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Two-leg Su-Schrieffer-Heeger chain with glide reflection symmetry
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The Su-Schrieffer-Heeger (SSH) model lays the foundation of many important concepts in quantum topological
matters. Here, we show that a spin-dependent double-well optical lattice allows one to couple two topologically
distinct SSH chains in the bulk and realize a glided-two-leg SSH model that respects the glide reflection symmetry.
Such a model gives rise to intriguing quantum phenomena beyond the paradigm of a traditional SSH model. It is
characterized by Wilson lines that require non-Abelian Berry connections, and the interplay between the glide
symmetry and interaction automatically leads to charge fractionalization without jointing two lattice potentials
at an interface. Our work demonstrates the versatility of ultracold atoms to create new theoretical models for
studying topological matters.
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The beauty of the Su-Schrieffer-Heeger(SSH) model [1,2]
is reflected by its extremely simple form that well captures a
variety of deep concepts lying at the heart of modern condensed
matter physics. Such a model describes a one-dimensional
chain, which is characterized by two tunneling amplitudes t1
and t2 between two sublattices A and B. The SSH model
serves as a textbook example for discussing the Zak phase, an
Abelian geometric phase that characterizes distinct topological
phases in one dimension, and zero-energy end states in a finite
system with open boundaries [3–6]. It is also a prototypical
model for studying fractionalized charges, one of the most
exotic phenomena in quantum systems, if interfaces exist in
the lattice potential to separate topologically distinct chains
into multiple domains in the real space [7,8].

Ultracold atoms have emerged as a highly controllable
platform for simulating topological models that are difficult
to access in solids [9–14]. The double-well optical lattice
[15–17], which is composed of a long and a short lattice,
has been demonstrated as a powerful tool to explore the SSH
model. It has been used to measure the Zak phases [18]
and to realize topological charge pumping [19,20]. Despite
the aforementioned exciting progress, a question naturally
arises on whether physicists could use ultracold atoms to
explore new theoretical models other than simulating those
readily available in the literature, such as topological matters
characterized by non-Abelian Berry curvatures and connec-
tions. Nonsymmorphic symmetries have recently attracted a
lot of interest in the condensed matter communities. Such
symmetries give rise to band crossing points in the energy
spectra. The band crossing points invalidate the application of
Abelian Berry curvature and connections, and the topological
properties of the system should be described by non-Abelian
Berry curvatures and connections [21,22]. However, systemat-
ical studies of nonsymmorphic symmetries in ultracold atoms
are lacking [23].

In this Rapid Communication, we show that a spin-
dependent optical double-well lattice allows one to realize
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a glided-two-leg SSH model, which is composed of two
one-dimensional SSH chains shifted from each other by half
of the lattice spacing, as shown in Figs. 1(a) and 1(b). Unlike
the conventional means of linking two topologically distinct
chains at an interface, the two chains here are coupled in the
bulk, and provide a unique playground to explore the interplay
between topology, symmetry, and interaction. The theoretical
description of the system is fundamentally different from that
for traditional SSH. Because of band touching points, which
are protected by the glide symmetry [24–26], in the Brillouin
zone (BZ), the conventional Abelian geometric phase is no
longer capable of describing the topological properties. Non-
Abelian Berry connections and Wilson lines are inevitably
required [27]. Such a Wilson line can be measured using
strong-force dynamics in Bloch bands, as shown by the
recent experiment done by Bloch’s group [28]. By introducing
interactions to the system, even more interesting phenomena
arise. A repulsive interaction gives rise to a ferromagnet at
half filling. Without resorting to producing domains in the
lattice potential, doping the ferromagnet naturally leads to
the splitting of an extra particle into two deconfined domain
walls, each of which carries half of the charge of the extra
particle [29–33]. Such a fractionalized charge can be easily
manipulated as mobile or localized ones, and are directly
observable using standard in-site density images of atoms.

Spin-dependent double-well lattice. We consider the Hamil-
tonian of two hyperfine spin states of fermions in a spin-
dependent double-well lattice in the presence of a microwave
coupling,

Ĥ =
∫

dx[ψ̂†
σ (x)Ĥσ ψ̂σ (x) + �(ψ̂†

↑(x)ψ̂↓(x) + H.c.)],

(1)

where

Ĥσ (x) = p̂2

2m
− VS cos2

(
2πx

d

)
+ 2VLσz sin

(
2πx

d

)
, (2)

σ = ↑,↓ characterize the hyperfine spin, σz = ± 1
2 , d is the

lattice spacing, and VS > 0 and VL are the lattice depths
of the short and long lattices, respectively. The long lattice
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FIG. 1. Glided-two-leg SSH model in a spin-dependent optical
lattice. (a) Spin-up (red color) and spin-down atoms (green color) are
loaded in two different double-well lattices, each of which is shifted
from the other by half of the lattice spacing d/2. A microwave field
provides an interleg tunneling t (wiggles). The single (purple) and
double (orange) lines represent two tunnelings t1 and t2, respectively.
(b) Tight-binding model. Red (dark gray) and blue (black) dots
represent different sublattice sites, respectively.

potential is red and blue detuned for the spin-up and spin-down
atoms, respectively, and thus depends on σz [34]. As shown
in Fig. 1(a), Ĥσ (x) describes a standard double-well lattice,
each of which shifts in a spin-dependent way from the other
by half of the lattice spacing d/2. � is the strength of a
microwave field, which couples these two hyperfine spin states
[35]. Such a system resembles polyacetylene with an opposite
dimerization between nearest-neighbor chains [36]. There are
many alternative ways of coupling two hyperfine spin states
instead of a microwave field, for example, rf spectroscopy
to couple different internal states of the atoms or by using a
narrow optical transition in alkaline-earth-like atoms. There is
an alternative scheme to realize an equivalent model (see the
Supplemental Material [37]).

A tight-binding model can be constructed straightfor-
wardly, as shown in Fig. 1(b),

ĤL =
∑

j

[t1(â†
j↑b̂j↑ + b̂

†
j↓âj+1↓) + t2(b̂†j↑âj+1↑ + â

†
j↓b̂j↓)]

+ t
∑

j

(â†
j↑âj↓ + b̂

†
j↑b̂j↓) + H.c., (3)

where â
†
jσ and b̂

†
jσ are the creation operators for spin-up or

spin-down atoms at the left and right wells on site j , t1 and
t2 are the intraleg tunneling, and t is the interleg tunneling.
In this Rapid Communication, j is reserved for the site
index of the double-well lattice, each of which corresponds
to two wells. Apparently, each leg is a conventional SSH
model. t1 and t2 switch positions in these two legs due to
the relative shift of half of the lattice spacing. These two legs
with opposite dimerizations correspond to two topologically
distinct configurations of a single SSH model regardless of the
location of the boundary.

The bulk spectrum can be obtained straightforwardly. We
find out that the two lowest (highest) bands touch at the zone
boundary, regardless of the value of t . Figure 2(a) shows a
typical band structure. The band touching points originate
from the glide reflection symmetry of the Hamiltonian. Under
a transformation that is a combination of the spin flip ↑↔↓
and a spatial translation of half of the lattice spacing d/2,
the Hamiltonian in (1) is invariant. If the spin is viewed as
a synthetic dimension along the y direction, this invariance
exactly corresponds to a glide reflection symmetry. Such
symmetry is crucial for certain types of topological superfluids
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FIG. 2. Band structure, Bloch oscillation, and Wilson line. (a)
Band structure and Bloch oscillation. The light blue and yellow
regions correspond to the first and second BZ, respectively. The
first, second, third, and fourth bands are represented by solid, dotted,
dotted, and solid curves, respectively. The − (red) and + (blue)
branches of the eigenstates of the glide operator are distinguished
by colors. In the presence of an external force, a particle starting
from A in the first band crosses the zone boundary and enters the
second band in the second BZ (point B ′, which is identical to B).
After traveling for one reciprocal lattice vector 2π/d , the particle
ends at C, a state orthogonal to the initial one at A. After another
reciprocal lattice vector 2π/d , the particle returns to A. The primes
in symbols A′–D′ represent the different signs of η in the second BZ
from the first BZ. (b) Wilson line. When a particle initially stays at
the first band, |W 11

0→k|2 corresponds to the probability of the particle
to remain at this band. Since the electric field cannot couple the +
and − branches, |W 11

0→k|2 remains as 1 or 0 unless crossing the zone
boundary.

and crystalline insulators [24–26]. Here, glide reflection
symmetry naturally emerges from the spin-dependent lattice.

The glide operator is explicitly written as

Ĝk = e
ikd
2

(
cos

kd

2
σxτx + sin

kd

2
σxτy

)
, (4)

where σ and τ are Pauli matrices, and the pseudospin τz = ±1
describe states on sublattices A and B, respectively. As Ĝ2

k is a
translation for one lattice spacing, and Ĝ2

k|ψk,n〉 = eikd |ψk,n〉,
one sees that the eigenvalues of Ĝk are ±eikd/2. The periodicity
of these eigenvalues are 4π/d, twice that of the Hamiltonian.
We use η = ± to distinguish these two different eigenvalues
and the corresponding eigenstates. In the system with glide
symmetry, all bands must appear in pairs with opposite signs
of η, as shown in Fig. 2(a). When k → k + 2π/d, η changes
sign. Thus a band crossing point must exist. We should point
out that glide symmetry does not ensure that the band crossing
point appears at the edge of BZ. In this system, there is
also a mirror symmetry, and the Hamiltonian (1) is conserved
with the translation x → −x, ↑→↓. The mirror operator M̂

satisfies the relation M̂ĜT̂d = ĜM̂ , where T̂d is the translation
for one lattice spacing d. Thus, M̂ anticommutes with the
glide operator Ĝ at k = ±π/d, and gives rise to the band
touching points at the zone boundary. Similar to Ref. [24], in
the presence of an additional symmetry, the mirror reflection
with respect to the center of the A-B bond here, such a band
touching point must appear at the zone boundary ±π/d. As
shown in Fig. 2, the first, second, third, and fourth bands in
the first BZ have η = −, + , + ,−, respectively. Due to the
band touching point at the zone boundary, these four bands
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have η = +, − , − ,+ in the second BZ, respectively. The
band touching point can also be understood by an alternative
way (see the Supplemental Material [37]). When the mirror
symmetry is broken, the band crossing points could show up in
other places in the BZ. In particular, when t becomes complex,
tuning the phase of t allows one to move the band crossing
points in BZ.

Wilson line. The glide-symmetry-protected band touching
points tell one that the Abelian geometric phase is no longer
applicable to describe the topological states in the system,
unlike the traditional single SSH chain. A Wilson line must
be required to characterize the topological properties [27].
Using the periodic Bloch wave function |uk,1〉 = e−ikx |ψk,1〉
and |uk,2〉 = e−ikx |ψk,2〉, the Wilson line that describes the two
lowest bands is written as

Ŵk→k+ 2π
d

= P̂ exp

(
i

∫ k+ 2π
d

k

dqÂ(q)

)
, (5)

where P̂ is the path ordering operator and the matrix
representation Â(q) = i〈uq,m|∂q |uq,n〉, where m,n = 1,2 is
the band index. It has been shown both theoretically [38]
and experimentally [28] that such a Wilson line can be
measured using Bloch oscillations of ultracold atoms in the
limit w 	 Fd 	 EG, where F is the effective electric field
force, w is the total bandwidth of the lowest two bands,
and EG is the energy separation between the two lowest
and highest bands. In such a limit, the transition to the
two highest bands, as well as the dispersions of the two
lowest bands, is negligible, so that the dynamics is well
characterized by Ŵk→k+ 2π

d
. Under the effective electric field

Fx, the time evolution of the momentum follows h̄dq/dt =
F , and |Wmn

k→k+ 2π
d

|2 ≡ |〈uk,m|Ŵk→k+ 2π
d
|uk,n〉|2 describes the

probability of having the particle in the mth band after
an evolution circle k → k + 2π/d if the particle is initially
prepared in the nth band.

Through an explicit calculation, we find that η is conserved
in the Bloch oscillation (see the Supplemental Material [37]).
Meanwhile, since η = ± is associated with the first and
the second bands, which are represented by the solid and
dotted curves in Fig. 2(a), respectively, they switch with each
other across the zone boundary. In the adiabatic limit, where
Fd 	 EG, the wave function accumulates a phase in such an
oscillation, i.e., |uk,±〉 → eiϕ± |uk′,±〉, when k → k′, whereas
ϕ± is gauge dependent if k − k′ �= 0 mod 4π/d, and it gives
rise to the well-known Zak phase ϕZak when k → k + 4π/d,
which is π or 0 depending on whether t is smaller or larger
than |t1 + t2|, as that in a standard hybridized s-p model with
a lattice spacing d/2 [39–41].

We now return to the question about the form of Ŵk→k+2π/d ,
whose matrix form needs to be evaluated in the basis |u1,k〉
and |u2,k〉 so that |ψ1,k〉 and |ψ2,k〉 have a periodicity 2π/d.
From the discussion above, one obtains the Wilson line for
k → k + 2π/d,

(
Wmn

k→k+ 2π
d

) =
(

0 eiϕ+

eiϕ− 0

)
, (6)

though neither ϕ+ nor ϕ− is well defined individually, since
k → k + 2π/d finishes only half of one period of ± bands,

which is 4π/d, as aforementioned. We can define ϕ+ + ϕ− =
ϕZak as the total geometric phase accumulated in the evolution,
which can be easily understood from the fact that both
|u1,k〉 → eiϕ+|u2,k〉 and |u2,k〉 → eiϕ−|u1,k〉 are satisfied when
k increases by 2π/d across the band touching point. Thus we
obtain

(
Wmn

k→k+ 2π
d

) = eiϕZak/2

(
0 eiϕr

e−iϕr 0

)
, (7)

where ϕr = (ϕ+ − ϕ−)/2. Equation (7) clearly shows the non-
Abelian nature of the geometric phase here, since |u1,k〉 and
|u2,k〉 have to exchange with each other when k → k + 2π/d,
resembling a Möbius strip [24,26,42]. It also tells one that
Ŵk→k+ 2π

d
can be decomposed to a U(1) phase eiϕZak/2 and a

SU(2) transformation corresponding to rotating a pseudospin-
1
2 formed by the two lowest bands. Thus, it topologically
corresponds to a Möbius strip, which may also emerge in other
systems with glide symmetry [24,26,42,43]. Alternatively, if
considering k → k + 4π/d, i.e., the momentum finishes two
circles, one concludes

(
Wmn

k→k+ 4π
d

) =
(

eiϕZak 0
0 eiϕZak

)
= eiϕZakI, (8)

i.e., the Wilson line becomes an identity matrix I.
Both Eqs. (7) and (8) are verified by numerical simulations

of the dynamics in the four-band model (see the Supplemental
Material [37]). The populations in different bands are shown
in Fig. 2(b), if a particle is initially prepared at state |uk,1〉 or
|uk,2〉. The populations approach the step functions and acquire
sudden jumps at k = π/d and k = 3π/d, which directly
confirm the prediction of Eqs. (7) and (8). The phases ϕ+
and ϕ− can also be measured directly in experiments using the
same interferometric method that has been applied by Bloch’s
group [28]. As mentioned above, interleg tunneling provides
one additional degree of freedom to control the topological
properties, since the total phase ϕ+ + ϕ− has a π difference
across the topological transition point tc = |t1 + t2|. On both
sides of the transition point, the SU(2) part of the Wilson line
exists, and the difference comes from the U(1) part, i.e., a π/2
difference in the total phase. In a conventional topologically
nontrivial SSH chain, the Zak phase is π . Here, the π/2 phase
is a consequence of the non-Abelian nature of the topological
bands of our two-leg SSH chains. This difference will induce
the disappearance of the edge state when the open boundary
condition is applied (detailed discussions of the edge states
are presented in the Supplemental Material [37]). It is also
worth mentioning that the absolute value of the eigenvalue of
a unitary matrix is one. Thus the phases of the eigenvalues of
the Wilson line (Wmn

k→k+ 2π
d

) allow one to distinguish different

topological phases. When t < tc, the two eigenvalues are ±i,
and the phases of the two eigenvalues are always ±π/2,
respectively. When t > tc, the two eigenvalues become ±1,
i.e., the phases become π and 0, respectively.

Charge fractionalization. We consider an on-site repulsive
interaction,

V̂ = U
∑

j

(n̂j,a↑n̂j,a↓ + n̂j,b↑n̂j,b↓), (9)
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FIG. 3. Charge fractionalization. (a) At half filling, a repulsive in-
teraction leads to spontaneous symmetry breaking and a ferromagnet
emerges. The red (dark gray) and green (light gray) clouds represent
the Wannier wave functions of the spin-up and spin-down particles,
respectively. (b) Doping an extra particle forms two domain walls
(blue ovals). If t2 = 0, the two domain walls are deconfined because
of interchain tunneling t (black wiggle). (c) If t = 0, the two domain
walls are confined for any finite intrachain tunneling t2 (purple arrow).

where U > 0 is the on-site interaction strength. In the extreme
case t2 = t = 0, flatbands arise. Localized orbitals ĉ

†
j↑|0〉 =

(â†
j↑ + b̂

†
j↑)|0〉/√2 and ĉ

†
j↓|0〉 = (b̂†j↓ + â

†
j+1↓)|0〉/√2 are the

degenerate eigenstates of this flatband with energy t1. Since
t1 < 0 is chosen, the high-energy states (â†

jσ − b̂
†
jσ )|0〉/√2

are not relevant in the low-energy limit, provided that |t |, |t2|,
and U are much smaller than |t1|. In such a flatband limit, a
ferromagnet naturally emerges at half filling, i.e., all atoms
fill up either the spin-up or spin-down chain, as shown in
Fig. 3(a), since it saves the interaction energy and meanwhile
does not cost extra kinetic energy in a flatband. In other words,
a repulsive interaction lifts the single-particle degeneracy.
Clearly, such a ferromagnet has a twofold degeneracy, and the
ground state can be |G〉1 = ∏

j ĉ
†
j↑|0〉 or |G〉2 = ∏

j ĉ
†
j↓|0〉.

In the presence of small t2 and t , it is expected that the
ferromagnet is protected by the gap given by the repulsive in-
teraction. We use the time-evolving block decimation (TEBD)
algorithm [44,45] to numerically obtain the ground state at
half filling. For a wide range of realistic lattice parameters,
we have found that a ferromagnet emerges in the parameter
regime |t2|,|t | 	 U 	 |t1|. For instance, the critical value of
the interaction strength in Fig. 3 is Uc = 0.03ER . In terms
of temperature, the gap is about 5 nK, which is accessible in
current experiments.

Now consider that by adding one more atom to one of
the spontaneous symmetry-breaking ground states |G〉1, in the
limit that U 	 |t1|, an extra particle prefers to occupy the
spin-down chain to avoid the large kinetic energy penalty,
which is of the order of |t1|, caused by occupying an atomic
orbital (â†

j↑ − b̂
†
j↑)|0〉/√2. As shown in Figs. 3(b) and 3(c),

such an extra particle creates two domain walls. A natural
question is then, are these two domain walls confined with
each other or they are deconfined? Two extreme cases are rather
simple. When t2 = 0 and t �= 0, both spin-up atoms that have a
spatial overlap with the extra spin-down atoms can tunnel to the
spin-down chain to gain the kinetic energy from the interleg
tunneling. Interestingly, such a tunneling does not cost any
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FIG. 4. The distribution of the extra particle. The parameters used
in the TEBD simulation are t1 = −0.4ER , t2 = −4 × 10−4ER , t =
8 × 10−4ER , and U = 0.012ER . The lattice site is N = 30 with an
open boundary condition. (a) For deconfined domain walls, the result
of the TEBD simulation agrees with the density distribution of two
hard-core particles (blue). (b) The additional local potential VL =
VR = −0.002ER (yellow curve). When two deconfined domain walls
are localized at the right well of the lattice site jL = 7 and the left
well of the lattice site jR = 24, the extra particle density is centered
around these two lattice sites.

interaction energy, since the number of domain walls remains
as 2. Such progress continuously occurs, and these two domain
walls become deconfined so that the length of the spin-down
domain becomes arbitrary, as shown in Fig. 3(b). One thus
concludes that each domain wall carries 1

2 of the charge of the
extra particle. Such fractionalization is naturally induced by the
interplay between the interaction and the glide symmetry of the
noninteracting Hamiltonian, so that it is not required to create
an interface in the lattice potential to separate topologically
distinct phases. In contrast, if t = 0 and t2 �= 0, what is relevant
is the tunneling of a single spin-down atom in the spin-down
chain. Clearly, two domain walls are always confined with
each other, as shown in Fig. 3(c). In such a confined state,
charge is not fractionalized. For generic cases with finite t

and t2, we find both analytically and numerically a first-order
phase transition between the confined and deconfined states
at a critical value t2 = 2t , due to the competition between the
two energy scales (see the Supplemental Material [37]).

The deconfined domain walls can be traced from the density
distribution of an additional particle ñj = nj − 1. The result
of the TEBD method is shown in Fig. 4(a). In the deconfined
phase, two domain walls move freely and the only constraint is
that they cannot penetrate each other. As a result, ñj resembles
the density distribution of two free hard-core particles in one
dimension. In contrast, in the confined phase, two domain
walls are tightly bound with each other, and ñj resembles the
density distribution of a molecule, whose size is d.

One can also introduce a local potential to pin down the
domain walls in certain lattice sites. Applying a localized
laser beam, the lattice potential becomes deeper at two lattice
wells, say, the right well of jL and the left well of jR .
Whereas the localized potential may also change the on-site
interaction strength at sites jL and jR , the leading contribution
is the potential energy gained ε. Each domain wall, which
corresponds to some extra particle numbers, prefers to occupy
these two sites to gain the energy ε, the potential energy
produced by the deep local potentials VL and VR . Define
�nj = nj − n0

j , where n0
j = 1 is the particle number per

lattice site (including two wells) of the ferromagnet at half
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filling. The result of TEBD shows that �nj is indeed peaked
around jL and jR , as shown in Fig. 4(b). The width of the peak
ξ depends on the ratio J/ε. Choosing the distance between
two localized potentials |jL − jR|  ξ , one could compute
the total extra charge in the left and right side of the system,

�NL =
N/2∑
i=1

�nj , �NR =
N∑

i=N/2+1

�nj , (10)

and we indeed find out that �NL = �NR = 1
2 . In the

strong localization limit, J 	 ε and ξ ∼ d, �NL ≈ �njL

and �NR ≈ �njR
, and the fractionalized charge- 1

2 localized
at sites jL and jR . To further confirm such a fractionalized
charge- 1

2 , we compute the number fluctuation in the left and
right half of the system, and have found out that the number
fluctuation is zero. In the strong localization limit, this is
equivalent to the number fluctuation at the site jL or jR . Such
an observation distinguishes the fractionalized charge- 1

2 from
the trivial one produced by a single particle hopping between
two lattice sites, where the average occupation in each site is

also 1
2 and the charge fluctuation is of the same order. Whereas

we have been focusing on well-localized potentials VL and
VR , which is achievable in current experiments, in practice, a
potential with a width of a few lattice spacing also works, since
it only quantitatively affects the width of the density peaks.

Whereas we have been focusing on ideal double-well
lattices, all results can be straightforwardly generalized to
cases with perturbations (see the Supplemental Material [37]).
Since the study of new topological matters is currently one of
the main themes in both condensed matter and ultracold atom
physics [46–51], we hope that our work may stimulate more
studies on the interplay between glide symmetry, topology,
and interactions using highly controllable ultracold atomic
samples.

We acknowledge useful discussions with I. Bloch, E.
Mueller, and C. X. Liu. We credit J. Zhang for asking the
question on the Hamiltonian of a Raman dressed lattice that
inspired us to consider the equivalent Hamiltonian Ĥ ′. This
work is supported by National Natural Science Foundation of
China (NSFC)/Research Grants Council (RGC) Joint Research
Scheme (NCUHK453/13).
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