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We show that a type of two-body interaction, which depends on the momentum of the center of mass (COM) of
these two particles, can be realized in ultracold atom gases with a laser-modulated magnetic Feshbach resonance
(MFR). Here the MFR is modulated by two laser beams propagating along different directions, which can induce
Raman transition between two-body bound states. The Doppler effect causes the two-atom scattering length to be
strongly dependent on the COM momentum of these two atoms. As a result, the effective two-atom interaction
is COM-momentum dependent, while the one-atom free Hamiltonian is still the simple kinetic energy p2/(2m).
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Introduction. In most physical systems the interaction
between two particles is a function of their relative position,
and is independent of the two-body center-of-mass (COM)
degree of freedom. In some other systems, e.g., ultracold atom
gases with interatomic scattering length being modulated by
an inhomogeneous magnetic or laser field [1], the two-body
interaction can be dependent on the COM position. In this
Rapid Communication we show that a type of interaction,
which depends on the two-body COM momentum, can be
realized in ultracold atom gases, while the one-body free
Hamiltonian remains the simple kinetic energy. Explicitly, we
propose an approach to realizing an ultracold atom gas where
the Hamiltonian of every two atoms can be formally expressed
as

H2b = p2
1

2m1
+ p2

2

2m2
+ Veff(r1 − r2,p1 + p2), (1)

with mi , pi , and ri (i = 1,2) being the mass, momentum, and
position of the ith atom, and Veff being the COM-momentum
dependent effective two-atom interaction. To our knowledge,
this type of interaction, which couples the two-body COM mo-
tion and the relative motion without breaking the translational
symmetry and changing the one-body dispersion relation, has
not been discovered in any quantum system.

Our proposal is based on the magnetic Feshbach resonance
(MFR) modulated by two Raman laser beams propagating
along different directions, which couple the two-body bound
states in the closed channel and are far off resonant for
one-body transitions. When the interatomic interaction of an
ultracold gas is controlled by such an approach, the two-atom
scattering length is determined by the frequencies of these two
laser beams. Furthermore, due to the Doppler effect, when the
atoms are moving the frequency of the laser beams can be
effectively shifted, and the magnitude of the frequency shift
depends on the two-atom COM momentum. As a result, in
this system the two-atom scattering length, which describes
the effective two-atom interaction, becomes COM-momentum
dependent. In addition, the two-body collisional loss induced
by spontaneous emission from excited state atoms can be
significantly suppressed by the molecular dark state effect [2].

*pengzhang@ruc.edu.cn

In all the previous research for the optical control of
interaction between ultracold atoms [1–21], the Doppler effect
has always been ignored. This can be explained as follows.
In these control processes the laser beams should be far off
resonant to the two-body transitions so that the collisional loss
induced by atomic spontaneous emission can be suppressed.
As a result, the Doppler shift of the laser frequency is much
smaller than the detuning of the laser-induced two-body
transitions, and thus the Doppler effect is negligible. However,
in our system the two-atom scattering length depends on not
only the one-photon detuning but also the two-photon detuning
of the laser-induced two-body Raman transition. Since the
two-photon detuning can be very small, it can be significantly
changed by the Doppler frequency shift of the Raman laser
beams. Therefore, the Doppler effect can be very important.

Three-dimensional (3D) s-wave scattering length. We
consider the s-wave scattering of two ultracold alkali atoms
in the ground electronic orbital state (i.e., the S state). As
shown in Fig. 1, we assume these two atoms are incident from
the open channel O corresponding to one specific two-atom
hyperfine state. The threshold of this channel is near resonant to
a bound state |φα〉 in the closed channel C, which corresponds
to another hyperfine state of these two S-state atoms. The
energy difference between |φα〉 and the threshold of channel
O can be controlled by the magnetic field. Thus, a MFR [22]
can be induced by the hyperfine coupling Vhf between the open
channel O and |φα〉. We further assume that a laser beam α with
wave vector kα is applied to couple |φα〉 to another two-body
bound state |φe〉 in an excited channel F where one atom is
in the S state and another atom is in the excited electronic
orbital state (i.e., the P state). The excited molecular state
|φe〉 can decay via the atomic spontaneous emission process.
In addition, |φe〉 is also coupled to a bound state |φβ〉 in the
closed channel C, by another laser beam β with wave vector
kβ . As mentioned above, we assume the laser beams α and β

are far off resonant for all the one-atom transition processes.
As a result, they only induce two-body transitions and do not
change the one-atom Hamiltonian.

In our system the scattering length a can be controlled
by both the magnetic field and the laser beams α and β. As
we will show below, when these two beams propagate along
the same direction, the Doppler effect is negligible and the
scattering length is still independent of the two-atom COM
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FIG. 1. Schematic diagram for the MFR modulated by Raman
laser beams propagating along different directions (i.e., kα �= kβ ).

momentum. The control of the interatomic interaction for this
case was proposed by Wu and Thomas in Refs. [2,3] in 2011,
where the wave vectors kα,β were reasonably ignored. It was
experimentally realized by Jagannathan et al. in 2016 [4].

In this Rapid Communication we consider the case where
the two laser beams are propagating along different directions,
i.e., kα �= kβ . We will show that in this case the Doppler
effect can be very important. As a result, the scattering
length becomes significantly dependent on the two-atom COM
momentum.

Now we calculate the scattering length a. Here we first
ignore the spontaneous decay of the excited molecular state
|φe〉 and illustrate the approach of our calculation. Then we
will take this decay into account and derive the explicit
expression for a. In the absence of the spontaneous decay,
in the Schrödinger picture the two-body Hamiltonian can be
written as (h̄ = 1)

HS = P2

2M
+ HMFR + Eβ |φβ〉〈φβ | + Ee|φe〉〈φe|

+
∑
l=α,β

�le
i(kl ·R−ωl t)|φe〉〈φl| + H.c., (2)

with HMFR being defined as

HMFR =
[

p2

2μ
+ Vbg(r)

]
|O〉I 〈O| + Eα|φα〉〈φα|

+Vhf(r)|O〉I 〈C| + H.c. (3)

Here |j 〉I (j = O,C,F ) denote the two-body internal state
corresponding to channel j [23], M is the total mass and μ is
the two-atom reduced mass, El (l = α,e,β) is the energy of the
bound state |φl〉, ωl (l = α,β) is the frequency of laser beam l,
and �l (l = α,β) is the strength of the laser-induced coupling
between |φl〉 and |φe〉. We have chosen the zero-energy point as
the threshold of the open channel O. In Eqs. (2) and (3) R and
P are the coordinate and momentum of the COM, while r and
p are those of the two-atom relative motion. The interaction

in the open channel O is Vbg(r), and the hyperfine coupling
between channels O and C is described by Vhf(r).

We can simplify our problem and remove the phase
factor e±i(kl ·R−ωl t) (l = α,β) by introducing a rotated frame
(interaction picture) where quantum state |�〉rot is related
to the state |�〉S in the Schrödinger picture via the rela-
tion |�〉rot = U |�〉S , Here the unitary transformation U is
given by

U = ei(ωαt−kα ·R)|φe〉〈φe |ei[(ωα−ωβ )t−(kα−kβ )·R]|φβ 〉〈φβ |. (4)

In this rotated frame, the two-body Hamiltonian becomes

Hrot = P2

2M
+ HMFR +

∑
l=α,β

�l|φe〉〈φl| + H.c.

+�1p(P)|φe〉〈φe| + �2p(P)|φβ〉〈φβ |, (5)

where

�1p(P) = �
(0)
1p + |kα|2

2M
+ kα · P

M
; (6)

�2p(P) = �
(0)
2p + |kα − kβ |2

2M
+ (kα − kβ) · P

M
, (7)

with �
(0)
1p = Ee − ωα and �

(0)
2p = Eβ − (ωα − ωβ). The phys-

ical meaning of �1p(P) and �2p(P) can be understood as
follows. Scattering length a is determined by the multiorder
transition process from the open channel O to the bound state
|φα〉 (induced by hyperfine coupling) and then to the excited
molecular state |φe〉 (induced by laser α), and finally to the
bound state |φβ〉 (induced by laser β). This is essentially a
Raman process induced by the laser beams α and β. �1p(P)
given by Eq. (6) is the one-photon detuning of this Raman
process (i.e., the detuning of the transition O → |φα〉 → |φe〉).
Similarly, �2p(P) is the two-photon detuning of the complete
Raman process from O to |φβ〉. Moreover, in Eqs. (6) and (7)
�

(0)
1p and �

(0)
2p can be understood as the bare value of these

detunings, |kα|2/(2M) and |kα − kβ |2/(2M) are the shifts
induced by the momentum-recoil effects, and the P-dependent
terms are the Doppler shifts.

According to Eq. (4), we have U |O〉I 〈O|U† = |O〉I 〈O|.
Thus, all the operators for the open channel O are unchanged
under the frame transformation. Therefore, we can calculate
the scattering length of two atoms incident from channel
O, which is determined by the behavior of the low-energy
scattering wave function in this channel in the limit r → ∞,
by solving the scattering problem in the rotated frame, which is
governed by Hrot. Furthermore, Eq. (5) shows that in this frame
the COM momentum P is conserved. Thus, the scattering
length a is a function of P.

Now we consider the spontaneous decay of the excited
molecular state |φe〉. We can theoretically take into account this
decay by introducing an auxiliary scattering channel which is
coupled to |φe〉 [24]. With this approach we derive the exact
analytical expression of the scattering length [25]:

a(P)=abg−
(δμ)abg�B

[
�1p(P) − i

γ

2 − |�β |2
�2p(P)

]
(δμ)(B−B0)

[
�1p(P) − i

γ

2 − |�β |2
�2p(P)

]− |�α|2
.

(8)
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Here abg, B0, and �B are the background scattering length,
the resonance position, and the width of the MFR. Explicitly,
in the absence of the Raman laser beams we have a = abg[1 −
�B/(B − B0)]. δμ is the magnetic moment difference between
the channels O and C, and γ is the spontaneous decay rate
of |φe〉. The energy of the two-body bound state can also be
calculated via the same approach.

It is clear that the scattering length a(P) depends on
the COM momentum P via the one-photon and two-photon
detuning �1p(P) and �2p(P). In a realistic system, to suppress
the collisional loss induced by the spontaneous decay of |φe〉,
one usually sets the bare value �

(0)
1p of the one-photon detuning

to be very large. As a result, the P dependence of �1p(P) is
usually negligible. However, the bare two-photon detuning
�

(0)
2p can be very small, and thus the variation of �2p(P) with

P can be very significant. Therefore, a(P) can be strongly
dependent on P via �2p(P).

Furthermore, according to Eq. (7), when the two Raman
beams are propagating along the same direction (i.e., kα ≈
kβ), �2p(P) takes a P-independent value �

(0)
2p , and thus the

Doppler effect can be ignored. For this case it was shown that
the two-body loss can be suppressed by the molecular dark
state effect, provided that �

(0)
2p is small enough [2]. Since

we can reobtain the scattering length for this case [2] by
replacing �2p(P) in Eq. (8) with �

(0)
2p , for our system the

two-body loss can also be suppressed when �2p(P) is small
enough. This suppression can also be understood from the fact
lim�2p(P)→0 Im[a(P)] ∝ O(�2p[P)2].

3D ultracold Fermi gas. As an example, we consider
a 3D ultracold gas of two-component 40K atoms in the
lowest two hyperfine states |↑〉 ≡ |F = 9/2,mF = −9/2〉 and
|↓〉 ≡ |F = 9/2,mF = −7/2〉. Here we focus on the MFR
with B0 = 202.2 G, �B = 8 G, and abg = 174a0 [14,22], with
a0 being the Bohr radius, and assume that this MFR modulated
by two Raman beams as discussed above. We take these two
beams to be counterpropagating along the x axis. Thus, the
scattering length a only depends on the x component Px

of P. In the ultracold Fermi gas Px is mainly in the region
between −2kF and 2kF , with kF being the Fermi momentum.
We consider an ultracold gas with Fermi temperature TF =
0.5 μK (corresponding to kF = 9.1 × 106 m−1).

In Figs. 2(a) and 2(b) we illustrate the real part of a given
by Eq. (8) for B − B0 = ∓0.07�B . It is shown that in these
cases Re[a] is always positive or always negative for Px ∈
[−2kF ,2kF ], and can change by about 2500a0 with Px , ranging
from the region with 1/(kF |Re[a]|) < 1 to the region with
1/(kF |Re[a]|) > 1. Direct calculations show that these results
are robust with respect to the uncertainties of B0 and �B . For
the case of Fig. 2(a) we further calculate the energy Eb of
the most shallow two-body bound state, as a function of the
COM momentum Px . In Fig. 2(c) we show the total dimer

energy Edim(Px) ≡ P 2
x

2M
+ Re[Eb(Px)] as a function of Px , i.e.,

the dispersion relation of the shallow dimer. It is clear that if the
Eb were independent of Px , the minimum point of Edim appears
at Px = 0. As shown in Fig. 2(c), due to the Px dependence
of Eb, in our system E(Px) takes its minimum value when
Px = −0.66kF .

Now we investigate the two-atom collisional loss. If the
scattering length a was independent of the COM momentum,
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FIG. 2. (a) and (b) Re[a(Px)] of 40K atoms with B − B0 =
∓0.07�B . The black dotted line indicates the point where

1/(kF |Re[a]|) = 1. (c) The dispersion relation Edim(Px) ≡ P 2
x

4m
+

Re[Eb(Px)] (black solid line) and lifetime τb(Px) (red dashed line)
of the most shallow dimer for the case in (a). The blue dotted
line indicates the point with minimum total dimer energy. (d) The
loss rate K2(Px) for the cases in (a) and (b). In the calculations
we take �

(0)
1p + |kα|2/(2M) = 2π × 400 MHz while �

(0)
2p + |kα −

kβ |2/(2M) = −2π × 2.1 × 104 Hz for (a) and 2π × 1.2 × 104 Hz
for (b). In the experiment of laser-modulated MFR of 40K atoms
[14], the laser-induced coupling intensity between bound states
can be as large as 30 MHz. Thus, here we choose �α = 2π ×
50 MHz while �β = 2π × 10 MHz for (a) and 2π × 12 MHz for (b).
We further choose ωa ≈ ωb = 2π × 3.9 × 1014 Hz and γ = 2π ×
6 MHz, respectively [14]. Other parameters are given in the main
text.

the two-body collisional loss rate is K2 ≡ −8πh̄ Im[a]/m,
with m being the single-atom mass. Accordingly, the lifetime
of the ultracold gas can be defined as τ = 1/[K2n0], where
n0 is the initial atom density. When a is Px dependent, it
is difficult to exactly calculate the two-body loss rate and
lifetime for the gas. Nevertheless, we can still estimate the loss
effect via the parameter K2(Px) ≡ −8πh̄ Im[a(Px)]/m. As
shown in Fig. 2(d), K2(Px) is below 2 × 10−12 cm3/s for the
systems studied in Figs. 2(a) and 2(b). Using the atom density
n0 = 1.28 × 1013/cm3 corresponding to TF = 0.5 μK, we
can obtain 1/[K2(Px)n0] > 0.04 s. In addition, in Fig. 2(d)
we illustrate the lifetime τb ≡ 1/(Im[Eb(Px)]) of the shallow
dimer. It is shown that τb is about 0.1 s at the minimum point
of the dimer energy.

Quasi-one-dimensional (quasi-1D) ultracold Fermi gas.
Now we consider an ultracold two-component Fermi gas
in an axially symmetric two-dimensional harmonic potential
in the y-z plane, with trapping frequency ω⊥. When the
atomic transverse motion is frozen in the ground state of
this harmonic potential, the ultracold gas becomes a quasi-1D
system. For this system the effective low-energy 1D interaction
between two atoms in different components can be expressed
as

V1D = g1Dδ(x) ≡ − 1

μa1D
δ(x). (9)

Here a1D is the effective 1D scattering length. It can be
controlled by both the 3D scattering length and the transverse
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FIG. 3. Re[g1D(Px)] and Re[a1D(Px)] (inset) of the quasi-1D
ultracold gas of 40K atoms. We consider the system where
the one-body momentum kx along the x direction is in the
region between ±k

(1D)
F ≡ ±3/(4b⊥) with b⊥ = √

2/(mω⊥).
Thus we have Px ∈ [−2k

(1D)
F ,2k

(1D)
F ]. In our calculation we take

�
(0)
1p + |kα|2/(2M) = 2π × 100 MHz, �

(0)
2p + |kα − kβ |2/(2M) =

2π × 1.1 × 104 Hz, �α = 2π × 50 MHz, �β = 2π × 3.5 MHz,
b⊥ = 4000a0, and B − B0 = −0.07�B . Other parameters are the
same as in Fig. 2.

trapping frequency ω⊥ via the confinement-induced resonance
(CIR) effect [26]. As shown above, when the two-atom
interaction is controlled by a MFR modulated by two Raman
beams counterpropagating along the x axis, the 3D scattering
length becomes a function of the COM momentum Px . As a
result, both a1D and the effective 1D interaction intensity g1D

become Px dependent.
In particular, when a1D(Px = 0) is tuned to the CIR point,

i.e., when a1D(Px = 0) = 0, one can even obtain a dramatic
quasi-1D system with

g1D(Px)

⎧⎪⎨
⎪⎩

<0 for Px > 0

=∞ for Px = 0

>0 for Px < 0.

(10)

Namely, in this system the atoms have attractive and repulsive
1D interactions when the COM momentum is along the +x

and −x direction, respectively, and have an infinitely strong
interaction when the COM momentum is zero. In Fig. 3 we
illustrate such a case for a quasi-1D ultracold gas of 40K atoms
in hyperfine states |↑〉 and |↓〉. The lifetime of this quasi-1D
gas is estimated to be larger than 0.04 s [25].

Summary and discussion. In common quantum systems,
the two-body COM and relative motion can be coupled by a
nonharmonic confinement potential, a spin-orbit coupling, or a
COM-position-dependent two-body interaction. Nevertheless,
these approaches either destroy the translational symmetry or
change the one-body dispersion relation. Here we show that
a COM-momentum-dependent interaction between ultracold
atoms can be realized via a laser-modulated MFR. This interac-
tion can couple the COM and relative motion without breaking
translational symmetry or changing the one-body dispersion
relation. Thus, various new effects can be induced by this
interaction. For instance, for a 3D two-component Fermi gas
with COM-momentum-dependent positive scattering length
a(P), the dimers are possible to condense in a superfluid state
with nonzero momentum. When a(P) is negative, it is possible
that the minimum energy of a Cooper pair appears in the region
with nonzero COM momentum, and thus the Fulde-Ferrell
phase [27] can be induced. In addition, the single-atom
momentum distribution or contact relation can also be qualita-
tively modified by a COM-momentum-dependent interaction
[28]. Furthermore, the ultracold quasi-1D gas with this type of
interaction can be used to realize the 1D anyon model [29] or
other high-order nonlinear Schrödinger models [30–32].

Acknowledgments. We thank Paul Julienne, Haibin Wu, and
Hui Zhai for helpful discussions. We also thank the referees for
improving the quality of this manuscript. This work has been
supported by the Natural Science Foundation of China under
Grants No. 11434011 and No. 11674393, NKBRSF of China
under Grant No. 2012CB922104, the Fundamental Research
Funds for the Central Universities, and the Research Funds of
Renmin University of China under Grants No.16XNLQ03 and
No. 17XNH054.

[1] L. W. Clark, L. C. Ha, C. Y. Xu, and C. Chin, Phys. Rev. Lett.
115, 155301 (2015).

[2] H. Wu and J. E. Thomas, Phys. Rev. Lett. 108, 010401 (2012).
[3] H. Wu and J. E. Thomas, Phys. Rev. A 86, 063625 (2012).
[4] A. Jagannathan, N. Arunkumar, J. A. Joseph, and J. E. Thomas,

Phys. Rev. Lett. 116, 075301 (2016).
[5] P. O. Fedichev, Y. Kagan, G. V. Shlyapnikov, and J. T. M.

Walraven, Phys. Rev. Lett. 77, 2913 (1996).
[6] J. L. Bohn and P. S. Julienne, Phys. Rev. A 56, 1486 (1997).
[7] F. K. Fatemi, K. M. Jones, and P. D. Lett, Phys. Rev. Lett. 85,

4462 (2000).
[8] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff,

R. Grimm, and J. H. Denschlag, Phys. Rev. Lett. 93, 123001
(2004).

[9] G. Thalhammer, M. Theis, K. Winkler, R. Grimm, and J. H.
Denschlag, Phys. Rev. A 71, 033403 (2005).

[10] K. Enomoto, K. Kasa, M. Kitagawa, and Y. Takahashi, Phys.
Rev. Lett. 101, 203201 (2008).

[11] R. Yamazaki, S. Taie, S. Sugawa, K. Enomoto, and Y. Takahashi,
Phys. Rev. A 87, 010704(R) (2013).

[12] D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Durr, Phys.
Rev. A 79, 062713 (2009).

[13] D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Durr, Nat.
Phys. 5, 339 (2009).

[14] Z. Fu, P. Wang, L. Huang, Z. Meng, H. Hu, and J. Zhang, Phys.
Rev. A 88, 041601(R) (2013).

[15] L. Zhang, Y. Deng, and P. Zhang, Phys. Rev. A 87, 053626
(2013).

[16] L. Dong, L. Jiang, H. Hu, and H. Pu, Phys. Rev. A 87, 043616
(2013).

[17] D. M. Kurkcuoglu and C. A. R. Sáde Melo, Phys. Rev. A 93,
023611 (2016).

060701-4

https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRevLett.108.010401
https://doi.org/10.1103/PhysRevLett.108.010401
https://doi.org/10.1103/PhysRevLett.108.010401
https://doi.org/10.1103/PhysRevLett.108.010401
https://doi.org/10.1103/PhysRevA.86.063625
https://doi.org/10.1103/PhysRevA.86.063625
https://doi.org/10.1103/PhysRevA.86.063625
https://doi.org/10.1103/PhysRevA.86.063625
https://doi.org/10.1103/PhysRevLett.116.075301
https://doi.org/10.1103/PhysRevLett.116.075301
https://doi.org/10.1103/PhysRevLett.116.075301
https://doi.org/10.1103/PhysRevLett.116.075301
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevA.56.1486
https://doi.org/10.1103/PhysRevA.56.1486
https://doi.org/10.1103/PhysRevA.56.1486
https://doi.org/10.1103/PhysRevA.56.1486
https://doi.org/10.1103/PhysRevLett.85.4462
https://doi.org/10.1103/PhysRevLett.85.4462
https://doi.org/10.1103/PhysRevLett.85.4462
https://doi.org/10.1103/PhysRevLett.85.4462
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevA.71.033403
https://doi.org/10.1103/PhysRevA.71.033403
https://doi.org/10.1103/PhysRevA.71.033403
https://doi.org/10.1103/PhysRevA.71.033403
https://doi.org/10.1103/PhysRevLett.101.203201
https://doi.org/10.1103/PhysRevLett.101.203201
https://doi.org/10.1103/PhysRevLett.101.203201
https://doi.org/10.1103/PhysRevLett.101.203201
https://doi.org/10.1103/PhysRevA.87.010704
https://doi.org/10.1103/PhysRevA.87.010704
https://doi.org/10.1103/PhysRevA.87.010704
https://doi.org/10.1103/PhysRevA.87.010704
https://doi.org/10.1103/PhysRevA.79.062713
https://doi.org/10.1103/PhysRevA.79.062713
https://doi.org/10.1103/PhysRevA.79.062713
https://doi.org/10.1103/PhysRevA.79.062713
https://doi.org/10.1038/nphys1232
https://doi.org/10.1038/nphys1232
https://doi.org/10.1038/nphys1232
https://doi.org/10.1038/nphys1232
https://doi.org/10.1103/PhysRevA.88.041601
https://doi.org/10.1103/PhysRevA.88.041601
https://doi.org/10.1103/PhysRevA.88.041601
https://doi.org/10.1103/PhysRevA.88.041601
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.053626
https://doi.org/10.1103/PhysRevA.87.043616
https://doi.org/10.1103/PhysRevA.87.043616
https://doi.org/10.1103/PhysRevA.87.043616
https://doi.org/10.1103/PhysRevA.87.043616
https://doi.org/10.1103/PhysRevA.93.023611
https://doi.org/10.1103/PhysRevA.93.023611
https://doi.org/10.1103/PhysRevA.93.023611
https://doi.org/10.1103/PhysRevA.93.023611


RAPID COMMUNICATIONS

CENTER-OF-MASS-MOMENTUM-DEPENDENT INTERACTION . . . PHYSICAL REVIEW A 95, 060701(R) (2017)

[18] R. A. Williams, M. C. Beeler, L. J. LeBlanc, K. Jiménez-García,
and I. B. Spielman, Phys. Rev. Lett. 111, 095301 (2013).

[19] R. Qi and H. Zhai, Phys. Rev. Lett. 106, 163201 (2011).
[20] Y. C. Zhang, W. M. Liu, and H. Hu, Phys. Rev. A 90, 052722

(2014).
[21] P. Zhang, P. Naidon, and M. Ueda, Phys. Rev. Lett. 103, 133202

(2009).
[22] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
[23] In our two-body problem the Hilbert space is

HCOM
⊗

Hrel
⊗

Hinternal, where Hinternal is the space for
the two-atom internal state, while HCOM and Hrel are the spaces
for the spatial states of COM motion and relative motion,
respectively. Here we use |·〉I to denote the states in Hinternal and
|·〉 for those in Hrel

⊗
Hinternal.

[24] J. L. Bohn and P. S. Julienne, Phys. Rev. A 60, 414
(1999).

[25] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.95.060701 for the detail of the calculations
for the scattering length for 3D and 1D cases, as well as the
discussions for the robustness of our results.

[26] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[27] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[28] X. Cui and H. Dong, Phys. Rev. A 94, 063650 (2016).
[29] M. T. Batchelor, X-W. Guan, and A. Kundu, J. Phys. A: Math.

Theor. 41, 352002 (2008).
[30] A. G. Shnirman, B. A. Malomed, and E. Ben-Jacob, Phys. Rev.

A 50, 3453 (1994).
[31] E. Gutkin, Phys. Rep. 167, 1 (1988).
[32] E. Gutkin, Ann. Phys. 176, 22 (1987).

060701-5

https://doi.org/10.1103/PhysRevLett.111.095301
https://doi.org/10.1103/PhysRevLett.111.095301
https://doi.org/10.1103/PhysRevLett.111.095301
https://doi.org/10.1103/PhysRevLett.111.095301
https://doi.org/10.1103/PhysRevLett.106.163201
https://doi.org/10.1103/PhysRevLett.106.163201
https://doi.org/10.1103/PhysRevLett.106.163201
https://doi.org/10.1103/PhysRevLett.106.163201
https://doi.org/10.1103/PhysRevA.90.052722
https://doi.org/10.1103/PhysRevA.90.052722
https://doi.org/10.1103/PhysRevA.90.052722
https://doi.org/10.1103/PhysRevA.90.052722
https://doi.org/10.1103/PhysRevLett.103.133202
https://doi.org/10.1103/PhysRevLett.103.133202
https://doi.org/10.1103/PhysRevLett.103.133202
https://doi.org/10.1103/PhysRevLett.103.133202
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/PhysRevA.60.414
http://link.aps.org/supplemental/10.1103/PhysRevA.95.060701
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1088/1751-8113/41/35/352002
https://doi.org/10.1088/1751-8113/41/35/352002
https://doi.org/10.1088/1751-8113/41/35/352002
https://doi.org/10.1088/1751-8113/41/35/352002
https://doi.org/10.1103/PhysRevA.50.3453
https://doi.org/10.1103/PhysRevA.50.3453
https://doi.org/10.1103/PhysRevA.50.3453
https://doi.org/10.1103/PhysRevA.50.3453
https://doi.org/10.1016/0370-1573(88)90156-1
https://doi.org/10.1016/0370-1573(88)90156-1
https://doi.org/10.1016/0370-1573(88)90156-1
https://doi.org/10.1016/0370-1573(88)90156-1
https://doi.org/10.1016/0003-4916(87)90177-1
https://doi.org/10.1016/0003-4916(87)90177-1
https://doi.org/10.1016/0003-4916(87)90177-1
https://doi.org/10.1016/0003-4916(87)90177-1



