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One-loop electron self-energy for the bound-electron g factor
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We report calculations of the one-loop self-energy correction to the bound-electron g factor of the 1s and 2s

states of light hydrogenlike ions with a nuclear charge number Z � 20. The calculation is carried out to all orders
in the binding nuclear strength. We find good agreement with previous calculations and improve their accuracy
by about two orders of magnitude.
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The bound-electron g factor in light hydrogenlike and lithi-
umlike ions has been measured with a high accuracy, which
reached 3 × 10−11 in the case of C5+ [1]. Such measurements
have yielded one of the best tests of the bound-state QED
theory [2] and significantly improved the precision of the elec-
tron mass [1,3]. Further advance of the experimental accuracy
toward the 10−12 level is anticipated in the near future [4].

One of the dominant effects in the bound-electron g factor
is the one-loop electron self-energy. Its contribution to the total
g factor value is so large that the effect needs to be calculated
to all orders in the nuclear binding strength parameter Zα,
even for ions as light as carbon (Z is the nuclear charge
number, α is the fine-structure constant). The numerical error
in the evaluation of the electron self-energy is currently the
second-largest source of uncertainty for hydrogenlike ions (the
largest error stemming from the two-loop electron self-energy
[5,6]). The error needs to be decreased in order to match the
anticipated experimental precision.

The numerical accuracy of one-loop self-energy is also
relevant for the determination of the electron mass [1,3]. The
self-energy values actually used in electron-mass determi-
nations were obtained by an extrapolation of the high- and
medium-Z numerical results down to Z = 6 (carbon) and 8
(oxygen). Clearly, this situation is not fully satisfactory and a
direct numerical calculation would be preferable.

All-order (in Zα) calculations of the electron self-energy
to the bound-electron g factor have a long history. The first
calculations of this correction were accomplished two decades
ago [7–9]. The numerical accuracy of these evaluations was
advanced in later works [10,11], which was crucial at the time
as it brought an improvement of the electron mass determi-
nation. This correction was revisited again in Refs. [12,13].
In the present Rapid Communication, we aim to advance the
numerical accuracy of the one-loop electron self-energy and
bring it to the level required for future experiments.

We consider the one-loop self-energy correction to the
g factor of an electron bound by the Coulomb field of
a pointlike and spinless nucleus. This correction can be
represented [10,11] as a sum of the irreducible (ir) and the
vertex+reducible (vr) parts,

�gSE = �gir + �gvr. (1)

The irreducible part is

�gir = 2 〈δga|γ 0�̃(εa)|a〉, (2)

where �̃(ε) = �(ε) − δm is the (renormalized) one-loop self-
energy operator (see, e.g., Ref. [13]) and |δga〉 is the perturbed
wave function

|δga〉 =
∑
n�=a

|n〉〈n|δVg|a〉
εa − εn

, (3)

with δVg = 2m[r × α]z being the effective g-factor operator
[13] that assumes that the spin projection of the reference state
is ma = 1

2 . The vertex+reducible part is

�gvr = i

2π

∫
C

dω
∑
n1n2

[ 〈n1|δVg|n2〉〈an2|I (ω)|n1a〉
(�an1 − ω)(�an2 − ω)

−δn1n2

〈a|δVg|a〉〈an1|I (ω)|n1a〉
(�an1 − ω)2

]
, (4)

where I (ω) is the operator of the electron-electron interaction
(see, e.g., Ref. [11]), ω is the energy of the virtual photon,
�ab = εa − εb, and a proper covariant identification and
cancellation of ultraviolet and infrared divergences is assumed.
The integration contour C in Eq. (4) is the standard Feynman
integration contour; it will be deformed for a numerical
evaluation as discussed below.

The vertex+reducible contribution is further divided into
three parts: the zero-potential, one-potential, and many-
potential contributions,

�gvr = �g(0)
vr + �g(1)

vr + �g(2+)
vr . (5)

This separation is induced by the following identity, which
splits the integrand according to the number of interactions
with the binding Coulomb field in the electron propagators,

GδVg G ≡ [G(0) δVg G(0)] + [G(0) δVg G(1) + G(1) δVg G(0)]

+ [GδVg G − G(0) δVg G(0)

− G(0) δVg G(1) − G(1) δVg G(0)], (6)

where G ≡ G(ε) ≡ ∑
n |n〉〈n|/(ε − εn) is the bound-electron

propagator, G(0) ≡ G|Z=0 is the free-electron propagator, and

G(1)(ε) ≡ Z

[
d

dZ
G(ε)

]
Z=0

is the one-potential electron propagator.
In the present work, we will be concerned mainly with the

numerical evaluation of �g(2+)
vr , since all other contributions

were computed to the required accuracy in our previous
investigations [11,13].
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After performing integrations over the angular variables
analytically as described in Ref. [11], we obtain the result that
can be schematically represented as

�g(2+)
vr = lim

|κmax|→∞

∫
C

dω

∫ ∞

0
dx dy dz

|κmax|∑
|κ|=1

f|κ|(ω,x,y,z),

(7)

where x, y, and z are the radial integration variables, |κ| is
the absolute value of the angular momentum-parity quantum
number of one of the electron propagators, and f|κ| is the
integrand. Summations over other angular quantum numbers
are finite and absorbed into the definition of f|κ|.

The approach of the present work is to split �g(2+)
vr into two

parts,

�g(2+)
vr = �g(2+)

vr,a + �g
(2+)
vr,b

=
∫

CLH,a

dω

∫ ∞

0
dx dy dz

κa∑
|κ|=1

f|κ|(ω,x,y,z)

+ lim
κmax→∞

∫
CLH,b

dω

∫ ∞

0
dx dy dz

×
κmax∑

|κ|=κa+1

f|κ|(ω,x,y,z), (8)

where κa is an auxiliary parameter and CLH,a and CLH,b are
two integration contours used for the evaluation of the two
parts of Eq. (8). In the present work we used κa = 120, which
corresponds to the maximal value of |κ| used in Ref. [13],
and CLH,a being the same contour as used in that work. So,
the numerical evaluation of �g(2+)

vr,a was mostly analogous
to the one reported in Ref. [13], but we had to improve
the accuracy of numerical integrations by several orders of
magnitude. In the updated numerical integrations, extended
Gauss-log quadratures [14] were employed, alongside the
standard Gauss-Legendre quadratures.

We found it impossible to extend the partial-wave expansion
significantly beyond the limit of κa = 120 within the same
numerical scheme as used in Ref. [13]. The reason is that the
integration contour CLH,a used there, as well as in our pre-
vious works [10,11], involved computations of the Whittaker
functions of the first kind Mα,β(z) and their derivatives for
large complex values of the argument z. The algorithms we
use [15] for computing Mα,β (z) become unstable for large
α (needed for large κ’s) and large and complex z, even when
using quadruple-precision arithmetics. For this reason, in order
to compute �g

(2+)
vr,b , we had to switch to the contour CLH,b,

which was originally introduced by Mohr in his calculations
of the one-loop self-energy [16,17]. The crucial feature of this
contour is that it involves the computation of the Whittaker
functions Mα,β (z) and Wα,β (z) of the real arguments z only.
For real arguments, the computational algorithms were shown
[17] to be stable even for very large κ’s (and hence α’s).

Specifically, the contours CLH,a and CLH,b consist of two
parts, the low-energy and the high-energy ones. The low-
energy part extends along (�,0) on the lower bank of the
cut of the photon propagator of the complex ω plane and
along (0,�) on the upper bank of the cut. The high-energy

part consists of the interval (�,� + i∞) in the upper half
plane and the interval (�,� − i∞) in the lower half plane.
The difference between CLH,a and CLH,b is only in the choice
of the parameter �. For CLH,a, we use � = Zα εa (the same
choice as in our previous works [10,11,13]), whereas for CLH,b,
we use � = εa (Mohr’s choice). A detailed discussion of
the integration contour and the analytical properties of the
integrand can be found in the original work [16].

We found that the price to pay for using the contour CLH,b

was the oscillatory behavior of the integrand as a function
of the radial variables for ω ∼ εa . Because of this, we had
to employ very dense radial grids for numerical integrations,
which made computations rather time consuming.

The largest error of the numerical evaluation of Eq. (8)
comes from the termination of the infinite summation over
|κ| and the estimation of the tail of the expansion. In the
present work, we performed the summation over |κ| before
all integrations and stored the complete sequence of partial
sums, to be used for the extrapolation performed on the last
step of the calculation. The convergence of the expansion
was monitored; in the cases when the series converged to the
prescribed accuracy [i.e., the relative contribution of several
consecutive expansion terms was smaller than, typically,
10−11 for �g(2+)

vr,a and 10−6 for �g
(2+)
vr,b ], the summation was

terminated. This approach reduced the computation time
considerably as compared to our previous scheme [11], where
the summation over |κ| was performed after all integrations.
If the convergence of the partial-wave expansion had not been
reached, the summation was extended up to the upper cutoff
κmax = 450.

The remaining tail of the series was estimated by analyzing
the |κ| dependence of the partial-wave expansion terms after
all integrations. We fitted the last m expansion terms (typically,
m = 20) to the polynomial in 1/|κ| with one to three fitting
parameters,

δS|κ| = c0/|κ|3 + c1/|κ|4 + · · · .

The uncertainty of the extrapolation was estimated by varying
the cutoff parameter κmax by 20% and multiplying the resulting
difference by a conservative factor of 1.5. This procedure
usually led to the expansion tail estimated with an accuracy of
about 10%.

We observed an interesting feature, namely, that the tail
of the expansion, with a high accuracy, is the same for
the 1s and for the 2s states. For example, for Z = 4, we
find the expansion tail of δg(1s) = −1.88(19) × 10−12 and
δg(2s) = −1.88(19) × 10−12; for Z = 16, we obtain δg(1s) =
−3.00(27) × 10−11 and δg(2s) = −3.01(27) × 10−11. We do
not know the reason for this, but such an agreement shows a
high degree of consistency of our numerical calculations for
the 1s and 2s states.

Our numerical results for the self-energy correction to the
bound-electron g factor of the 1s and 2s states of hydrogenlike
ions are presented in Table I. The values for the irreducible part
�gir are taken from our previous investigations (from Ref. [13]
for Z � 12 and from Ref. [11] otherwise). Using the results
of Ref. [11], we introduced small corrections that accounted
for a different value of the fine-structure constant used in that
work. In Table I we also present values of the higher-order
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TABLE I. One-loop self-energy correction to the bound-electron g factor for the 1s and 2s states of H-like ions, multiplied by 106. The
value of the fine-structure constant used in the calculation is α−1 = 137.036.

Z δgir δg(0)
vr δg(1)

vr δg(2+)
vr Total H (Zα)

1s

4 17.216 132 6 2 300.997 357 2 4.459 445 1 0.502 585 3 (2) 2 323.175 520 1 (2) 22.487 (4)
6 34.064 668 1 2 280.737 822 5 7.795 347 6 1.074 584 5 (4) 2 323.672 422 7 (4) 22.166 (1)
8 54.781 703 2 2 256.697 710 8 11.165 707 2 1.797 002 1 (7) 2 324.442 123 2 (7) 21.861 4 (5)
10 78.743 788 6 2 229.826 130 5 14.349 045 7 2.617 542 (1) 2 325.536 507 (1) 21.566 3 (2)
12 105.511 685 3 2 200.798 139 6 17.216 228 5 3.483 762 (2) 2 327.009 815 (2) 21.279 5 (1)
14 134.760 370 (3) 2 170.119 540 6 19.693 048 7 4.344 533 (2) 2 328.917 492 (4) 21.000 5 (1)
16 166.242 092 (3) 2 138.182 197 1 21.740 396 0 5.150 896 (3) 2 331.315 581 (4) 20.729 03 (8)
18 199.764 465 (3) 2 105.296 890 3 23.342 539 0 5.856 557 (3) 2 334.260 452 (5) 20.465 04 (5)
20 235.176 430 (4) 2 071.714 411 8 24.499 708 2 6.418 172 (4) 2 337.808 723 (6) 20.208 29 (4)
2s

4 5.053 860 6 2 315.988 700 0 1.337 877 4 0.524 654 7 (3) 2 322.905 092 6 (3) 22.78 (4)
6 10.186 275 6 2 309.230 319 4 2.428 638 8 1.173 119 8 (4) 2 323.018 353 7 (4) 22.48 (1)
8 16.629 185 2 2 300.885 484 0 3.600 384 8 2.070 636 5 (7) 2 323.185 690 5 (7) 22.221 (4)
10 24.208 822 9 2 291.216 226 1 4.777 844 0 3.210 248 (1) 2 323.413 141 (1) 21.972 (2)
12 32.796 260 4 2 280.416 694 2 5.909 016 2 4.584 979 (2) 2 323.706 950 (2) 21.727 (1)
14 42.290 335 (2) 2 268.638 681 0 6.956 360 9 6.188 074 (2) 2 324.073 450 (3) 21.486 (1)
16 52.608 698 (2) 2 256.005 047 5 7.892 134 5 8.013 144 (3) 2 324.519 024 (4) 21.250 5 (6)
18 63.682 502 (3) 2 242.617 687 9 8.695 612 8 10.054 280 (4) 2 325.050 083 (5) 21.020 3 (4)
20 75.453 014 (4) 2 228.562 653 6 9.351 303 3 12.306 120 (5) 2 325.673 091 (6) 20.794 9 (3)

remainder function H (Zα), obtained after separating out all
known terms of the Zα expansion [5,6] from our numerical
results,

�gSE =α

π

[
1 + (Zα)2

6n2
+ (Zα)4

n3

{
32

9
ln[(Zα)−2] + b40

}

+ (Zα)5

n3
H (Zα)

]
, (9)

where b40(1s) = −10.236 524 32 and b40(2s) =
−10.707 715 60. The results for the higher-order remainder
function are plotted in Fig. 1.
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FIG. 1. The higher-order remainder function H (Zα), defined by
Eq. (9), for the one-loop self-energy correction to the bound-electron
g factor of the 1s and 2s states.

Our calculation represents an improvement in accuracy over
previous works by about two orders of magnitude. Table II
shows a comparison of various calculations for carbon. It is
gratifying to find that all results are consistent with each other
within the given error bars.

In the present work, we performed direct numerical cal-
culations for ions with Z � 4. For smaller Z, numerical can-
cellations in determining the higher-order remainder become
too large to make numerical calculations meaningful. Instead
of direct calculations, we extrapolated the numerical values
presented in Table I for H (Zα) down towards Z → 0. Doing
this, we assumed the following ansatz for H (Zα), which was
inspired by the expansion of the one-loop self-energy for the
Lamb shift,

H (Zα) ≈ c00 + (Zα){ln2[(Zα)−2]c12

+ ln[(Zα)−2]c11 + c10} + (Zα)2c20. (10)

For the 2s − 1s difference, we use the form (10) with c12 = 0,
assuming the leading logarithm to be state independent. The
extrapolated results are presented in Table III. The uncer-
tainties quoted for our fitting results are obtained under the

TABLE II. The higher-order remainder H (Zα) for the 1s and 2s

states of H-like carbon (Z = 6), in different calculations.

H1s(6α) H2s(6α) Reference

22.166 (1) 22.48 (1) This work
22.18 (9) 22.5 (1.3) [13]
22.16 (1) [5]a

22.2 (2) 18.(13.) [10,11]
22. (2.) [9]

aExtrapolation of the numerical data from Ref. [10].
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TABLE III. Extrapolated values of the higher-order remainder
H (Zα) for small Z.

Z H1s H2s − H1s

0 23.6 (5) 0.12 (5)
1 23.08 (9) 0.16 (3)
2 22.85 (3) 0.20 (2)

assumption that the logarithmic terms in the next-to-leading
order of the Zα expansion of H (Zα) comply with Eq. (10). If
we introduce, e.g., a cubed logarithmic term into Eq. (10), our
estimates of uncertainties would increase by about a factor of 2.

In summary, we reported calculations of the one-loop self-
energy correction to the bound-electron g factor of the 1s and
2s state of light hydrogenlike ions, performed to all orders
in the binding nuclear strength parameter Zα. The relative
accuracy of the results obtained varies from 1 × 10−10 for
Z = 4 to 3 × 10−9 for Z = 20. Our results agree well with
previously published values, but their accuracy is by about
two orders of magnitude higher.
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