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Attosecond x-ray scattering from a particle-hole wave packet
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We investigate the imaging of electron wave-packet dynamics by measuring the pattern of inelastically scattered
photons. For this purpose, we develop a theory of time-resolved Compton scattering. We demonstrate that, by using
a sufficiently short x-ray pulse, the scattering cross section directly reflects the instantaneous momentum density
of the electron. Therefore, we propose time-resolved Compton scattering as a tool to image electron wave-packet
dynamics in momentum space. To illustrate this, we simulate electron wave packets in argon by using the
time-dependent configuration-interaction singles method. Specifically, we consider coherent particle-hole wave
packets, where the hole is in either the 3p or the 3s shell, and the particle (the excited electron) is either in a
Rydberg state or in the continuum. Our calculations confirm that the dynamics of electron wave packets can
indeed be imaged by measuring the doubly differential Compton scattering cross section. When the x-ray detector
has no energy resolution at all, the contribution of Compton scattering to the differential scattering cross section
becomes stationary. In that case, the motion of the particle and the hole can no longer be inferred from the
scattering pattern.
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I. INTRODUCTION

Scattering particles off a sample has long been used as a
tool to probe the structure and dynamics of matter. Common
choices of particles are neutrons, electrons, or photons, each
having certain advantages and disadvantages [1]. The number
of applications for these techniques is large. In particle physics,
one commonly uses the scattering of subatomic particles in
order to learn about elementary particles and their interactions
[2]. At the other end of the spectrum, neutron scattering can
be used to learn about the properties of solids (e.g., magnetic
properties) [3,4], and x-ray scattering allows us to learn about
the electronic structure of matter [5,6].

Recently, the range of possible applications has increased
even more due to the advent of x-ray free-electron lasers
(XFELs) [7–9] and the advances in the generation of ultrashort
light pulses [10,11]. Schemes have been developed that allow
the generation of x-ray pulses with a duration on the order of
100 as [12–18]. This gives rise to the possibility of probing
the dynamics of electrons on their natural timescale. In the
recent past, there has been a great activity in the field of
attosecond physics. A summary and commentary on those
activities can be found in Refs. [11,19]. A notable success
of the technique of attosecond streaking is the measurement
of the delays of electrons as they are ejected from atoms in
the gas phase [20–22], and from solid-state surfaces [23,24].
Another powerful technique is attosecond transient absorp-
tion spectroscopy, which allowed a real-time observation of
valence-electron wave-packet dynamics [25]. High-harmonic
generation [26] was used to image the hole dynamics in a
molecule for the time between ionization and recombination
of an electron [27]. Finally, charge migration and related
electron wave-packet dynamics are interesting phenomena that
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are currently being investigated in the context of attosecond
physics [28,29].

To image electron dynamics, time-resolved x-ray scattering
has been proposed [30,31]. In Ref. [31], it was assumed that
the scattering pattern is determined solely by the instantaneous
electron density ρ(x,t), according to

dσ

d�
= dσth

d�

∣∣∣∣
∫

ρ(x,t)eiQ·xd3x

∣∣∣∣
2

. (1)

Here, dσth/d� is the Thomson cross section for the scattering
of light by a free electron, and Q = kin − ks is the photon mo-
mentum transfer. This result is a straightforward generalization
of the cross section for scattering from a stationary sample. It
can be obtained from a semiclassical treatment of the scattering
process if one assumes that the x-ray pulse is short enough to
“freeze” the dynamics of the electrons [30]. As a matter of
fact, it was found that the situation is more involved in the
case of time-resolved scattering (see also Refs. [30,32,33]).
A rigorous description of the scattering process, within the
framework of quantum electrodynamics (QED), shows that
Eq. (1) is not valid anymore [30]. Instead, the scattering pattern
is determined by complicated spatiotemporal correlations.
This can be motivated by the fact that an ultrashort pulse has an
unavoidable bandwidth, according to the energy-time uncer-
tainty relation. In consequence, it is impossible to distinguish
coherent-scattering contributions from the inelastic-scattering
contributions. The differences between the semiclassical and
the QED description have been illustrated by Dixit et al. for
a coherent superposition of hydrogen orbitals [30]. The same
has been done by Shao et al. for the case of electron scattering
[34–36]. Both results indicate that the scattering pattern
does not reflect the instantaneous electron density. Rather, it
appears as if the dynamics of the scattering pattern reflects
the instantaneous momentum distribution of the electrons.
Hence, it remains an open question whether time-resolved
x-ray scattering, in the quasielastic regime, can be used to
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image electron motion. An alternative, which allows imaging
of the instantaneous electron density, is time-resolved phase
contrast imaging [37]. However, it will be challenging to
develop detector pixels that are small enough to resolve the
image of small objects such as molecules.

Time-resolved Compton scattering has been discussed
within the framework of the Holstein model, but without a
theoretical analysis of the underlying ultrafast x-ray scattering
process [38]. It has also been proposed as a means to
characterize ultrashort x-ray pulses via a Compton attosecond
streak camera [39]. Theoretical investigations have been
carried out by Shao et al. for the case of electron scattering
[34–36]. In their work, they developed theories for (e,2e)
spectroscopy [34], as well as for energy-resolved electron
scattering [36]. They applied their results to the scattering
from coherent superpositions of hydrogen orbitals.

Here, we propose momentum-space imaging as an alter-
native to the approaches mentioned above. It is known that
the scattering cross section for Compton scattering from a
stationary sample gives access to the electron momentum
distribution [40–43]. Therefore, we develop a QED-based
theory of time-resolved Compton scattering. We find an
expression for the doubly differential scattering cross sec-
tion that is determined only by the instantaneous electron
momentum density. This suggests the possibility to image
electron wave-packet dynamics via time-resolved Compton
scattering. One only has to keep in mind that one no longer gets
information about the real-space electron density but rather
about the momentum-space electron density.

To investigate the feasibility of our proposal, we apply our
theory to electron wave-packet dynamics in argon atoms in a
pump-probe setup. Unlike the previous works on time-resolved
scattering, we do not restrict our investigation to superpositions
of hydrogen-like orbitals. Rather, we consider a setup in which
Ar is irradiated by up to two extreme ultraviolet (XUV) pump
pulses. The resulting particle-hole wave packet is then probed
by x-ray scattering. The first pump pulse excites or ionizes
an electron, mostly from the 3p shell. This gives us the
opportunity to study the ultrafast scattering signal for the wave
packet formed by the ionized electron. A second pulse may
create a coherent superposition of the 3s hole and the 3p0 hole
in the remaining ion. This allows us to study the imaging of
coherent hole dynamics in the remaining ion.

To simulate the complex electron dynamics, we use
the time-dependent configuration-interaction singles method
(TDCIS) [44,45]. This is an ab initio electronic-structure
method. It has been applied successfully to a variety of
processes, such as high-harmonic generation [44,46], pho-
toabsorption spectroscopy [47,48], and optical strong-field
processes [49,50]. In TDCIS, the wave function is restricted to
single-particle single-hole excitations relative to the Hartree–
Fock ground state. Moreover, the full nonrelativistic electronic
Hamiltonian is kept, in order to capture electron-correlation
dynamics.

The structure of the article is as follows: In Sec. II,
we present our theory of time-resolved Compton scattering.
Section III contains a brief introduction to the TDCIS method.
Moreover, it contains details about constructing the electron
instantaneous momentum density, and we discuss how this is
used to calculate scattering cross sections. In Sec. IV, we apply

our theory to investigate electron dynamics in Ar. The first part
of the section is devoted to the dynamics of the wave packet
created by the first pulse. In the second part of the section,
we consider the dynamics of the hole wave packet created by
a sequence of two XUV pulses. Finally, we summarize our
results and give a conclusion in Sec. V.

II. THEORY OF TIME-RESOLVED
COMPTON SCATTERING

A. Formalism

In a typical light-matter scattering setup, the system of
interest can be split into an electronic part and the radiation
field. The dynamics of the electronic system are governed by
the Hamiltonian Ĥmatter. It contains the electron kinetic energy
as well as their attraction by atomic nuclei and the interaction
between electrons. For more complex systems, such as
molecules, one also needs to consider the nuclear dynamics,
which are generally coupled to the electron dynamics. To
describe the electronic part of the system, we shall employ
the formalism of second quantization [51–53]. Electrons can
then be viewed as excitations of a quantum field ψ̂σ . The
corresponding field operators ψ̂†

σ (x) and ψ̂σ (x), respectively,
create and annihilate an electron with spin σ at position x. They
satisfy well-known fermionic anticommutator relations [51].

The dynamics of the radiation field are governed by the
Hamiltonian Ĥrad. Excitations of its eigenmodes are called
photons. They can be described by using a set of annihilation
and creation operators âk,λ and â

†
k,λ fulfilling bosonic commu-

tator relations [51,54,55]. Applying â
†
k,λ (âk,λ) adds (removes)

a photon with polarization vector ελ and wave vector k to
(from) the radiation field. To describe an arbitrary pure state
of the radiation field, the former can be decomposed into a
superposition of multimode Fock states |{nk,λ}〉. The latter are
eigenstates of the photon-number operators n̂k,λ = â

†
k,λâk,λ,

and thus of Ĥrad. They are generated through the action of the
creation operators on the vacuum state |0〉.

In the following derivation, we will be using the Coulomb
gauge (∇ · A = 0). Also, atomic units (h̄ = c = me = e = 1)
shall be employed. When using the principle of minimal
coupling, the interaction between the electron field and the
radiation field takes the form [56]

Ĥint = α

∫
d3xψ̂†(x)

[
Â(x) · ∇

i

]
ψ̂(x)

+ α2

2

∫
d3x ψ̂†(x)Â2(x)ψ̂(x). (2)

The first term (the p · A term) can describe scattering only
in second-order perturbation theory or higher. It is negligible
for photon energies much larger than all inner-shell thresholds
of the electronic system of interest. Since we are interested
in the case of nonresonant scattering, we shall only consider
the second term (the A2 term), which can induce scattering
in first-order perturbation theory. Here, the scattering event
is described as the simultaneous absorption and emission of
a photon at a single interaction vertex. Further simplification
is achieved by making use of the interaction picture. As a
consequence, the dynamics of states are driven solely by Ĥint.
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Generally speaking, calculating the scattering cross section
means calculating the expectation value of a suitably chosen
observable Ô. Let us write the initial state of the system
as a density matrix ρ̂in = ρ̂X

in ⊗ ρ̂el
in, where ρ̂X

in is the initial
density matrix of the radiation field, and ρ̂el

in is the density
matrix describing the initial state of the electronic system. We
calculate the time evolution of ρ̂in in first-order perturbation
theory with respect to Hint. This leads to the following
expression for the expectation value of an observable in the
interaction picture:

〈Ô〉t = Tr [ρ̂(t)Ô(t)]

= Tr [ρ̂inÔ(t)] + 2Re

{
i

∫ t

−∞
dt ′Tr [ρ̂inĤint(t

′)Ô(t)]

}

+
∫ t

−∞
dt ′

∫ t

−∞
dt ′′Tr [Ĥint(t

′)ρ̂inĤint(t
′′)Ô(t)]. (3)

If Ô describes the intensity of photons hitting a detector, there
is a simple interpretation of the different terms. The first term
describes the incoming, unscattered radiation, whereas the last
term [the (1,1) term] describes the scattered radiation. The
second term [the (0,1) term] describes interference between the
scattered and the incoming photons. It can be shown that this
interference term is negligible in the far-field regime. However,
it does play an important role in the near-field regime.
Specifically, it gives rise to the signal used in phase-contrast
imaging [37,57]. On the other hand, the far-field scattering
pattern is determined by the last term. Finally, note the special
case that one considers an initial state ρ̂in = |I 〉〈I | and an
observable that is a projection operator onto some final state
|F 〉. Then, for t → ∞ the (1,1) term gives rise to a transition
rate from |I 〉 to |F 〉 that reproduces Fermi’s golden rule.

B. Scattering pattern

The intensity of scattered radiation can be found by
calculating the (1,1) term of Eq. (3) for a suitable observable.
Possible choices include the quantum-mechanical Poynting
operator [55] and a projection operator onto the photon modes
contributing to the scattering into a given solid angle. Let us
assume that the incoming probe pulse has a small bandwidth, a
small angular spread, and that all contributing modes have the
same polarization. Moreover, we assume that the probe pulse
is short compared with the timescale of the electron dynamics.
Under these circumstances the differential scattering cross
section takes the following form [30,58]:

dσ

d�
= dσth

d�

∑
f

∫ ωmax

ωmin

dωks

ωks

ωin
W1

(
ωin − ωks

+ Eel − Ef

)

×
∣∣∣∣
∫

d3x〈	f |n̂(x)|	el(τdelay)〉eiQ·x
∣∣∣∣
2

. (4)

Here, the electronic system is assumed to be a pure-state
coherent wave packet |	el〉〈	el| and τdelay is the time delay
at which the x-ray pulse interacts with the electronic wave
packet. Eel is the energy of the electronic wave packet, and Ef

is the energy of the final electronic state |	f 〉. The sum extends
over all accessible, final electronic states. The values ωmin

and ωmax, respectively, describe the minimum and maximum
photon energy accepted by the x-ray detector. Finally, we

introduced the function W1(ω) = TR√
8π ln 2

e−T 2
Rω2/(8 ln 2). W1 is

the Fourier transform of the first-order correlation function
of the incoming x-ray pulse. Here, the pulse is modeled as a
coherent pulse. The full width at half maximum of the envelope
of the temporal intensity profile is given by TR .

In the following, let us consider the triply differential
scattering cross section:

d3σc

d�dωks
d�e

= dσth

d�

ωks

ωin

∑
f |�e

W1(ω + Eel − Ef )

×
∣∣∣∣
∫

d3x〈	f |n̂(x)|	el(τdelay)〉eiQ·x
∣∣∣∣
2

, (5)

where we introduced the energy transfer from the radiation
field to the recoil electron ω = ωin − ωks

. It can be obtained
from Eq. (4) by restricting the sum over final states to those
where a recoil electron is emitted into the solid angle d�e and
by dropping the integration over final photon energies. In the
following, we assume that the electronic system, described by
|	el(τdelay)〉, is in a state with a total spin S ≡ 0.

Rather than employing the impulse approximation, in order
to further simplify the expression, we extend the approach of
Ref. [59] to the time-dependent case. We start by employing the
sudden approximation. This means that we assume the final
state to be a product state of recoil electron and remaining
ion |	f 〉 ≈ ĉ†ε,σ |	N−1

n,σ̄ 〉. Here, ĉ†ε,σ creates an unbound recoil
electron in the potential of the ion, with kinetic energy ε,
spin σ ∈ {↑,↓}, and propagating in the direction of �e. The
remaining ion is left in the (N − 1)-electron state |	N−1

n,σ̄ 〉,
where n characterizes the excitation of the ion, and σ̄ is the
spin opposite to σ . Making this approximation implies that
we are neglecting any correlations between the recoil electron
and the remaining (N − 1)-electron system. This is justified
if the kinetic energy of the electron is large compared with
the valence binding energies of the system. By inserting our
ansatz for the final states, we obtain

d3σc

d�dωks
d�e

= dσth

d�

ωks

ωin

∑
n,ε,σ

W1
(
ω − ε + Eel − EN−1

n

)

×
∣∣∣∣
∫

d3x
〈
	N−1

n,σ̄

∣∣ĉε,σ ψ̂†(x)ψ̂(x)|	el(τdelay)〉eiQ·x
∣∣∣∣
2

. (6)

Our approximation is justified if the recoil electron leaves the
system very quickly. Therefore its kinetic energy has to be
much larger than |Eel − EN−1

n |, and the corresponding term
can be neglected in the argument of W1.

Next we expand ψ̂(x) in a basis of one-electron states
{ϕq,σ }:

ψ̂(x) =
∑
q,σ

ϕq,σ (x)ĉq,σ . (7)

Within our model, the state of the recoil electron is not
occupied in the initial wave packet, i.e., ĉε,σ |	el(τdelay)〉 = 0.
In consequence, the matrix elements in Eq. (6) are only
nonzero if the field operator ψ̂†(x) creates an electron in the
corresponding state. ψ̂†(x) can then be replaced by ϕ†

ε,σ (x)ĉ†ε,σ ,
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and 〈	N−1
n,σ̄ |ĉε,σ ψ̂†(x) = ϕ†

ε,σ (x)〈	N−1
n,σ̄ |. Thus, using the time-

dependent Dyson orbitals

gn,σ (x,τdelay) =
∑

q

ϕq,σ (x)
〈
	N−1

n,σ̄

∣∣ĉq,σ |	el(τdelay)〉, (8)

we obtain

d3σc

d�dωks
d�e

= dσth

d�

ωks

ωin

∑
n,ε,σ

W1(ω − ε)

×
∣∣∣∣
∫

d3xϕ†
ε,σ (x)gn,σ (x,τdelay)eiQ·x

∣∣∣∣
2

. (9)

Finally, we make the assumption that the recoil electron can
be described by a plane wave,

ϕε,σ = 1√
V

exp (ipε · x)χσ . (10)

Here, χσ is a two-component spinor with spin σ . Now, the
spatial integral in Eq. (9) just yields the Fourier transform
χ †

σ g̃n,σ (Q − pe,τdelay) of the Dyson orbitals. Keeping in mind
that the (N − 1)-electron states form a complete set, it follows
that ∑

n,σ

|g̃n,σ (P,τdelay)|2 = ρ(P,τdelay), (11)

where P := Q − pe is the momentum transferred to the ion
and ρ(P,τdelay) is the instantaneous momentum density,

ρ(P,τdelay) =
∑
p,q

∑
σ

ϕ†
p,σ (P)ϕq,σ (P)

×〈	el(τdelay)|ĉ†p,σ ĉq,σ |	el(τdelay)〉, (12)

of the electronic wave packet. Combining the previous results
and replacing

∑
ε by V

(2π)3

∫
dε

√
2ε yields

d3σc

d�dωks
d�e

= dσth

d�

ωks

ωin

∫
dε

√
2εW1(ω − ε)ρ(Q − pε,τdelay). (13)

The doubly differential scattering cross section (DDSCS) can
be obtained by integrating over �e:

d2σc

d�dωks

= dσth

d�

ωks

ωin

∫
d3P

×W1

(
ω− P 2

2
− Q2

2
+ P · Q

)
ρ(P,τdelay). (14)

Remarkably, we find that the scattering pattern depends
simply on the instantaneous momentum density of the elec-
tronic wave packet. The finite pulse duration only manifests
itself in the function W1. Note that, when taking the limit of
a long pulse (TR → ∞) and assuming a stationary electronic
state for |	el(τdelay)〉, one recovers the usual expression for the
Compton profile in the impulse approximation [59,60]. Thus,
we can conclude that, under the assumptions made, the usual
picture of Compton scattering from free electrons with a given
momentum distribution ρ(P) can still be applied. However, in
the familiar monochromatic case, the momenta contributing
to the scattering pattern are restricted to a two-dimensional

manifold of momentum space. This is caused by energy
conservation. In the case of short pulses, the incident photons
have various energies determined by the spectral bandwidth of
the pulse. Therefore, all momenta contribute to the scattering
cross section. The strength of their contribution is determined
by the Gaussian function W1(ω − P 2

2 − Q2

2 + P · Q), which
generalizes the energy-conserving term 1

Q
δ(P|| + ω

Q
− Q

2 ),
known from the monochromatic case. Here, P|| refers to the
component of P that is parallel to Q. The bandwidth of the
pulse is determined by its pulse duration TR .

Equation (14) is particularly remarkable when placed in the
context of previous work on time-resolved scattering [30,61].
For elastic scattering with a long pulse from a stationary
electronic state, the scattering pattern gives access to the
modulus squared of the Fourier transform of the electron
density. However, this picture breaks down for short pulses.
For wave packets in hydrogen it seems like the scattering
patterns reflect the electron instantaneous momentum density
instead of their real-space density [30,35,36]. This apparent
connection between the instantaneous momentum density and
the scattering pattern can be understood in terms of our result
for time-resolved Compton scattering.

It should be stressed that there is a distinct difference
between the Fourier picture in coherent scattering and the
momentum-space picture in Compton scattering. One cannot
obtain the real-space density by Fourier transforming the
momentum density. A simple calculation confirms that the
Fourier transformation of the momentum density yields a spa-
tial autocorrelation function rather than the real-space density.

Finally, a comment should be made about energy resolution.
Currently, detectors for imaging experiments at XFEL facili-
ties are designed to measure photons without energy resolution
[62–64]. Therefore, the accessible quantity is the differential
scattering cross section rather than the doubly differential
scattering cross section. This quantity can be obtained, when
integrating the DDSCS over the energies ωks

of the scattered
photons. It can be computed very efficiently when using
the Waller–Hartree approximation [65]. In other words, one
assumes ωks

≈ ωin. Under those conditions, the relationship
between momentum transfer and scattering angle is the same
as in elastic scattering. This approximation is valid whenever
the energy transfer is small compared with ωin. It has been
applied successfully for calculating inelastic structure factors
of various atoms and molecules. Moreover, recent studies of
the static structure factor of carbon show very good agreement
between the result of a direct integration and that obtained
by using the Waller–Hartree approach [66]. Let us assume that
the detector measures all the scattered photons with energies in
the interval [ωmin, ωmax]. Carrying out the integral over ωks

, the
Compton-scattering contribution to the differential scattering
cross section becomes

dσc

d�
= 1

2

dσth

d�

∫
d3P

[
erf

(
TR√
8 ln 2

ω̃max

)

− erf

(
TR

8 ln 2
ω̃min

)]
ρ(P,τdelay). (15)

Here, erf(x) is the error function, and ω̃min,max = ωmin,max −
1
2 (P − Q)2. Now, let us consider the limit in which the
detectors have no energy resolution. In that case, one can
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assume that TR√
2 ln 2

|ω̃min,max| � 1. As a consequence, the error
functions in Eq. (15) become constant for all relevant P and
Q. In consequence, one is left with an integral over the
electron instantaneous momentum density. In this limit, the
differential Compton-scattering cross section is determined
solely by the number of electrons. Since this is a conserved
quantity, the scattering signal due to Compton scattering is
no longer time dependent. This might appear surprising in
the light of the results of Ref. [58], where it was found that,
even without energy resolution, dynamic imaging should be
possible because the scattering probability still depends on the
time-dependent electron pair-correlation function. However,
this is no contradiction because our derivation only considers
those contributions in which an electron is scattered into a
state that can be modeled as a plane wave. The remaining
contributions to the scattering pattern still depend on τdelay.
Those also include contributions due to coherent scattering.
For sufficiently small values of Q, this contribution is expected
to become dominant because it grows quadratically with the
number of electrons. On the other hand, Compton scattering
is dominant for large values of the momentum transfer.

The results obtained here rely on the fact that we model
the final state of the recoil electron as a plane-wave state. This
implies that the state of the recoil electron is assumed to be
independent of the parent ion. Strictly speaking, this picture is
only valid if the kinetic energy of the recoil electron, after scat-
tering, is much larger than its binding energy, before the scatter-
ing. Thus one requires large energy transfers or, equivalently,
〈pi 〉
Q

� 1. Here, 〈pi〉 is the mean momentum of an electron in
the orbital |ϕi〉. This is a strong assumption, and it cannot be
expected that it is always fulfilled. In the case that it is not, it is
no longer clear that the differential Compton-scattering section
should be stationary. For stationary targets comparisons of
theory and experiment have been done [43]. These show that
the impulse approximation still yields satisfactory results for
〈pi 〉
Q

� 1. In consequence, Eqs. (14) and (15) should yield good
results for the scattering of x-ray photons from valence elec-
trons and from free electrons. When the assumptions made are
valid, our results are useful for time-resolved imaging studies.
Consider the case that only valence electrons undergo dynam-
ics while inner-shell electrons remain stationary. In that case,
changes in the scattering pattern are only caused by photons
that scatter from valence electrons or from excited electrons.
If we focus on those electrons, our assumptions should be
well fulfilled except for very small photon energy transfers.
In an experiment, the relevant signal could be extracted by
first measuring a scattering pattern when the system has not
yet been excited. By only considering the changes in the sub-
sequent scattering patterns, one eliminates the contributions
from scattering by the strongly bound, stationary electrons.

III. COMPUTATIONAL METHOD

A. Time-dependent configuration-interaction singles method

To simulate the dynamics of the electronic system, we
use the time-dependent configuration-interaction singles
method (TDCIS) [44,45]. It has been applied successfully
in the investigation of many ultrafast processes in intense
light pulses [29,44,46,47,67]. In this approach, the wave

function of the many-body system is expanded in terms
of the Hartree–Fock ground state of the system |�0〉 and
1-particle-1-hole (1p1h) excitations. The latter are formed by
acting with one creation and one annihilation operator on the
Hartree–Fock ground state:∣∣�a

i

〉 = ĉ†aĉi |�0〉. (16)

Here and in the following, indices i,j refer to spin orbitals that
are occupied in |�0〉, whereas a,b refer to orbitals that are not
occupied. Using time-dependent coefficients, the many-body
wave function is written as

|	(t)〉 = α0(t)|�0〉 +
∑
i,a

αa
i (t)

∣∣�a
i

〉
. (17)

This comparably simple ansatz already captures a great deal
of the electronic correlations and excitations. This can be
concluded from the good agreement between theoretical and
experimental results (see also Ref. [48]). Note that TDCIS does
not capture many-electron processes such as the Auger decay
of a 1p1h excitation. This could be achieved by including
higher-order excitations in the ansatz for the wave function.
However, a larger basis set increases the numerical effort
necessary to solve the problem. Besides that, there are other
conceptual advantages to configuration-interaction singles.
First, the Brillouin theorem assures that the Hamiltonian
of the electronic system is block diagonal with respect to
the Hartree–Fock ground state and the 1p1h states. Thus,
any coupling between |�0〉 and a 1p1h state is due to the
interaction with the light field. Second, it allows for the very
intuitive picture that the hole index i corresponds to the ionic
eigenstate, making use of Koopmans’ theorem. This picture is
not valid in the case of higher-order configuration interaction
[68]. Within the TDCIS framework, the expectation value
of one-particle operators, such as the electron density, can
be calculated very easily. Also, one has access to the ionic
density matrix [29,44]. This allows us to investigate the
degree of coherence between different ionic channels.

The Hamiltonian of the electronic system is given by

Ĥ (t) = F̂ + V̂C − V̂HF − EHF − E(t)ẑ. (18)

Here, F̂ is the Fock operator, which fulfills F̂ |ϕp,σ 〉 =
εp|ϕp,σ 〉. V̂C is the Coulomb interaction between electrons,
V̂HF is the Hartree–Fock mean-field potential, and EHF is the
Hartree–Fock ground-state energy. Finally, ẑ is the dipole
operator, and E(t) is the electric-field component of the
probe pulse. Note that we neglect spin-orbit coupling. The
interaction between electrons and the radiation field is now
described in the length gauge. Also, we assume the pump
pulse to be polarized along the z direction, and we make use
of the dipole approximation. The result for the wave packet
might change slightly if it was calculated in velocity gauge.
This is due to the fact that the p · A operator can couple
to higher excited states than the dipole operator in length
gauge [45]. Note that this choice of gauge is not a problem
as long as we consider the probe process separately from
the pump step. This is valid as long as the temporal overlap
between pump and probe pulse is small. In that case, one can
simply gauge transform the electronic wave packet into the
velocity gauge. It is clear that such a transformation leaves the
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scattering cross section invariant because it changes neither
the instantaneous momentum density nor the transition matrix
elements 〈ϕk|n̂(x)|ϕl〉.

By projecting the Schrödinger equation onto the Hartree–
Fock ground state and onto the 1p1h states, one obtains
the following equations of motion for the time-dependent
coefficients [44]:

iα̇0(t) = −
√

2E(t)
∑
i,a

αa
i (t)zi,a, (19)

iα̇a
i (t)= (εa−εi)α

a
i (t)+

∑
i ′,a′

αa′
i ′ (t)(2va,i ′,i,a′ − va,i ′,a′,i)

− E(t)

[√
2α0(t)za,i +

∑
a′

αa′
i (t)za,a′ −

∑
i ′

αa
i ′(t)zi ′,i

]
.

(20)

Here, all indices refer to purely spatial orbitals. The matrix
elements are defined as zp,q = 〈ϕp|ẑ|ϕq〉, and vp,q,r,s =
〈ϕpϕq |1/r̂12|ϕrϕs〉. The Hartree–Fock orbitals are written as
a product of spherical harmonics Yl,m(θr ,φr ) and a radial
function Rn,l(r) = un,l (r)

r
. To adequately describe the problem,

one needs a radial grid with sufficient density near the atomic
nucleus (r = 0) as well as far away from the nucleus. Hence,
the calculations were carried out using primitive points on a
Gauss–Lobatto grid, which were then mapped to the actual
grid. Details can be found in Ref. [44]. For our calculations,
the mapping parameters were ζ = 1.0 and L = 75.0, such
that r ∈ (0.0,150.0) a0.

B. Calculation of the Compton-scattering cross section

After solving the TDCIS equations of motion, the instan-
taneous momentum density can be constructed. To do so, one
first needs to find the momentum-space representation of the
Hartree–Fock orbitals. By performing the Fourier transform,
the following result is obtained for an orbital with quantum
numbers n, l, and m:

ϕn,l,m(p,θp,φp) = −
√

2

π
(−i)lYl,m(θp,φp)

×
∫ ∞

0
dr run,l(r)jl(rp), (21)

where jl(x) is a spherical Bessel function of the first kind and
Yl,m(θp,φp) is a spherical harmonic [69].

The calculation of the radial integrals in Eq. (21) is
challenging. Strongly bound orbitals, such as the 1s orbital,
are very delocalized in momentum space. However, at high
momenta, the spherical Bessel functions become more and
more oscillatory. Therefore, a large number of radial grid
points is needed to assure convergence. On the other hand,
this large number of grid points slows down the TDCIS
calculations considerably. Therefore, the TDCIS equations of
motion were solved by using 1000 radial grid points. Then,
the orbitals were interpolated to a suitable integration grid by
using cubic splines.

Another important aspect for the convergence of the
Compton-scattering signal is an adequate choice of grid points
in momentum space. Unoccupied electron states have a peaked

structure in momentum space. However, they also display
some oscillations. These stem from the fact that one is taking
the Fourier transform of a function on a finite-size grid. To
keep the orbitals normalized, it is necessary to choose a
momentum-space grid that is dense enough to capture the
aforementioned oscillations. The period of those oscillations
could be reduced by increasing the grid size, thus improving
the resolution in momentum space. However, when increasing
the grid size, one needs to increase the number of spatial grid
points as well. Moreover, this would increase the number of
orbitals that one has to consider. To check if our resolution in
momentum space is sufficient, we did calculations on a grid
with up to four times the extension of the original grid. These
did not show any deviations in the momentum-space density.
Hence, our resolution in momentum space appears to be good
enough to adequately capture the dynamics of our system.

With the instantaneous momentum density at hand, we
use Eqs. (14) and (15) to calculate the DDSCS and the
differential scattering cross section, respectively. Note that our
system of interest has cylindrical symmetry with respect to the
pump polarization axis. Therefore, it is sufficient to sample
the instantaneous momentum density at various θp and for
one fixed value of φp. However, note that we still need to
compute the full three-dimensional integrals in Eqs. (14) and
(15) numerically. There does not appear to be a simple way
to factor out the integral over φp. The angular integrals are
carried out by using Simpson’s rule. As done in the TDCIS
implementation used here, the radial integrals are carried out
by using the Lobatto quadrature scheme. For our calculations
we used a uniform θp grid with 63 points. The integrals over
φp were carried out by using 127 equidistant grid points.

IV. DYNAMICS OF Ar

In this section, we apply our theory and investigate
x-ray imaging of electron dynamics in argon. Many earlier
works on time-resolved scattering illustrated their results
by using comparably simple systems [30,34,35,37,58,61,70].
Particularly popular choices are coherent superpositions of
hydrogen orbitals. Depending on the symmetry of the orbitals,
one obtains different dynamics (e.g., wiggling or breathing
modes), which can then be probed by the scattering scheme
at hand. There are some works, on resonant x-ray scattering,
that deal with more complex systems, such as Br2, (KBr)108,
and (Ge)83 [71,72]. In all earlier works on attosecond
x-ray scattering, the preparation of the initial states was not
considered explicitly. In contrast, we explicitly consider the
preparation of the electronic wave packet. Specifically, we
apply our theory to argon atoms, where multichannel effects
may be expected. To follow the electronic dynamics, under up
to two pump pulses, we use the ab initio method TDCIS.

A. Results for one pump pulse

By using the scheme described above, we investigate
the dynamics of argon atoms after irradiation with a single
attosecond XUV pulse centered at t = 0. The mean photon
energy of the pulse is ω1 = 30 eV, and the pulse duration is
80 as. The peak electric-field strength of the pulse is 90 GV/m.
The electric field of the pulse is plotted in Fig. 1(b). The mean
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FIG. 1. Elements of the ionic density matrix for atomic Ar driven
by an XUV pump pulse. Panel (a) shows the populations of the
Hartree–Fock ground state (solid black line), the 3s hole (dotted-
dashed blue line), and the 3p0 hole (dashed red line), respectively. In
panel (b) we show the degree of coherence between the 3s and the
3p0 holes (dotted-dashed blue line) and the pump electric field (solid
gray line).

photon energy is high enough to ionize electrons from the
3s shell (ε3s = 29.2 eV) as well as from the 3p shell (ε3p =
15.7 eV) [73]. Inner-shell electrons have a binding energy
larger than 248 eV, which lies well beyond the bandwidth
of the pulse. In Fig. 1(a), the hole populations for some
valence orbitals are shown. One sees that ionization takes place
primarily from the 3p orbitals. The population of the 3s hole
is very small.

Figure 1(b) also shows the degree of coherence between the
3s and 3p0 holes. This quantity can be defined as [25,29,44]

gi,j (t) =
∣∣ρIDM

i,j (t)
∣∣√

ρIDM
i,i (t)ρIDM

j,j (t)
, (22)

with ρIDM
i,j being the elements of the ionic density matrix.

One can see that hardly any coherence is built up between
the 3s and 3p0 holes. In order for coherence to build up, the
excited electrons of the 1p1h states need to be in the same one-
particle state. This can be achieved via multiphoton processes,
as has been demonstrated by Goetz et al. [74,75]. For the
large electric-field strengths considered here, it is possible that
electrons with the same angular momentum are excited from
both the 3s and the 3p0 orbital. However, in most cases they
will have a different energy and therefore cannot contribute to
building up coherence.

In Figs. 2(a)–2(d), we show the DDSCS at delay times
τdelay = 6.9 a.u., 10.9 a.u., 13.9 a.u., and 36.9 a.u., respectively.
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FIG. 2. DDSCS for energy transfer ω = 100 eV and TR = 23.5
as at delay times (a) τdelay = 6.9 a.u., (b) 10.9 a.u., (c) 13.9 a.u., and
(d) 36.9 a.u. in units of dσth/d�. The y component of the momentum-
transfer vector is set to zero.

Here, the energy transfer was fixed to a value of 100 eV. The
dynamics take place for momentum transfers smaller than
5 a.u. If one chooses an initial photon energy of 20 keV,
one can safely assume that ωks

ωin
≈ 1. The range of values for

the momentum transfer then translates into scattering angles
ranging from 0◦ to 60◦. It is desirable to have a small bandwidth
of the probe pulse. In that way, for each Q, the DDSCS probes
only a small slice of the instantaneous momentum density.
However, one must take care that the pulse remains short
enough to freeze the electronic wave packet. Here, the probe
pulse duration TR was fixed to a value of 23.5 as. For the
results in this work, we assumed that the polarization of the
probe pulse coincides with the z direction. The dependence of
the differential scattering cross section and the DDSCS on the
wave vector of the incoming x-ray pulse is contained solely in
the Thomson scattering cross section. The remaining factor,
which contains the information about the electronic system, is
invariant with respect to rotation about the z axis. Moreover,
we set Qy = 0. Thus, we display the DDSCS for a Euclidian
plane in Q space. Typical scattering experiments usually probe
more complicated manifolds, such as cuts through the Ewald
sphere for the case of purely coherent scattering.

As mentioned in Sec. II B, the DDSCS was calculated
by using the instantaneous momentum density with the
contribution of the Hartree–Fock ground state subtracted.
Hence, only changes in the DDSCS with respect to the
ground state are shown. The scattering patterns all show a
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positive-valued ring, which is centered at Q ≈ √
2ω ≈ 2.7 a.u.

The ring is surrounded by two regions with a negative signal.
Second, it should be noted that the scattering pattern is not
symmetric. In that respect, the Compton DDSCS differs from
the differential coherent scattering cross section [Eq. (1)],
which is centrosymmetric according to Friedel’s law. Finally,
both the positive-valued ring and the negative-valued regions
around it seem to oscillate with time.

In the following, we explain how those features men-
tioned above arise from characteristic features of the electron
momentum-space density. For this purpose, let us consider the
following decomposition of the momentum-space density in
terms of the Hartree–Fock ground state ρ0(p), the density of
the excited electron ρelec(p,t), and the density of the ionic hole
ρhole(p,t):

ρ(p,t) = ρ0(p) + ρelec(p,t) − ρhole(p,t)

+ 2Re

{
α0(t)

∑
i,a

αa
i (t)ϕi(p)∗ϕa(p)

}
. (23)

Besides the densities of the excited electron and the ionic hole,
there also appears an interference term between the excited
electron and the hole. We show the different contributions in
Fig. 3. Additionally, we show the sum of all three contributions
in Figs. 3(m)–3(p). This corresponds to the changes of the
electron momentum-space density with respect to the Hartree–
Fock ground state. In all panels, we multiplied the respective
contribution to the momentum-space density by the Jacobian
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FIG. 3. Contributions to the electron momentum-space density.
Panels (a)–(d) show the momentum-space density of the excited
electron [p2 sin(θp)ρelec(p,t)] at delay times (a) τdelay = 6.9 a.u.,
(b) 10.9 a.u., (c) 13.9 a.u., and (d) 36.9 a.u. (d). In panels (e)–(h) we
display the momentum-space density of the hole [p2 sin(θp)ρhole(p,t)]
at the same delay times. Panels (i)–(l) contain the contribution of the
interference term in Eq. (23) [multiplied by the Jacobian p2 sin(θp)],
and panels (m)–(p) show the sum of all three contributions. Note that
panels in the same column all refer to the same delay time.

p2 sin(θp). First of all, it can be seen from Figs. 3(a)–3(d)
that the momentum-space density of the excited electron is
restricted to momenta with a magnitude smaller than 1.4 a.u.
On the other hand, the momentum-space density of the ionic
hole is more smeared out and extends up to momenta with a
magnitude larger then 2 a.u., as can be seen in Figs. 3(e)–3(h).
This behavior is a consequence of the fact that bound orbitals
are strongly localized in real space. Hence, their Fourier
transform will be more smeared out than that of an orbital
that is not occupied in the Hartree–Fock ground state. To
understand the ring structure of the DDSCS, note that the
function W1 in Eq. (14) is positive for all real arguments.
Hence, there is a close connection between the signs of the
DDSCS and the instantaneous momentum density. If the sign
of the DDSCS is positive (negative), this means that the
instantaneous momentum density is mainly positive (negative)
at the momentum-space points that contribute to it. Moreover,
one can see that the function W1 in Eq. (14) can take its
maximum value even for P = 0, given that Q ≈ √

2ω is
fulfilled. This magnitude of Q corresponds approximately
to the mean radius of the positive-valued ring. The more Q

deviates from this value, the larger P needs to be, in order
for W1 to take on its maximum value. Hence, the regions of
momentum space that are occupied by the excited electron
can only be probed by momentum transfers with a magnitude
in a small interval around Q ≈ √

2ω. On the other hand, the
momentum-space density of the hole can also be probed by
other momentum transfers Q because it extends into other
regions of momentum space. Of course, one needs to consider
the particle-hole interference term in Eq. (23), as well. As
can be seen in Fig. 3, it can have a large influence on the
total momentum-space density. However, the argument made
above can still be applied. The interference term can only have
a nonzero value if both the orbitals of the excited electron
and the hole are nonzero at the considered momentum-space
point. Additionally, one can also see the larger delocalization
of the hole contribution in the total momentum-space density
in Figs. 3(m)–3(p). Therefore, we conclude that the ringlike
structure of the DDSCS reflects the fact that the instantaneous
momentum density of the excited electron is localized at small
momenta, whereas the instantaneous momentum density of the
ionic hole also extends to momenta with a larger magnitude.

The asymmetry of the DDSCS directly results from the
asymmetry of the electron momentum distribution. When
comparing Fig. 2 with Figs. 3(m)–3(p), we can see that, when-
ever the upper half volume of momentum space (θp � π/2) is
occupied mainly by the excited electron [ρ(p,t) − ρ0(p) > 0],
the positive-valued ring is more pronounced for momentum
transfers with Qz > 0, and vice versa. The same relationship
holds for the outer negative-valued ring. As we can see,
it is more pronounced for negative values of Qz when the
momentum-space density is mainly negative in the lower half
volume, and vice versa. From a physical point of view, it
might be surprising that the electron momentum-space density
is that asymmetric in the first place. We see that the hole
density displays only a slight asymmetry. This asymmetry
stems from the overlap between the 3s and 3p orbitals, which
have opposite parity. However, the asymmetry is necessarily
small, because of the small population of the 3s hole state.
As a consequence, this slight asymmetry cannot explain

062107-8



ATTOSECOND X-RAY SCATTERING FROM A PARTICLE- . . . PHYSICAL REVIEW A 95, 062107 (2017)

the pronounced asymmetry visible in Figs. 3(m)–3(p). The
momentum-space density of the excited electron does not
display any visible asymmetry. Theoretically speaking, it is
possible that asymmetry arises when an electron from the
same occupied orbital can be excited into a number of states
with different parity due to multiphoton effects. However,
these excited states have different energies and are separated
in momentum space. Hence, they have no notable overlap,
and therefore they cannot contribute to an antisymmetric
contribution to the momentum-space density. The pronounced
asymmetry of the instantaneous momentum density is caused
by the interference term between the excited electron and
the ionic hole. For a one-photon process, the excited electron
always has a parity opposite to that of the remaining hole, due
to dipole selection rules. Note that the product of two orbitals
with the same parity is necessarily symmetric. Hence, we see
that the instantaneous momentum density is not symmetric,
even if all excited electrons (holes) would behave the same
under inversion.

Lastly, let us consider the temporal oscillations visible in
Fig. 2. As we can see, both the momentum-space density of
the excited electron and of the ionic hole change little with
time. The dynamics of the momentum-space density, which
correspond to the dynamics visible in the DDSCS, are largely
driven by the interference term between the excited electron
and the ionic hole. As we can see, the interference term displays
oscillations with respect to p. Their frequency grows as time
increases. This can be explained with the time evolution of
the interference term, which is given by cos(εa − εi)t . For
free electrons, with momentum p, εa is given by p2/2. Thus,
the interference term between the ionic hole and the excited
electron will be proportional to cos( p2

2 t + φ̃). This causes
oscillations with respect to p whose frequency increases with
time. Additionally, one can see oscillations with respect to θp.
Those can be attributed to the parity of the hole orbital. The
XUV pulse creates mainly holes in the 3p orbitals. These
change their sign under inversion, which gives rise to the
observable oscillations.

The interference term has interesting consequences for
the dynamics that can be seen in the DDSCS. For small
times, one expects that the interference term gives a large
contribution. This is especially true when the ground state is
only weakly depopulated because then |α0(t)| � |αa

i (t)| holds
for all indices (i,a). With increasing time, its contribution is
expected to become small because the integral in Eq. (14) has
to be performed for a more and more oscillatory function.
This effect can be seen very clearly in Fig. 4. There, we
display cuts through the DDSCS with the x component of the
momentum transfer fixed to a value of 0.07 a.u. Figure 4(a)
shows cuts for the same delay times as in Fig. 2. We can
see complex dynamics. The maxima oscillate while changing
magnitude. At τdelay = 10.9 a.u., a broadening of the profile
can be seen, and a second structure appears next to the
peaks. In Fig. 4(b), we plot the same quantity for delay times
45.9 a.u., 49.9 a.u., and 66.9 a.u. One can see that shape,
position, and height of the peaks change only slightly. This
indicates that, for short times, the dynamics in the DDSCS
are largely driven by the interference term between the ionic
hole and the excited electron. For larger times, its contribution
decreases, and the DDSCS becomes almost stationary. A
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FIG. 4. Cuts through the DDSCS for Qx = 0.07 a.u. and
Qy = 0 a.u. Energy transfer ω and pulse duration TR are the same as
in Fig. 2. The delay times displayed are (a) τdelay = 6.9 a.u, 10.9 a.u.,
13.9 a.u., and (b) 45.9 a.u., 49.9 a.u., 66.9 a.u. The DDSCS is given
in units of dσth/d�.

similar effect would be expected when using a simple Fourier
picture. In that case, the overlap between the excited electron
and the parent ion naturally becomes smaller when the electron
moves away from the nucleus. However, the corresponding
signal has a different physical origin, in both cases. In the case
of coherent scattering, the decreasing overlap reflects how the
excited electron moves away from the parent ion. In Compton
scattering, the corresponding signal reflects the dispersion
of the wave packet describing the ionized electron. Note
that the contribution of the interference term will not vanish
completely. In general, the oscillations will not cancel each
other completely, if the bandwidth of the pulse is sufficiently
small. Moreover, the excited electron can also occupy Rydberg
states. Those are stationary states with a discrete eigenenergy.
Thus, the argument made above does not apply and we cannot
expect that the interference term between such a state and a
hole state displays similar oscillations.

In the example considered here, we found three effects
which characterize the appearance and the dynamics of the
DDSCS. All of them are related to different aspects of the
electron instantaneous momentum density. This illustrates
the potential of time-resolved Compton scattering. Moreover,
our results show how time-resolved scattering patterns can
change when considering a more complex system. If one
considers only coherent superpositions of one-electron states,
this is equivalent to considering only an excited electron
but neglecting the remaining electrons in the parent ion.
However, interference with the residual ion notably influences
the dynamics of the system and also the scattering patterns.
Only for larger times can the dynamics of the bound electrons
be treated separately from those of the ionized electrons.

In Fig. 5, we show the real-space density [r2 sin(θr )ρ(x)]
with the density of the Hartree–Fock ground state subtracted.
One can clearly see how a particle-hole wave packet is formed
and how the particle propagates away from the residual ion
while dispersing. In Fig. 5(a), one sees that the density of the
excited electron is asymmetric, while it is still in the vicinity of
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FIG. 5. Real-space density [r2 sin(θr )ρ(x)] at delay times
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The result for the Hartree–Fock ground state has been subtracted.

the parent ion. For larger times, the overlap between the particle
and the hole becomes small and the density of the excited
electron becomes symmetric. Similarly, one sees dynamics in
the negative part of the real-space density for short times after
the interaction with the XUV pulse [Figs. 5(a)–5(b)]. For larger
times the changes become small.

B. Results for two pump pulses

As can be seen in Fig. 1, there is only a small degree of
coherence between the 3s and the 3p0 hole, after excitation of
the argon by one XUV pulse. Moreover, the 3s hole remains
almost unpopulated. To increase the degree of coherence,
we use a second pulse that is in resonance with the 3s-3p0

transition (ω2 = 13.47 eV) of the argon ion. The peak electric-
field strength is 84 GV/m, and the pulse has a duration of
200 as. The electric field of the pulse sequence is plotted in
Fig. 6(b). The duration of the second pulse is chosen in such
a way that population is transferred from the 3p0 hole to the
3s hole until both states have a similar population. In Fig. 6(a)
we plot the population of the Hartree–Fock ground state and
some valence-shell holes. Moreover, we plot the degree of
coherence between the 3s and 3p0 holes in Fig. 6(b). One
sees that the degree of coherence is increased to ≈0.8 after
interaction with the both pulses. Also, the population of the 3s

hole is increased to 0.16 due to population transfer from the 3p0

hole. However, one also sees that the population of the 3p0 hole
is increased to a value slightly higher than 0.2 instead of being
reduced. Alongside with this, one sees a rapid depopulation
of the Hartree–Fock ground state. Note that the mean photon
energy of the pulse is lower than the ionization threshold of
argon. Nevertheless, a certain amount of ionization can take
place due to higher-energy photons within the bandwidth of
the second pulse.

We also find a depopulation of the ground state when
only the second pulse interacts with argon atoms in their
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FIG. 6. Elements of the ionic density matrix for atomic Ar excited
by a sequence of two XUV pulses. Panel (a) shows the populations of
the Hartree–Fock ground state (solid black line), the 3s hole (dotted-
dashed blue line), and the 3p0 hole (dashed red line). In panel (b) we
show the degree of coherence between the 3s and 3p0 hole (dotted-
dashed blue line) and the XUV electric field (solid gray line).

Hartree–Fock ground state. The same is true for longer
pulse durations and even for a quasimonochromatic pulse.
Therefore, the depopulation cannot be caused solely by the
high-energy photons within the bandwidth of the second
pulse. The additional excitations can be explained with
the occupation of Rydberg states. Indeed, the photoabsorp-
tion spectrum of argon shows Rydberg lines at 11.9 and
14.1 eV [48]. The second one of those is separated by only
0.6 eV from the mean photon energy of the second XUV pulse.
When varying the intensity of the second pulse, we find that
the depopulation grows linearly for intensities smaller than
13 TW/cm2. For larger intensities, it grows more slowly due
to saturation. This observation suggests that the additional
depopulation of the ground state is not caused by multiphoton
absorption. Thus, we conclude that the excitation of Rydberg
states is responsible for the depopulation of the ground state.

In Fig. 7 we show the different contributions to the electron
momentum-space density introduced in Eq. (23). As one can
see in Figs. 7(a)–7(c), the instantaneous momentum density of
the excited electron remains fairly stationary. It shows different
bands due to the different kinds of excitations created by the
two pump pulses. On the other hand, one can observe an up-
and-down motion in the instantaneous momentum density of
the ionic hole [Figs. 7(d)–7(f)]. This wiggling motion appears
because the pulses create an almost coherent superposition of
two states with opposite parity. In the sum of all contributions
[Figs. 7(j)–7(l)], we see that the overall appearance of the
momentum-space density is determined mainly by ρelec(p,t)
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FIG. 7. Contributions to the electron momentum-space density.
Panels (a)–(c) show the momentum-space density of the excited
electron [p2 sin(θp)ρelec(p,t)] at delay times (a) τdelay = 51.2 a.u.,
(b) 55.2 a.u., and (c) 58.2 a.u. In panels (d)–(f) we display the
momentum-space density of the hole [p2 sin(θp)ρhole(p,t)] at the same
delay times. Panels (g)–(i) contain the contribution of the interference
term in Eq. (23) [multiplied by the Jacobian p2 sin(θp)], and panels
(j)–(l) show the sum of all three contributions. Note that panels in the
same column all refer to the same delay time.

and ρhole(p,t). In contrast to Sec. IV A, the interference term
plays a less important role.

In Fig. 8, we show the DDSCS after interaction of the argon
atom with both pump pulses. The scattering parameters are the
same as before. One can clearly see how both the positive and
the negative peaks oscillate up and down, thus reflecting the
wiggling motion of the hole. The oscillations have a period
of ∼13 a.u. With our time resolution, this corresponds well to
the expected period of 2π/|ε3s − ε3p0 | ≈ 12.7 a.u. It should
be stressed that the changes in the positive-valued ring are
not caused by the dynamics of the excited electron. Instead,
the changes appear because the momentum distributions of
the excited electrons and the ionic holes are overlapping. In
consequence, the ionic hole eclipses the momentum-space
density of the excited electron in regions where the former
is localized, as can be seen in Figs. 7(j)–7(l). This behavior
is of particular interest if one tries to image the dynamics
of the ionic hole. As we have seen, the pumping process
with two XUV pulses induces fairly complicated dynamics
with various kinds of excitations. However, the dynamics in
the scattering patterns mainly reflects the wiggling motion of
the hole.

V. CONCLUSION

We investigated the imaging of electron-hole wave-packet
dynamics in argon atoms. Specifically, we considered the
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FIG. 8. DDSCS for an energy transfer ω = 100 eV and TR = 23.5
as at delay times (a) τdelay = 51.2 a.u., (b) 55.2 a.u., and (c) 58.2 a.u.
in units of dσth/d�. The y component of the momentum-transfer
vector is set to zero.

signal caused by inelastically scattered photons, which are
inevitable in time-resolved x-ray scattering experiments. For
this purpose, we developed a QED-based theory of time-
resolved Compton scattering. The Compton-scattering cross
section, in the impulse approximation, depends solely on
the electron momentum distribution. Hence, time-resolved
Compton scattering can be used to obtain momentum-space
images of the sample to be probed. To illustrate this, we
first considered an electronic wave packet created through
ionization or Rydberg excitation of argon atoms by an
XUV pulse. We showed how characteristic features of the
instantaneous momentum density are reflected in the doubly
differential scattering cross section. This illustrates the kind of
information that can be gained from time-resolved Compton
scattering. Interestingly, the dynamics of the ionized electron
cannot be treated separately from the dynamics of the ionic
hole. Instead, both the instantaneous momentum density and
the DDSCS are strongly influenced by interference between
the particle and the hole.

Additionally, we considered an almost coherent superpo-
sition of the 3s and 3p0 holes, generated by a sequence of
two XUV pulses. Even though the dynamics of the excited
electrons are fairly complex, the DDSCS clearly reflects the
wiggling motion of the ionic hole. We expect that imaging the
hole motion is also possible, when finite-energy resolution
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is granted. Only when there is no energy resolution, the
differential scattering cross section becomes stationary. Thus,
imaging the dynamics of the holes via time-resolved Compton
scattering is no longer possible.

Our results for the time-dependent Compton-scattering
cross sections rely on the assumption that the recoil electron
is not correlated with the remaining ion. Hence, in our
results for the differential scattering cross section, there could
be deviations due to photons scattered with small energy

transfer. However, those mainly contribute to scattering at
small scattering angles, where contributions due to coherent
scattering are dominant. Therefore, the conclusions we draw
should still be valid.

We conclude that time-resolved Compton scattering can
indeed be used for imaging of electron-hole wave-packet
dynamics. Since it focuses on momentum space, it can yield
complementary information to techniques that focus on the
real-space density of the electrons.
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