing exponentially
with time. The exponential behavior eventually saturates to a
power law when reaching the quantum diffusion regime [32].

III. TLS COUPLED TO SEMI-INFINITE CHAIN

Coupling the two systems via a hopping term is achieved
with the Hamiltonian

H =
(

HDD V

V † H∞

)
, (11)

with HDD, H∞ as above and

V =
(

0 0 · · ·
tc 0 · · ·

)
, (12)

with tc taken real and positive. Using standard methods, the
Green’s function for (11) can be found, and in particular
the effect of the semi-infinite chain on the double dot can
be described elegantly by a modified Green’s function for
the double dot:

GDD
∞ (E) =

(
E − ε1 −τ

−τ E − ε2 − �∞(E)

)−1

, (13)

where the self-energy is

�∞(E) = tc
2GS

∞(E)

= tc
2

2
(E − i

√
4 − E2), (14)

the latter expression being valid if |E| < 2.
It is interesting and useful to note that (13) is just the

Green’s function of the isolated TLS (2) with the replacement
ε2 → ε2 + �∞(E) ≡ ε2,∞(E). The individual components of
the energy-dependent Green’s function are then given by (3)
and (4) (and similar expressions for the other components)
with this replacement as well as δ → δ∞(E), λ± → λ±,∞(E),
where δ∞(E) is just δ with ε2 → ε2,∞(E), and similarly
for λ±,∞(E). However, the time-dependent Green’s function
cannot be determined from (4) by a similar replacement since
the energy dependence of the self-energy affects the Fourier
transform in a highly nontrivial manner.

An effective Hamiltonian for the double dot can be read
off (13); it is simply (1) with the replacement ε2 → ε2,∞(E).
From (7), we see that �∞(E) is complex if |E| < 2, giving rise
to a non-Hermitian effective Hamiltonian. This simply reflects
the fact that current can flow between the double dot and the
semi-infinite chain, so from the point of view of the double dot,
probability need not be conserved. Indeed, the time-dependent
double-dot Green’s function shows exponentially decaying
behavior, as we shall now see.

A. Coupling to a gate

To solve the full time dependence and determine the decay
rate, we must evaluate the time-dependent Green’s function
GDD

∞ (t) by taking the Fourier transform of (13). This is
nontrivial due to the energy dependence of the self-energy term
in �∞(E). This will be done in the next section. However,
it is useful to first consider the wide-band limit, where the
other energy parameters tc,τ 	 1. Then the explicit energy
dependence of �∞ can be neglected and we can use �∞(EG),
where EG can be thought of as the on-site potential of the
semi-infinite chain, corresponding to an energy shift of EG

between the band center of the semi-infinite chain and the
TLS. The coupling of the semi-infinite chain will depend
on EG in analogy to a gate potential. We therefore call this
approximation the gate case, in contrast to the more general
lead case considered in the next section, where the full energy
dependence of �∞(E) will be considered. While the gate case
is not particularly useful in and of itself, it is a useful warmup
since the results that follow are relevant to the lead case and it
illustrates nicely our derivation of Eq. (20) in the next section.

We can use the results derived in (4) directly with
the substitution ε2 → ε2,∞(EG). Assuming |EG| < 2, λ±,∞
are complex, so the Green’s function consists of damped
oscillating functions. The slowest exponential determines the
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FIG. 3. Blue line: Gate voltage dependence of the decay rate from
(17). The horizontal lines [black: numerical determination of decay
rate; red: approximate decay rate as given in (20)] are for the lead case,
discussed in the text. The excellent agreement between the two lines
illustrates the validity of the approximation used to derive (20) (see
Appendix A). Parameter values: ε1 = −ε2 = 1, tc = 0.1, τ = 0.19.
The semicircle and the straight line cross at approximately λ±.

decoherence time scale; we find

(τφ)−1 = min
(− 1

2 Im{�∞(EG) ± δ∞(EG)}). (15)

A more explicit expression can be given by defining εG =√
4 − E2

G, in terms of which Im{�∞(EG)} = −tc
2εG/2.

Writing δ∞(EG) = √
a + ib where

a = (δ0 − tc
2EG/2)2 − (tc2εG/2)2 + 4τ 2,

b = 2(δ0 − tc
2EG/2)tc2εG/2,

(16)

we find

(τφ)−1 = tc
2

4
εG −

(√
a2 + b2 − a

8

)1/2

. (17)

The decoherence rate varies with the gate energy, as shown in
Fig. 3.

If the coupling between the double dot and the chain is
weak (that is, if tc

2 	 1), we can expand (17). We find

(τφ)−1 ≈
(

1 − |δ0|
δ

)
tc

2

4
εG, (18)

with corrections of the order of tc
4. Finally, note that if,

in addition, τ 	 |δ0|, then δ ≈ |δ0| and there is an almost
complete cancellation between the two contributions to the
decay rate, giving

(τφ)−1 ≈ tc
2τ 2

2δ0
2 εG, (19)

with corrections of the order of tc
4 and tc

2τ 2. This gives us
the leading-order dependence of the decoherence time. While
the EG dependence of (τφ)−1 assumes the validity of the
wide-band approximation, this is not applicable in general.
However, as we will see in the next section, the exact result has
a nice graphical interpretation in terms of EG. The decoherence

rate of the exact TLS solution is approximately given by
expression (19) when the EG dependence is evaluated at λ±,
the eigenvalues of the TLS as illustrated in Fig. 3.

B. Coupling to a lead

For the case where the semi-infinite chain is a lead, the
situation is more complex since we must use the energy-
dependent self-energy �∞(E). Here we assume that the lead
reservoir is empty; hence, the TLS will eventually leak out
into the empty reservoir. The exact result would consist of
taking the Fourier transform of the components of (13), which
cannot be done analytically. However, if tc

2 	 1, the effect of
the self-energy should be relatively small and we can evaluate
the Fourier transform using an approximation whose validity
is discussed in Appendix A. The approximation amounts to
evaluating the energy-dependent quantities at the poles of
the isolated TLS: �∞(E) → �∞(λ±) and δ∞(E) → δ∞(λ±).
As with the gate, the slowest exponential determines the
decoherence time scale; we find

(τφ)−1 ≈ min
(− 1

2 Im{�∞(λ±) ± δ∞(λ±)}), (20)

which is just (15) with EG → λ±. This result is shown as the
red horizontal line in Fig. 3, where the parameter values chosen
give λ± ≈ ±1.02. Also illustrated (black horizontal line) is the
decay rate obtained by studying the large-time behavior of the
numerically evaluated Fourier transform of (13). The excellent
agreement between the two is a convincing justification of the
approximation used to derive (20) (see Appendix A).

For other parameter values (maintaining tc
2 	 1), (20) can

be expanded in powers of tc
2, which yields

(τφ)−1 ≈ tc
2

4
min

{(
1 ∓ δ0

δ

)

×
√

4 − ε2
1 + ε2

2 + 2τ 2 ± 2ε0δ

2

⎫⎬
⎭, (21)

with corrections of the order of tc
4.

For the special case ε1 = −ε2 = δ0/2 (thus ε0 = 0), the
decoherence rate can be further simplified to

(τφ)−1 ≈ tc
2

4

(
1 − |δ0|

δ

)√
4 − (δ0/2)2 − τ 2, (22)

which is in excellent agreement with (17) for the parameter
values used in Fig. 3.

When comparing the lead case to the gate case, it is
important to note that the decoherence rate is maximal when
the gate potential lies in the middle of the band. Interestingly,
decoherence can be strongly suppressed near the band edges,
even though the density of states in one dimension diverges
there. Physically, the band edge describes the low-energy
modes of a parabolic band. Hence, lowering the Fermi energy
of the gate (or, equivalently, its charge density) leads to a
substantially reduced decoherence rate. This is in contrast to
the lead case, where the decoherence rate is mainly determined
by the coupling strength.

This leads us to the next section, where we insert a finite
chain between the double dot and the lead in order to map
realistic systems.
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IV. TRIPARTITE SYSTEM

We now consider the case illustrated in Fig. 1, where we
insert a finite linear chain (of length N ) between the double
dot and the lead. Two cases are considered: where the finite
chain is ordered and where it is disordered.

A. Ordered finite chain

Suppose the system is described by the Hamiltonian

H =
⎛
⎝ HDD VN 0

V
†
N HN W

0 W † H∞

⎞
⎠, (23)

where HN is an N × N truncation of (6) (with t0 = 1), VN is
a 2 × N truncation of (12), and W is an N × ∞ matrix in the
form of (12) with the substitution tc → tL (assumed real and
positive). Of course, if tL = 1, the finite chain joins seamlessly
with the lead and we must recover the results obtained in
Sec. III. The behavior of the system is more interesting when
we vary tL. In this case, as we shall see, the decoherence rate
depends strongly on the length of the inserted chain.

In order to see this, we follow the procedure of Sec. III,
including the effect of the lead on the chain by adding a self-
energy term to the chain Hamiltonian, so that

H →
(

HDD VN

V
†
N HN∞

)
, (24)

where

HN∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

1 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 · · · 0 1 �′
∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

The self-energy �′
∞ is as in (14) with the replacement tc → tL.

We can repeat this, capturing the effect of the finite chain
including self-energy with a new self-energy added to the
double-dot Hamiltonian. The Green’s function for HN∞ is
defined by

GN∞ = (E − HN∞)−1;

we show in Appendix B that the surface Green’s function (that
for the first site) is

GS
N∞ = sN − �′

∞sN−1

sN+1 − �′∞sN

= sN − tL
2e−iksN−1

sN+1 − tL2e−iksN

. (26)

Here, k ∈ [0,π ] is defined by

2e−ik = E − i
√

4 − E2 (27)

and we have written sin(Nk) = sN , etc.
The self-energy describing the effect of the finite chain and

semi-infinite lead on the double dot is

�N∞ = tc
2GS

N∞ = tc
2 sN − tL

2e−iksN−1

sN+1 − tL2e−iksN

(28)

and the Green’s function for the double dot including these
effects is

GDD
N∞(E) =

(
E − ε1 −τ

−τ E − ε2 − �N∞(E)

)−1

, (29)

which is just (13) with the replacement �∞ → �N∞. Thus,
instead of (20), the decoherence time is given by

(τφ)−1 ≈ min
(− 1

2 Im{�N∞(λ±) ± δN∞(λ±)}), (30)

where �N∞(λ±) is given by (28) evaluated at momenta k±,
which are defined by (27) with E → λ±, and δN∞ is δ∞ with
the substitution �∞ → �N∞.

Appendix A provides a justification of (20) and it is argued
there that this also applies to (30). However, as argued at the
end of that Appendix, the validity of the approximation used
to derive (30) must be considered carefully; the conclusion is
that this equation is valid if tc

2N 	 1.
The simplicity of the substitution �∞ → �N∞ in the above

equations belies the fact that this substitution leads to much
richer behavior, as we will see. However, the added complexity
simplifies in two limits, as it must. First, as mentioned above,
if tL = 1, the finite and infinite chains connect seamlessly,
so GS

N∞ must reduce to GS
∞ [see (8)] and indeed it does, as

straightforward algebra demonstrates. Second, if N → ∞, the
infinite chain decouples and GS

N∞ must again reduce to GS
∞.

Since (26) is a ratio of rapidly oscillating terms, the limit N →
∞ is not obvious, but we can factor out a rapid oscillation (for
example, eiNk) from the numerator and denominator and drop
the rapidly oscillating terms compared to those which are more
slowly oscillating (an approximation known as the rotating-
wave approximation in quantum optics); this procedure shows
that indeed limN→∞ GS

N∞ = GS
∞.

While, in general, Im{�N∞(λ+)} �= Im{�N∞(λ−)} and
this must be taken into account when evaluating (30), the
situation simplifies somewhat if ε1 = −ε2 = δ0/2 (which
we will assume in what follows) because then λ− = −λ+,
k− = π − k+, and Im{�N∞(λ+)} = Im{�N∞(λ−)}.

The decoherence rate (30) can be made more explicit by
first noting that from (28),

Im{�N∞} = − tc
2tL

2s3
1

(sN+1 − tL2sNc1)2 + (tL2sNs1)2
. (31)

Second, if we take |δ0| ∼ 1 and t2
c ,τ 2 	 1, δN∞ can be

expanded in powers of �N∞ (or, equivalently, t2
c ) and τ 2,

giving

Im{δN∞} ≈ − sgn(δ0)

(
1 − 2τ 2

δ0
2

)
Im{�N∞}, (32)

with corrections of the order of t4
c τ 2 and t2

c τ 4. If δ0 is positive
(negative), there is an almost complete cancellation between
the two terms in the upper (lower) sign of (30). Irrespective of
the sign of δ0, we find

(τφ)−1 ≈ τ 2

δ0
2

tc
2tL

2s3
1

(sN+1 − tL2sNc1)2 + (tL2sNs1)2
, (33)

where the trigonometric functions can be evaluated using either
of the momenta k±. (For definiteness, we will use k+ below.)

The decoherence rate (τφ)−1 as a function of N is dis-
played in Fig. 4 for representative values of the parameters
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FIG. 4. (τφ)−1 as a function of the chain length N for ε1 = −ε2 =
1, τ = 0.19, tc = 0.1 (bottom panels), tc = 0.2 (top panels), tL =
0.65. The left graph displays a small range of N , while the right
side shows a wider range. The red circles are from the approximate
expression (30), where the self-energy is evaluated at λ+. The black
dots and lines are obtained by evaluating (τφ)−1 numerically using
the decay of the time-dependent Green’s function. The horizontal line
is the rate obtained in the limit N → ∞ (or, equivalently, tL = 1).
Note that the analytical expression (30) is only valid up to tc

2N ∼ 1,
as discussed at the end of Appendix A. In fact, the agreement is still
quite good throughout the lower panel, although a hint of growing
disagreement can be seen (for instance, compare the black and red
points at the three peaks). The upper panel shows greater disagreement
between the two, as expected.

[for which (33) and (30) are in excellent agreement]. The
strong dependence on N is particularly evident in the left
panel of Fig. 4, which shows several small values of N . The
larger range of N in the right panel of Fig. 4 shows a very
interesting pattern. In fact, the decoherence rate cycles between
three values, each of which is slowly evolving, giving the
appearance of three continuous curves which are translations
of one another. The reason for this can be seen by examining
(33). Viewed as a continuous function of N , the decoherence
rate has period π/k+ ≈ 3.03 for the parameter values used
in the figure. But only integer values of N are sampled in
the figure; N → N + 3 produces only a minuscule variation
in the decoherence rate, apparently slowing down the rate
of change of the function in much the same way as the
spokes of a moving wagon wheel appear slowed down or even
reversed in a movie. Each of the three curves, corresponding
to N = 3j, 3j + 1, 3j + 2 (j ∈ Z), is in fact a horizontally
rescaled, translated version of the periodic behavior of (33).
More precisely, if we define f = (π/k+ − 3)/3 (≈0.01 for
the parameter values used in the figure), the curves are given
by (33) with the replacements N → −Nf, 1 − (N − 1)f, 2 −
(N − 2)f . The period of these functions is 1/f larger than that
of (τφ)−1 (δN ≈ 303 for the parameter values used in Fig. 4).

Resonances occur when the eigenvalues of the chain
closely match those of the double dot, leading to a greatly

FIG. 5. Behavior of Green’s functions for N = 4 (top, off
resonance) and N = 5 (bottom, on resonance) for the same parameter
values as in the bottom panels of Fig. 4. On the left is the energy
dependence and on the right is the time dependence. The black lines
correspond to the full system (double-dot segment lead), as given in
(29), and the red lines correspond to the dot connected to the segment
without a lead [(29) with tL = 0], while the blue line corresponds
to connecting the double dot directly to the lead [(29) with tL = 1].
Note the increased decoherence rate in the resonant case.

enhanced decoherence. Changing the dot energies changes the
oscillation frequency as a function of N . We show in Fig. 5
the details of what occurs for certain values of N .

The decoherence rate can be determined by taking the
Fourier transform of the energy-dependent Green’s function.
We can use the approximate expression for the decoherence
rate (20) to compare the numerical Fourier transform and
the analytical expression, as illustrated for representative
parameter values in Fig. 4.

The main conclusion here is that inserting a linear chain
between the double dot and the lead leads to a nonmonotonic
dependence of the decoherence time. There are resonances
whenever the energies of the chain match the double-dot
energies. This leads to a broadening of the energy dependence
peak, which in turn yields an increased decoherence rate. Away
from these resonances, the decoherence rate is suppressed
and can provide an optimization scheme for decreasing the
decoherence rate.

B. Disordered finite chain

In the previous sections, we only considered the clean
case, where we assumed that the channel coupled to the
TLS is clean without any defects. We now introduce defects
and disorder into the channel as a way to model realistic
experimental systems. We introduce the disorder by adding
uniform uncorrelated random on-site potentials between −va

and va on each lattice site of the chain elements (diagonal
disorder). Adding disorder to the channel typically reduces
the transmission probability due to enhanced scattering,
eventually giving rise to exponential suppression with distance
due to coherent interference (Anderson localization) [33,34].

062114-6



PROBING ANDERSON LOCALIZATION USING THE . . . PHYSICAL REVIEW A 95, 062114 (2017)

FIG. 6. Top: Off-diagonal element of the DD Green’s function
as a function of time for va = 0.5 for two different disorder
configurations 1 and 2. The parameter values used are the same
as in Fig. 4, except for tc = 0.35. The red traces correspond to
having no semi-infinite lead attached to the end of the linear chain
(tL = 0), while the black lines correspond to tL = 0.65. Bottom: Time
dependence of the configurational logarithmic averages |G1,2| ≡
e〈ln |G1,2|〉 for different values of the disorder strength (va = 0, 0.5
and 1). We used 100 different configurations for the disorder average.
The green trace corresponds to the case where no finite chain is placed
between the semi-infinite lead and the TLS.

The transmission will vanish for strong disorder and hence
decouple from the TLS. We will only consider disorder in
the finite chain element, where we can change the length.
This mimics the situation where the TLS is coupled to a
disordered mesoscopic conductor which is then connected
to a macroscopic contact. We start by evaluating the time
dependence of the off-diagonal Green’s function of the TLS,
as was done in the previous sections. We observe an overall
exponential decay, from which we can extract an average decay
rate or decoherence rate (τφ)−1.

As expected, the decoherence rate decreases with increasing
disorder, as illustrated in Fig. 6. However, we also observe
oscillations in the time dependence for certain disorder
configurations with large periods. These oscillations average
out when performing a configurational average. In many
experimental systems, static disorder is not averaged out;
hence, it is expected that some devices would show these
oscillations. Since our linear chain can be mapped onto a spin
chain, with neighboring spin-spin coupling, these oscillations
have possibly the same origin as those observed in spin qubits
coupled to a spin environment (nuclear bath) [25,26]. These
oscillations stem from the buildup of a coherent superposition
after dominant multiple-scattering events. This can lead to
a characteristic period of oscillation of the envelope which
is much longer than the intrinsic TLS oscillation period, as

seen in Fig. 6. Each different disorder configuration leads to a
different resonance condition.

Using Eqs (30) and (32), we can write

(τφ)−1 ≈ −1

2
Im{�N∞(λ+) + δ∞(λ+)}

≈ − τ 2

δ0
2 Im{�N∞(λ+)}

≈ − τ 2

δ0
2

T (λ+)

4Im
{
GS∞(λ+)

} , (34)

where we have used the relation between �N∞(λ+) and the
transmission through the chain as detailed in Appendix C [see
(C5)]. This expression, which is one of our main results, is
an excellent approximation, as illustrated in Figs. 7 and 8.
Hence, knowledge of the transmission evaluated at the TLS
eigenvalue determines the decoherence properties. Expressed
in terms of the two terminal resistance R = 1/T , we therefore
have τφ ∼ R, which directly connects the dynamics of the TLS
to the resistance of the disordered chain.

The decoherence rate (τφ)−1 can be extracted by fitting the
exponential decay, which can be done for different values of the
chain length N . This leads to a dependence similar to that seen

FIG. 7. (τφ)−1 as a function of the length of the disordered
segment. The black dots and lines are obtained by evaluating (τφ)−1

numerically using the decay of the time-dependent Green’s function
for disorder strength va = 0.25. All other parameter values are as
in the bottom panels of Fig. 4. The red circles are obtained by
evaluating numerically the approximate expression (20) with the
self-energy evaluated at λ+. The blue crosses are obtained from
the transmission probability for the disordered segment evaluated
numerically at λ+ using Eq. (34). Clearly, the agreement between
the three methods is excellent. The upper panel is for a single
disorder configuration, whereas in the bottom panel we display
the corresponding ensemble-averaged rate 〈(τφ)−1〉, obtained by
averaging over 100 different disorder configurations. For comparison
purposes, we also show the nondisordered case (va = 0) in the dotted
green line of the lower panel.
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FIG. 8. (τφ)−1 as a function of the length of the disordered
segment using the same parameter values and labels as in Fig. 7,
except for a disorder strength of va = 1. Here the disorder average
was performed over 180 configurations.

in the previous section (see Fig. 5), except that in the presence
of disorder the rate is no longer a quasiperiodic function of N .
Instead, for a given disorder configuration, we observe strong
fluctuations of the rate, as shown in Fig. 7. This is reminiscent
of mesoscopic conductance fluctuations in finite coherent
conductors [35–37]. The transmission can be described via
a probability distribution and scaling behavior [38–40]. In
one dimension, these fluctuations grow faster than the mean,
due to the log-normal distribution of the transmission [34,41].
For the tight-binding model considered here, the average of
the logarithm of the transmission is given by the Lyapounov
exponent λT ≈ (1/2)σ 2/(4 − E2). This result is the lowest
order in disorder strength, where σ is the standard deviation of
the on-site disorder and we have used a bandwidth of 2 (t0 = 1)
[42]. Beyond the inverse Lyapounov exponent (localization
length), the transmission is statistically zero. However, as
discussed above, the transmission is characterized by strong
fluctuations, which can be averaged out by averaging over
different disorder configurations (ensemble average), as shown
in Fig. 7. However, this depends on the disorder distribution.
Certain disorder distributions can lead to ensemble-averaged
fluctuations [43]. Here we used a uniform disorder distribution
and we can observe how the average rate converges towards
quasiperiodic oscillations as a function N , while slowly
decreasing with N .

In general, only the configurational average of the trans-
mission 〈T 〉 can be computed with an analytical expression
(assuming small disorder). Indeed, Pendry showed that for
the disordered tight-binding model, ln 〈T 〉 ≈ −λT N/2, while
〈ln(T )〉 ≈ −λT N , due to the log-normal distribution of the
transmission [44,45]. These results are valid in the limit
N → ∞. For finite N , 〈T 〉 will oscillate with N as shown
in Figs. 7 and 8 before reaching the limiting behavior when
N → ∞ given by the Thouless Lyapounov exponent [42]. For

finite N , we are not aware of an analytic expression for 〈T 〉
as a function of N . Therefore, for a single qubit coupled to
a disordered chain, fluctuations in (τφ)−1 will dominate and
will make it very difficult to predict the decoherence time.
However, if we consider a large number of qubits coupled
to different disordered leads, the average decoherence rate
〈(τφ)−1〉 is proportional to 〈T 〉 [see (34)], but there will be
large fluctuations of the rates between different qubits.

When increasing the disorder strength, as shown in Fig. 8,
we observe a similar behavior as for weak disorder, except
that the average rate tends exponentially to zero at a faster
rate, which is a direct consequence of Anderson localization,
since Anderson localization is characterized by the exponential
decay of the transmission as a function of system length [33].
Hence, the decoherence rate of the TLS is a one-to-one probe
of Anderson localization. Conversely, if we want to decrease
the decoherence rate of qubits, we have developed a simple
scheme to do so effectively. Any lead or gate attached to
the qubit needs to minimize the transmission at the eigenvalues
of the TLS. Only the transmission at these eigenvalues is of any
consequence. For instance, for continuous disordered systems,
the transmission is minimized when the wavelength of the
corresponding energy is comparable to the correlation length
of the disorder potential [46], which provides a natural guide
to reducing the decoherence rate. An interesting application
of using a TLS to probe localization is in the context of
many-body localization (MBL), where finite 1D systems are
usually considered [47]. In [16,17], it was suggested to use a
coupled spin in order to probe these MBL states.

V. CONCLUSIONS

In this paper, a tripartite system consisting of a qubit
(TLS), a finite linear channel, and a semi-infinite chain was
considered. We showed that the decoherence rate of the qubit is
given by the properties of the chain. In particular, the length of
the linear channel leads to resonances in the decoherence rate,
which we computed analytically. Fundamentally, the decoher-
ence rate is shown to depend linearly on the transmission of the
linear channel evaluated at one of the eigenvalues of the TLS.
Adding disorder to the linear chain reduces the decoherence
rate on average, which can be used in order to improve the
performance of qubits coupled to leads or electronic gates.
Since an electronic system can be mapped onto a spin chain,
our results also apply to a couple of spins coupled to a
disordered spin chain, where we observed oscillations with
long periods similar to experimental spin qubits coupled to a
disordered spin bath [25]. Finally, while it is perhaps more
common to measure the decoherence rate by measuring the
transport properties of the lead, the situation can be reversed:
measurement of the decoherence rate of the TLS can be used
to determine the resistance of the lead.

An interesting endeavor is to go beyond a single qubit and
to consider multiple qubits coupled to a disordered channel.
When qubits are coupled to the same infinite bath, this can
lead to a much stronger decoherence rate (superdecoherence)
[48,49]. However, for most cases relevant to experimental
implementations, the scaling remains linear with the number
of qubits [50]. The exact manner in which disorder impacts
the decoherence rate of multiple qubits would be interesting
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to investigate. Moreover, in this work, we only considered the
effect of relaxation on the decoherence rate. Considering pure
dephasing as a mechanism is expected to yield similar results
when coupled to a disordered channel.
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APPENDIX A: JUSTIFICATION OF (20)

As explained in Sec. III B, the energy-dependent Green’s
function of the double dot attached to a semi-infinite lead
is obtained by the substitution ε2 → ε2,∞(E) = ε2 + �∞(E),
with

�∞(E) = tc
2

2
[E − sgn(E + 2)

√
E2 − 4]

= tc
2

2
(E − i

√
4 − E2), (A1)

where in the last line we have assumed |E| < 2. Thus, for
instance, (3) becomes

GDD
12 (E) = τ

δ∞(E)

[
1

E − λ+,∞(E) + i0+

− 1

E − λ−,∞(E) + i0+

]
, (A2)

where

δ∞(E) =
√

(δ0 − �∞(E))2 + 4τ 2, (A3)

λ±,∞(E) = ε0 + 1

2
[�∞(E) ± δ∞(E)]. (A4)

We are interested in the Fourier transform of (A2). Let us
examine the first term (the second being similar). It is

I ≡ τ

∫ ∞

−∞
dE

e−iEt

δ∞(E)(E − λ+,∞(E) + i0+)
. (A5)

Suppose that ε1,ε2,τ are all O(1) and that tc 	 1. Then,
δ∞(E) ≈ δ and λ±,∞(E) ≈ λ±, where δ,λ± are given in
Sec. II A. The first factor in the denominator of (A5) is never
zero and will not affect the frequency of the Fourier transform.
It is the second factor which has a direct effect on the frequency.
Defining σ ≡ tc

2/2, if σ = 0, then λ+,∞(E) = λ+, giving a
simple pole at E = λ+ and a component of the time-dependent
Green’s function of frequency λ+ as in (4). If σ is small (but
nonzero), then presumably there is a zero of the second factor
near λ+, which will dominate the integral. Let this zero be E∗
and suppose it is a simple pole. Then a direct application of
the residue theorem implies

I = const × e−iE∗t .

Let us find E∗ perturbatively in σ . It is the solution of E −
λ+,∞(E) = 0. Writing λ+,∞(E) = λ+ + σg(E) + O(σ 2), it is
easy to show

E∗ = λ+,∞(λ+) + σ 2g(λ+)g′(λ+) + · · · . (A6)

The function g(E) is easily calculated [it is, in fact, GS
∞(E)

given in (7) multiplied by a constant of order 1 for generic
parameter values], but it is not necessary to do so; we need
only note that g(E) and its derivatives are O(1).

If we drop terms beyond linear in σ , we have

I = const × e−iλ+,∞(λ+)t . (A7)

This analysis applied to the second term of (A2) gives the same
conclusion with λ+,∞(λ+) → λ−,∞(λ−). The decay rate of the
Green’s function is therefore determined by Im{λ±,∞(λ±)}.
Given the definition of λ±,∞(E), this completes the demon-
stration of the validity of (20).

In Sec. IV A, we apply the same argument to the tripartite
system with ordered finite chain, leading to (30), which is that
system’s equivalent of (20). However, the domain of validity
of the approximation applied to the tripartite system merits
discussion. For the bipartite system, in neglecting the O(σ 2)
term in (A6) to arrive at (A7), we are neglecting a term of
O(σ 2) compared to one of O(σ ), so this is a reasonable
approximation if σ 	 1, that is, if tc

2 	 1. For the tripartite
system, the function g(E) is once again a constant of order
1 times the relevant Green’s function, now GS

N∞(E) given in
(26). The latter is O(1) but it varies on an N -dependent energy
scale; in particular, its derivative is O(N ). Thus, the final term
shown in (A6) is O(σ 2N ), and neglecting it compared to the
O(σ ) term is reasonable if σN 	 1, that is, if tc

2N 	 1. Thus,
even if σ is tiny, for sufficiently large N the approximation is
not valid. That the validity of the approximation varies with N

is discussed further in Sec. IV A (see, in particular, Fig. 4).

APPENDIX B: DERIVATION OF (26)

The Green’s function GN∞ is defined by the N × N matrix
equation

GN∞(E − HN∞) = I, (B1)

with HN∞ given in (25). In order to streamline the equations
somewhat, we define a “vector” representing the first row of
the Green’s function: gj ≡ (GN∞)1j (the object of interest
being GS

N∞ = g1). Then the first row of (B1) is the following
set of equations:

Eg1 − g2 = 1, (B2)

− gj−1 + Egj − gj+1 = 0 (1 < j < N), (B3)

− gN−1 + (E − �′
∞)gN = 0. (B4)

These equations can be most conveniently solved in terms of
the momentum k ∈ [0,π ] defined by 2e−ik = E − i

√
4 − E2.

The solution of the middle equations (B3) is

gj = Aeijk + Be−ijk,

where the coefficients A and B are determined by the boundary
equations (B2) and (B4). These can be written(

u v

w x

)(
A

B

)
=

(
1
0

)
,
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where

u = v = 1,

w = (eik − �′
∞)eiNk,

x = (e−ik − �′
∞)e−iNk.

The solution is straightforward and, with some algebra, we
find

GS
N∞ = sN − �′

∞sN−1

sN+1 − �′∞sN

,

where we have written sin(Nk) = sN , etc. Note that �′
∞ is

complex and depends on E (or on k); we can write �′
∞ =

tL
2e−ik , which leads to the alternative expression

GS
N∞ = sN − tL

2e−iksN−1

sN+1 − tL2e−iksN

,

completing the demonstration of (26).

APPENDIX C: TRANSMISSION DERIVATION

Here we evaluate the transmission coefficient of a linear
chain of length N between two semi-infinite leads charac-
terized by their surface Green’s function GS

∞, as discussed in
(7). Assuming respective couplings tc and tL between the linear

chain and the left and right semi-infinite leads, the transmission
coefficient is given by

T = 4
(
Im

{
GS

∞
})2

tL
2tc

2|G1N |2, (C1)

where G1N is the off-diagonal element of the Green’s function
connecting the first site to the last site. The first diagonal
element G11 of the finite chain can be approximated to leading
order in tc and tL by

G11 ≈ G0
11 + ∣∣G0

11

∣∣2
tc

2GS
∞ + ∣∣G0

1N

∣∣2
tL

2GS
∞ (C2)

≈ G0
11 + ∣∣GL

1N

∣∣2
tL

2GS
∞. (C3)

We used G0
11 for the first diagonal element when the chain is

not coupled to any leads, while GL
11 is the same element when

the chain is only coupled to the left lead (tc). Since G0
11 is real

inside the band, we have

Im{G11} ≈ ∣∣GL
1N

∣∣2
tL

2Im
{
GS

∞
}
. (C4)

Finally, to leading order in chain-lead couplings, we can write

T ≈ 4ImGS
∞tc

2Im{G11} = 4Im
{
GS

∞
}
Im{�N∞} (C5)

for the transmission coefficient, since G11 corresponds to GS
N∞

in (26).
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