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Measuring the polarization of electromagnetic fields using Rabi-rate measurements with spatial
resolution: Experiment and theory
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When internal states of atoms are manipulated using coherent optical or radio-frequency (rf) radiation, it is
essential to know the polarization of the radiation with respect to the quantization axis of the atom. We first present
a measurement of the two-dimensional spatial distribution of the electric-field amplitude of a linearly polarized
pulsed rf electric field at ∼25.6 GHz and its angle with respect to a static electric field. The measurements exploit
coherent population transfer between the 35s and 35p Rydberg states of helium atoms in a pulsed supersonic
beam. Based on this experimental result, we develop a general framework in the form of a set of equations
relating the five independent polarization parameters of a coherently oscillating field in a fixed laboratory frame
to Rabi rates of transitions between a ground and three excited states of an atom with arbitrary quantization
axis. We then explain how these equations can be used to fully characterize the polarization in a minimum of
five Rabi-rate measurements by rotation of an external bias field, or, knowing the polarization of the driving
field, to determine the orientation of the static field using two measurements. The presented technique is not
limited to Rydberg atoms and rf fields but can also be applied to characterize optical fields. The technique has
the potential for sensing the spatiotemporal properties of electromagnetic fields, e.g., in metrology devices or in
hybrid experiments involving atoms close to surfaces.
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I. INTRODUCTION

Precise sensing of electromagnetic fields has a vast range
of applications, e.g., in establishing SI-traceable standards
for the electric-field strength [1,2], in magnetic-field sensing
and stabilization in magnetic resonance imaging [3,4], or in
the definition of frequency standards by atomic clocks using
ultracold atoms in lattices [5,6] or atoms in vapor cells [7]. The
quantum nature of atomic systems and their well-understood
interaction with electromagnetic fields make them particularly
attractive as sensitive tools for quantum metrology. Quantum-
system-based sensors for static or time-dependent magnetic
fields have already reached a high degree of maturity and rely
on employing systems as diverse as atomic vapors [8–10],
nitrogen-vacancy centers [11], or superconducting quantum-
interference devices [12]. For electric fields, in contrast, the
field is still in its infancy. One promising approach is the
spectroscopy of atoms in Rydberg states which was shown
to be a sensitive tool for the characterization of static and
high-frequency electric fields [2,13–19].

A wide range of techniques have been developed to measure
electromagnetic fields using atomic quantum systems. For
example, Ramsey measurements of single trapped ions can
detect yoctonewton (10−24 N) forces originating from very
weak electric fields [20]. For neutral atoms in Rydberg
states, transmission measurements using electrically induced
transparency have been used to characterize rf electric fields
[15,19]. We have recently used pulsed coherent rf Stark
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spectroscopy to determine the spatiotemporal distribution of
static and rf electric fields in a way that is compatible with
cryogenic temperatures [17,18].

In this article, we first present our experimental approach
to determine, with spatial resolution, the absolute electric-
field strength of a linearly polarized rf field �F (�r,t) and the
distribution of the angle � between �F and a static electric bias
field (Sec. II) using an ensemble of Rydberg atoms. Based on
these experimental results, we develop a general framework
to determine the full polarization ellipse of an arbitrary time-
dependent electromagnetic field using the interaction of the
field with the internal-state population of atoms (Sec. III). The
framework exploits coherent population transfer in an atomic
four-level system in the presence of an adjustable (electric
or magnetic) bias field. We present a set of equations that
can be used to determine the full polarization ellipse of the
excitation field from a minimum of five measurements of Rabi
frequencies and at least one rotation of the bias field.

II. EXPERIMENT

Our field-measurement technique is based on the obser-
vation of coherent population oscillations (Rabi oscillations)
between Rydberg states of helium atoms, driven by an a priori
unknown rf field. The known magnitude of the transition dipole
moment �d allows us to derive the absolute value of the field
strength along the direction of the dipole moment from the
measured Rabi rate � via the relation

� =
�d · �F0

h̄
, (1)

with �F0 = (Fx,Fy,Fz) being the vector of amplitudes of the
driving field in the laboratory frame. An applied static electric
bias field dominates all other stray static electromagnetic
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FIG. 1. Finite-element simulation of the electric field �Fbias (gray
arrows) created by applying a potential difference V23 between
cylindrical electrodes E2 and E3 (green boxes). The dc and rf electric-
field vectors �Fbias and �F at the position (y = −1 mm, z = 5 mm)
are indicated by the full and dotted black arrows, respectively. The
parallel (F‖) and perpendicular (F⊥) components of �F with respect
to �Fbias are indicated by the blue and orange arrows.

fields and defines the quantization axis of the atom in the
laboratory frame. We use the alignment of the atomic transition
dipole with the applied bias field to obtain information on the
polarization vector of the rf field.

The experiments are carried out with the setup described
in Ref. [17] and exploit the imaging techniques developed
in Ref. [18], as discussed below. A supersonic beam (v ≈
1700 m/s) of metastable (1s)1(2s)1 1S0 helium atoms propa-
gates in the positive z direction of the laboratory frame L
and is excited to the 35s Rydberg state in a field-free region.
The Rydberg states are prepared by two successive, resonant
one-photon transitions. The first one, to the 35p state, is
induced by a 10-ns-long laser pulse (λ ≈ 313 nm, derived
from a frequency doubled dye laser) and the second one, to
the 35s Rydberg state, is induced by a 140-ns-long rf pulse
of frequency ω0/2π ≈ 25.5655 GHz. Here, ω0 corresponds
to the field-free resonance angular frequency of the 35p to
35s transition, calculated using the energy-dependent quantum
defects of helium [21].

Subsequently, the atoms enter the cryogenic (T ≈ 3 K)
experimental region and propagate through holes in two
cylindrical electrodes enclosing the region of interest [17]. A
variable potential difference applied to these electrodes results
in a static homogeneous electric bias field �Fbias that points in
the z direction (beam-propagation direction). The bias field
defines the quantization axis for the Rydberg atoms (Fig. 1)
and lifts the degeneracy of the 35p m = 0 and |m| = 1 states.

In the experimental region, the atoms coherently interact
with the (to be determined) excitation field, before propagating
into the spatially separated detection region. When the atom
sample is localized in the most homogeneous part of the
electric bias field in the middle of the experimental region,
the pulsed excitation field �F (�r,t) transfers population between
the |g0〉 ≡ |35s, m = 0〉 and the |e0〉 ≡ |35p, m = 0〉 (parallel
transition) and |e±〉 ≡ |35p, m = ±1〉 (perpendicular transi-
tions) Rydberg states. At this position, 90% of the atom cloud
is contained within ∼ 1 mm in the z direction and over ∼2 mm
in the (x,y) directions.

The excitation field is coupled into the experimental region
via a horn antenna and has a center frequency ω with a detuning
�0 = ω − ω0 ≈ 2π × 100 MHz from the atomic field-free
transition frequency. Its amplitude and phase are controlled
using a home-built up-conversion device, operating between
0 and 50 GHz. This device converts I and Q quadratures
of a pulse, generated by an arbitrary waveform generator,
in two subsequent mixing processes—IQ to 4 GHz, and
heterodyne between 2 and 50 GHz—to the desired frequency.
Appropriate filtering after each conversion step suppresses
undesired sidebands.

The amplitude of the excitation field has a temporal
Gaussian envelope of full width half maximum (FWHM)
�t = 118 ns, truncated to a total pulse duration of 200 ns.
The FWHM of this pulse in the frequency domain is 7.5 MHz.
The rf-field pulse is short enough such that the atoms only
travel ∼0.2 mm in the z direction during the excitation pulse,
which is smaller than the longitudinal extent of the atom
cloud and small in comparison to the excitation wavelength
λ ≈ 11.7 mm. At the same time, the rf-field pulse is long
enough to resolve the perpendicular transitions (|g0〉 ↔ |e±〉)
and the parallel transition (|g0〉 ↔ |e0〉) spectrally, when an
electric dc field Fbias of ∼420 mV/cm is applied, causing a
Stark splitting of the transitions of about 30 MHz.

The population of atoms in the 35s Rydberg state is finally
detected by pulsed field ionization [17] and the electrons are
extracted in the beam propagation direction toward an imaging
microchannel-plate-detector assembly. Magnification of the
electron pulse by an einzel lens enables precise measurement
of the spatial Rydberg-atom distribution in the xy plane. The
signal collected in one pixel of the images corresponds to the
population of the Rydberg atoms in the 35s state at a specific
location (x,y) in the experimental region which can be resolved
with ∼50 μm precision [18].

A. Stark shifts of π and σ transitions

We have verified that parallel and perpendicular transitions
can be independently addressed by the excitation pulse by
performing pulsed Stark spectroscopy. To this end, the bias
potential difference V23 applied between cylindrical electrodes
E2 and E3 was varied between −0.6 and 1 V, and the
(normalized) total population in |g0〉 recorded for detunings
�0 between 0 and 200 MHz with respect to the field-free
transition [Figs. 2(a) and 2(b)].

The two resonances observed in the spectra are well fitted
by Gaussian functions, the center frequencies and widths of
which are shown in Fig. 2(a). The spectral separation of the
resonances increases with increasing V23, i.e., with increasing
bias electric-field strength | �Fbias| (called Fbias hereafter). For
V23 between −0.1 and 0.5 V, the separation of the resonance
frequencies is smaller than the Fourier-transform limit of the
rf pulses and could not be determined. For larger applied bias
fields, the resonances are broadened by field inhomogeneities.

The observed resonances correspond to the parallel |g0〉 →
|e0〉 (orange data points) and to the two degenerate perpen-
dicular |g0〉 → |e±〉 transitions (blue data points). On the
parallel transition, the population transfer is driven only by
the component F‖ of the rf field which is parallel to the
bias field (see Fig. 1). On the perpendicular transitions, the
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FIG. 2. (a) Measured detunings �0 of the center transition
frequencies of the parallel (solid, orange circles) and perpendicular
transitions (open, blue circles) between 35s and 35p as a function
of the applied bias potential difference. The vertical bars indicate
the fitted FWHM of the transitions. Black solid and dashed lines
are fits to Eq. (2). (b) rf spectrum of the parallel (upper orange)
and perpendicular (lower blue) transitions for V23 = −0.4 V, see red
arrow in (a). (c) Calculated Stark effect of the (35,s,0) (red), (35,p,0)
(orange), and (35,p, ± 1) (dashed-blue) states. The energies of the
n = 34, m = 0 and |m| = 1 manifolds are indicated by black and
dashed-black lines, respectively. The parallel (π ) and perpendicular
(σ ) transitions are indicated by orange and blue arrows, respectively.

population transfer is driven correspondingly only by the
perpendicular component F⊥ of the rf field. Diagonalization
of the single-particle Stark Hamiltonian [22] around the
n = 34-manifold states indicates that the frequency shifts of
the two transitions scale as F 2

bias for the chosen values of V23

[Fig. 2(c)]. The black and black-dashed lines in Fig. 2(a) are
fits to a quadratic function [14,17] for the (field-dependent)
detunings �i

0(Fbias) = ωi(Fbias) − ω0 (i =‖ , ⊥) of the two
transitions:

�i
0 = αi

2
F 2

bias,z + αi

2

(
F 2

bias,x + F 2
bias,y

)
= αi

2
(c ∗ V23 − c ∗ Voff)

2 + αi

2
F 2

bias,xy . (2)

Here, c ∗ V23 is the electric field created by the poten-
tial difference of V23 with a fitted conversion factor c =
0.646(4) cm−1 averaged over the fit from both transitions.
α‖ = 1330.9 MHz(V/cm)−2 and α⊥ = 955.7 MHz(V/cm)−2

are the polarizability differences of both transitions, obtained
by numerical calculations [22]. Voff and Fbias,xy account
for compensable and noncompensable stray electric fields,
respectively. Their values, obtained from an average over the
two fits, are Voff = 253(2) mV, and Fbias,xy = 67(17) mV/cm.
Because the resonance shifts and broadenings induced by
Fbias are much larger than ac Stark shifts or broadenings
of the transitions induced by the rf field, it is justified to
choose the atomic quantization axis to be given by the direction
of the bias field.

B. Measurement procedure and results

In Figs. 3(a) and 3(b), we present distributions of the
maximum rf-electric-field strengths F‖(�r,t) and F⊥(�r,t) in the
xy plane in the middle of the experimental region, following
the procedure described in Ref. [18] and summarized in the
following.

We varied the peak amplitude A of the Gaussian-shaped
rf excitation pulse from Amin = 0 mV to Amax ≈ 300 mV
at the horn antenna, while being resonant with one of the
transitions at ω‖ and ω⊥ for panels (a) and (b), respectively. For
each applied rf amplitude η ≡ A/Amax, the spatial distribution
of atoms in |g0〉 was recorded and the amplitude-dependent
population transfer in each pixel was extracted [Figs. 3(c)–
3(e)]. We selected the resonances by changing the frequency
of the rf field rather than the bias field. The frequency change
of ∼30 MHz is small compared to the central frequency
ω ≈ 25.66 GHz of the rf field and does not lead to a measurable
change of the rf-field distribution.

By fitting an analytical model (described in the Appendix)
to the recorded amplitude-dependent population at every pixel,
we extract �i(x,y) (i ∈ {‖ , ⊥}), which is the effective Rabi
rate for η = 1 at the maximum of the Gaussian pulse and at the
pixel corresponding to the position (x,y) in the experimental
region [18]. From numerical fits to the Rabi oscillations driven
on the perpendicular transition [blue data in Figs. 3(d) and 3(e)]
(see Appendix), we learn that the |g0〉 → |e+〉 and |g0〉 → |e−〉
transitions are nondegenerate but split by less than ∼4 MHz in
the light-shaded region because of a small residual magnetic
field on the order of the Earth’s magnetic field. Note that
this could not be resolved by spectroscopic means (measured
linewidth of the perpendicular transition ∼10 MHz) but only
with the coherent pulsed technique we use here. From the good
agreement of the numerical fit using identical Rabi rates for the
two perpendicular transitions �+ = �− we conclude that the
electric rf field is mostly linearly polarized in the light-shaded
region in Fig. 3(b). As the remaining data was recorded within
a distance �λ/10 we assume that the rf field is also linearly
polarized in the other, nonshaded region.

�i is converted into the electric-field strength Fi using
Eq. (1) and the dipole moment d‖ ≈ d⊥ = 960ea0 calculated
from the single-particle Stark Hamiltonian [22]. The values
(F‖,F⊥)(x,y) determined for all pixels (i.e., for all atom
positions) represent the two-dimensional distribution of rf
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FIG. 3. Measured field strengths of the rf-field component (a) parallel and (b) orthogonal to the dc electric field for the maximal rf amplitude
applied. The separation between adjacent contour lines corresponds to 1 mV/cm. (c) Population in |g0〉 for the measurement at the frequency
of the parallel transition as a function of the amplitude of the applied pulse at the position indicated by × in (a). Data (black dots) and fit of the
analytic function [Eq. (A2)] (red curve) used to extract �‖. (d),(e) Population in |g0〉 for the measurement at the frequency of the perpendicular
transition (black dots) as a function of the amplitude of the applied pulse at the positions indicated by , © in (b). Red curve: fit of Eq. (A2) to
the data; dashed blue curve: result of an exact numerical simulation (see Appendix) which indicates a splitting of the perpendicular transition
occurring in the white shaded region in (b). The splitting is 3.7 MHz at the position marked  in (b). (f) Spatial distribution of the angle �

between �Fbias and �F , extracted from measurements presented in (a) and (b). (g) Distribution of total electric-field strength | �F |, inferred from
measurements presented in (a) and (b) [color scale as in panels (a) and (b)].

electric-field strengths averaged over the extent of the atom
cloud in the z direction.

We calculate the angle � (see Fig. 1)

� = arctan

(
F⊥
F‖

)
∈ [0,π/2] (3)

between the electric rf field and the static electric field
[Fig. 3(f)] using the data shown in Figs. 3(a) and 3(b). �

varies by more than 27◦ over a distance of ∼λ/5 (λ ≈
11.7 mm) in the xy plane, whereas the total electric rf field
[Fig. 3(g)]

| �F (t)| =
√

F 2
⊥ + F 2

‖ (4)

varies by 7 mV/cm (22% of the maximal value) over the same
distance. As detailed in the Appendix, the precision is limited
by statistical errors to �0.5◦ (∼9 mrad) and �300 μV/cm
for the angle and the amplitude measurement, respectively.
We estimate the accuracy of our measurements to be much
higher than their precision (∼1%), because it is limited by
the variation of the transition dipole moment caused by the
inhomogeneity of the applied electric bias field (∼5%) over
the spatial extent of the atom cloud in our experimental setup.

The variation of the angle by several degrees and of the
rf-field magnitude by ∼20% over a distance of λ/5 (i.e., the
size of the atom cloud) is compatible with a standing wave

between the electrodes separated by 15 mm in the z direction
[see Fig. 4(b) in [17]].

III. THEORETICAL CONSIDERATIONS

The experimental approach presented in the previous sec-
tion facilitates the absolute measurement of the electric-field
strength of the rf field with a spatial resolution exceeding
by far the wavelength of the radiation. It also allows one to
obtain information about the polarization state of the rf field.
These conclusions motivated us to investigate theoretically
which measurements are required to fully characterize the
polarization state of an arbitrary electromagnetic excitation
field, as discussed in the following.

In this section, we first decompose an arbitrary excitation
field into linear and circular polarization components in a
laboratory frame L and a rotated frame B (Sec. III A). As
discussed previously, we relate the amplitudes of these field
components to the Rabi rates of transitions in an atomic
four-level system (Sec. III B), consisting of three states which
are coupled to a fourth state by π, σ+, and σ− transitions [see
Fig. 4(b)]. The labels π, σ+, and σ− refer to a change of the
projection of the atomic angular momentum on the axis of an
applied bias field by 0, h̄, and −h̄, respectively.
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In Sec. III C, we show how the measured Rabi rates can
be used to characterize the excitation field using a minimal
set of five measurements. Specifically, we discuss the cases in
which(i) a magnetic bias field is applied (all transitions can be
addressed separately), (ii) an electric bias field is applied (only
π and σ± transitions can be addressed separately), and (iii) no
bias field is applied.

A. The excitation field in three dimensions

To characterize a (magnetic or electric) vector field �F (�r,t)
oscillating at a fixed frequency ω, it can be decomposed into
three linear polarization components along �ej (j = x,y,z) in
a laboratory-fixed coordinate frame L, i.e.,

�F (�r,t) =
∑
j ∈

{x,y,z}

1

2
Fj (�r,t)e−i(φj (�r,t)+ωt)�ej + c.c. (5)

In this case, the excitation field is given by six independent
parameters, i.e., the non-negative amplitudes Fj (�r,t) and
phases φj (�r,t). The values of these parameters are determined
by boundary conditions and are assumed not to change
during the measurement time. We can therefore restrict the
discussions to a specific point (�r = �r0,t = t0) in space and
time and drop the implicit dependence of Fj and φj on �r and
t in the following.

The coherent excitation field �F (t) can be represented by a
polarization ellipse [23,24] [see Fig. 4(a)], which is uniquely
determined by the three amplitudes Fj and two relative phases
[25], the third phase being arbitrarily chosen to be φz = 0.

The excitation field is conveniently decomposed into
a linear �eπ ≡ �ez′ and two circular components �e± ≡
∓ 1√

2
(�ex ′ ± i�ey ′ ) of a coordinate frame B = (x ′,y ′,z′)

[Fig. 4(a)],

�F (�r,t) =
∑
γ ∈

{−, + ,π}

1

2
Fγ e−i(φγ +ωt)�eγ + c.c. (6)

We always choose the z′ direction to be aligned with the
quantization axis of the atom, which is conventionally chosen
along the direction of an externally applied bias field. Hence,
if the orientation of the bias field changes, the orientation of
B with respect to L varies. The relative orientation of the two
coordinate systems is given by the three Euler angles (α,β,ζ )
as defined in [26]. Because the amplitudes Fγ that determine
the atom-field interaction (see next section) are invariant under
rotations around z′, we always choose ζ = 0 for B [Fig. 4(a)]
in the remainder of this article.

The field amplitudes in the different coordinate systems can
be related through the excitation-field intensity

I ∝
∑
j ∈

{x,y,z}

F 2
j =

∑
j ′ ∈

{x ′,y ′,z′}

F 2
j ′ =

∑
γ ∈

{+, − ,π}

F 2
γ , (7)

and the relations (8a) and (8b) resulting from the unitary
coordinate transformation

F 2
π = F 2

z′

= F 2
z cos2(β) + [

F 2
x cos2(α) + F 2

y sin2(α)
]

sin2(β)

)(

− +

−
+

−
+

)(

FIG. 4. (a) Polarization ellipse (red) of an excitation field �F (t) at
�r0. The angles α and β indicate the angles that rotate the laboratory
frame L (black) into the bias-field frame B (black, dashed). (b) Level
diagram of a four-level system with common state |g0〉 coupled to
three states |e−〉, |e+〉, and |eπ 〉. The transitions are indicated by blue
and orange arrows for σ+/− and π polarized light, respectively. For
each transition [γ = (+, − ,π )], the detuning (�γ ) from the drive
frequency ω and the Rabi frequency (�γ ) are introduced.

+FzFx sin(2β) cos(α) cos(φx)

+FzFy sin(2β) sin(α) cos(φy)

+FyFx sin(2α) sin2(β) cos(φx − φy), (8a)

F 2
± = 1

2

[
F 2

x ′ + F 2
y ′ ± 2Fx ′Fy ′ sin(φx ′ − φy ′)

]

= 1

2

⎛
⎜⎜⎜⎝

∑
j ∈

{x,y,z}

F 2
j − F 2

π (α,β)

⎞
⎟⎟⎟⎠

±FxFy cos(β) sin(φx − φy)

∓FxFz sin(α) sin(β) sin(φx)

±FyFz cos(α) sin(β) sin(φy). (8b)

B. Interaction with a four-level system

The parameters of the excitation field can be determined
by measuring the populations at �r0 in a four-level atomic
system consisting of a ground state |g0〉 coupled to three states
|e−〉, |e+〉, and |eπ 〉 of different frequencies by the radiation at
frequency ω [Fig. 4(b)].

As mentioned before, we choose the quantization axis (�ez′

of B) of the atom to be aligned with a constant (magnetic
or electric) bias field �Fbias that dominates the polarization of
the atomic transition dipole. The strength of the bias field
can also be used to tune the energy differences between |g0〉
and |e−〉, |e+〉, and |eπ 〉 and therefore to vary the detunings
�γ ≡ ω − ωγ for γ = (π, + ,−) [Fig. 4(b)].

The atom is coupled to the excitation field by the electric- or

magnetic-dipole coupling operator Hint = − �̂d · �F (t), �̂d being
the magnetic- or electric-dipole-moment operator. The ampli-
tudes of the linear and circular components of the excitation
field [Fγ with γ = (π, + ,−)] drive the transitions denoted
π, σ+, and σ− in [Fig. 4(b)], respectively. For each transition,
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the Rabi rate is given by

�γ ≡ dγ Fγ e−iφγ

h̄
, (9)

where dγ = 〈eγ |d̂ · �eγ |g0〉 is the transition dipole matrix
element.

In a frame rotating around z′ with angular frequency ω and
using the rotating-wave approximation, the Hamilton operator
of the coupled system in the basis (|g0〉,|e−〉,|e+〉,|eπ 〉) is given
by

H = h̄

2

⎡
⎢⎣

0 �∗
− �∗

+ �∗
π

�− 2�− 0 0
�+ 0 2�+ 0
�π 0 0 2�π

⎤
⎥⎦, (10)

where the detunings �γ are assumed to be much smaller than
ω, which is valid for a near-resonant excitation field.

From now on and for the sake of simplicity, we restrict
the discussion to situations in which different sets S of
transitions are resonant with the excitation field S ≡ {γ :
�γ = 0} for a given orientation of B with respect to L. The
other transitions are far detuned (�γ ′ � |�γ ′ | for γ ′ �∈ S).
For a given S, the solution of the time-dependent Schrödinger
equation for an atom initially in |g0〉 and described by Eq. (10)
reveals oscillations of the population in |g0〉 with an effective
frequency

�eff
g0

=
√∑

γ∈S

|�γ |2 = 1

h̄

√∑
γ∈S

|dγ Fγ |2 (11)

independent of the phases φγ . The effective Rabi rate (�eff
g0

) can
be obtained, e.g., by observing the time-dependent population
in the state |g0〉 (Rabi oscillations) or from an analysis of
measured line shapes (e.g., in the case of an observable Autler-
Townes splitting [1,2]). As will be discussed in the next section
(Sec. III C), the nature of the bias field determines how many
different S are available for a given direction of B, and the
minimum set of rotations of the bias field required to determine
the excitation field.

C. Measuring the excitation or bias field

In this section, we describe how a number of five measure-
ments for 2 � k � 5 orientations of the quantization axis (i.e.,
orientations ofB) are sufficient to determine all excitation-field
parameters Fx,Fy,Fz,φx,φy in the laboratory frame L.

In Eqs. (8a) and (8b), the field amplitudes Fπ and F±
in B are expressed as a function of all five field parameters
Fx,Fy,Fz,φx,φy in L. Using Eqs. (9) and (11), Fπ and F±
can be determined from the measured oscillation frequency
�eff

g0
of the population in |g0〉. Therefore, it suffices to measure

�eff
g0

for k orientations of the bias field, such that we obtain
five (independent) equations from Eqs. (8a) and (8b). These
equations can then be solved to find the excitation-field
parameters.

The number of bias-field orientations k required to obtain
the full information about the excitation field depends on the
maximal number of different sets S that are available for the
applied bias field, i.e., the maximal number of discriminable
(nondegenerate and resolvable) transitions which is given by

the nature of the applied bias field. In addition, the explicit
choice of orientations has to take into account the periodic
character of the trigonometric functions in Eqs. 8(a) and 8(b).
Otherwise an underdetermined system of equations might
result. Furthermore, the intensity of the excitation field �F
[Eq. (7)] is independent of the bias-field orientation. As
soon as the intensity is determined, the maximal number of
independent measurements in a fixed direction of B is reduced
by 1.

When a magnetic bias field is applied to the atom, all
transitions (π, σ+, σ−) can be resolved and separately tuned
into resonance (�γ = 0) by the bias field, i.e., we have a
maximum of three sets S, each containing one transition. From
a measurement of �eff

g0
for a specific S, we thus directly infer Fγ

for γ = (π, + ,−) [Eq. (11)]. In order to determine �F (t) with a
magnetic field applied, it is therefore sufficient to measure five
independent values F (α,β)

γ in only two directions (αi,βi), i =
1,2 of the bias field (B). For instance, from the measured field
amplitudes (F (0,0)

π ,F
(0,0)
+ ,F

(0,0)
− ,F

(0,π/2)
+ ,F

(0,π/2)
− ) it is possible

to reconstruct �F (t) using

Fx =
√

[F (0,π/2)
+ ]

2 + [F (0,π/2)
− ]

2 − [F (0,0)
π ]

2
, (12a)

Fy =
√

[F (0,0)
+ ]

2 + [F (0,0)
− ]

2 − F 2
x , (12b)

Fz = [F (0,0)
π ], (12c)

φx = arcsin

⎧⎨
⎩2[F (0,π/2)

+ ]
2 − F 2

x − F 2
z

2FxFz

⎫⎬
⎭, (12d)

φy = φx − arcsin

⎧⎨
⎩2[F (0,0)

+ ]
2 − F 2

x − F 2
y

2FxFy

⎫⎬
⎭. (12e)

The number of necessary orientations of the bias field
(k = 2) is minimal because for both orientations of B, we have
the maximal number of independent equations to determine the
excitation field, as F

(0,π/2)
π can be derived from Eq. (7).

When a static electric field is applied in the absence
of a magnetic field, the σ+ and σ− transitions are always
degenerate, i.e., we have two sets of S. For S = {π}, we can
directly infer F (α,β)

π from Eq. (11). For S = {σ+,σ−} we obtain

�eff
g0

=
√

|�−|2 + |�+|2 = d±
h̄

√
F 2

x ′ + F 2
y ′ = d±

h̄
F⊥, (13)

the excitation-field amplitude (F⊥) transverse to the quan-
tization axis, using d± = d+ = d−, Eqs. (7) and (9).
The minimal number of orientations required to obtain
five independent equations is in this case four, e.g.,
(F (0,0)

π ,F
(0,0)
⊥ ,F

(0,π/2)
⊥ ,F

(0,π/4)
⊥ ,F

(π/2,π/4)
⊥ ). Two measurements

are independent for the first orientation [here (0,0)], and only
one for all subsequent orientations of B [Eq. (7)]. In the
experimental part of this article we have used an electric bias
field to gain information about �F (t) by measuring F (0,0)

π [F‖
in Fig. 3(a)] and F

(0,0)
⊥ [F⊥ in Fig. 3(b)].

A situation in which different sets S can be spectrally
resolved, while only the Rabi rate of one particular set
S can be measured, is inefficient, because five different
orientations of B are needed. For example, the orientations
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(F (0,0)
π ,F

(0,π/8)
π ,F

(0,π/4)
π ,F

(π/4,π/8)
π ,F

(π/4,π/4)
π ) are needed when

only the π transition can be measured. A measurement of
the linear polarization component along the three Cartesian
axes of a fixed coordinate system is therefore not sufficient to
determine the full excitation field.

It is crucial to make sure that the excitation field does not
significantly perturb the level structure of the atomic basis
states (e.g., by the ac Stark effect). In the extreme case that the
atom is fully polarized by �F (t), one reencounters the case of
no applied bias field, and we can only retrieve the magnitude
| �F (t)| because there is only one dipole strength d = dπ =
d+ = d−, and the effective Rabi rate is always given by

�eff
g0

=
√

|�π |2 + |�−|2 + |�+|2

= d

h̄

√
F 2

π + F 2+ + F 2−

= d

h̄

√
F 2

x ′ + F 2
y ′ + F 2

z′

= d

h̄
| �F (t)| ∝

√
I .

For completeness, we also mention here that it is possible
to determine the direction (α,β) of an unknown quantization
axis, when �F (t) is known in L: Eqs. (8a) and (8b) can be
used to obtain two independent equations that determine α

and β. This can be achieved either by measuring different
transitions (e.g., σ and π ), or by varying the polarization of the
excitation field. We see possible applications in experiments
where atoms in unknown, inhomogeneous stray fields are
excited with laser light in the optical frequency domain, e.g.,
(Rydberg) atoms that are subject to stray electric or mag-
netic fields emanating from nearby surfaces [17,18,27–32].
Another possible application is the characterization of fic-
titious magnetic fields appearing in the context of optical
microtraps [33–35].

IV. CONCLUSION

We have measured the two-dimensional distribution of the
angle � between a homogeneous static electric field and a
linearly polarized pulsed rf field centered at ∼25.66 GHz, and
with a temporal Gaussian shape of 200 ns total pulse duration.
To this end, we determined the Rabi rates from direct coherent
population transfer between the (n,l,m) = (35,s,0) and the
(35,p,0) or (35,p, ± 1) Rydberg states of singlet helium.
The use of pulsed coherent population transfer allowed us to
further determine a splitting of the (35,p, + 1) and (35,p, − 1)
transitions resulting from a small residual magnetic field
not compensated for in our experimental setup that could
not be detected from the excitation spectra. The precision
of the excitation-field measurements was better than 1%.
For the specific rf configuration we examined, the rotation
of the rf polarization and the changes of its amplitude are
compatible with the standing waves we typically observe in the
experimental region in which the atomic state is manipulated
by the rf field [17].

In addition, we have presented a formal analysis of this
technique and shown that it can be extended to measure
the five independent polarization parameters of an arbitrary

optical or rf excitation field from a minimum of five Rabi-rate
measurements using an atomic four-level system [Fig. 4(a)].
Depending on the number of resolved transitions in the
four-level system, the quantization axis needs to be rotated
at least once, but not more than four times, e.g., by rotating
an external bias field. We have given explicit examples for the
most common experimental configurations.

A combination of this method with the methods presented
in Ref. [18] represents a powerful tool for sensing electric
fields. Our setup allows for the determination of the strength
and vector distribution of unknown (stray) static electric fields
and of the strength and polarization of time-dependent (rf-)
electric fields close to surfaces. Field measurements with a
dedicated metrology device based on these principles, using
an ensemble of (helium) Rydberg atoms, should be fast and
simple, as the optimal configurations to minimize the number
of measurements are known and only frequency or amplitude
scans are needed. Additionally, the technique is compatible
with cryogenic environments and does not alter the properties
of close-by surfaces [18]. As the transition frequencies of
Rydberg atoms are easily tuned with small applied electric
fields, there are few fundamental limitations for the parameter
range where such measurements can be performed.

The method we presented in this article could also be
applied to other experiments having the ability to determine
Rabi rates and to control bias fields. We have shown coherent
population transfer as a sensitive tool to determine the Rabi
rates, but a Rabi rate can also be extracted from spectroscopic
measurements in principle. The results of this article could
be relevant, for example, for determining polarizations or
so-called fictitious magnetic fields [35] of optical trapping
or excitation fields propagating in nanophotonic-crystal struc-
tures, which is a prerequisite to trap single atoms within such
structures [36–41].
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APPENDIX: MODELING THE POPULATION TRANSFER

The amplitude-dependent population transfer [see
Figs. 3(c)–3(e)] is modeled using an analytical approximation
found by Vasilev and Vitanov [42] using a Dykhne-Davis-
Pechukas (DDP) approach. For our Gaussian pulse (�t =
118 ns), the local effective Rabi rate �eff

|g0〉,i(t) (i = π,±)
[Eq. (11)] varies with time and (normalized) applied rf
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amplitude η as

�eff
|g0〉,i(η,t) = η�

(0,0)
i exp

(
− t2

2�t2

)
. (A1)

After the pulse, the population in |g0〉 is described by the
expression PDDP(�i,�

(0,0)
i ,η), as given by Eq. (59) [using Eqs.

(44) and (52)] in Vasilev and Vitanov [42] when their Rabi rate
�(t) is replaced by �eff

|g0〉,i(t).
In extension of this model we fit the population in

|g0〉, P|g0〉,i , to the data at each pixel and for both polarizations
using the empirical expression

P|g0〉,i = (1 − C) + C exp
( − ηχ�

(0,0)
i /��

)
×PDDP(�i,χ�

(0,0)
i ,η) (A2)

with the fit parameters C, ��, �i , and �
(0,0)
i . C is a phe-

nomenological parameter, which takes into account that only
a fraction of the detected atoms are driven coherently and
given that for zero amplitude (η = 0) the detected signal
is normalized to one. �� is an effective parameter for the
dephasing, which results from the finite extent of the atom
cloud in the z direction and the lifetime of the 35p state.
Additionally, we correct �(0,0)

i for the truncation of the applied
Gaussian pulse by multiplication with χ = 1/1.177, the ratio
between the area under the (experimentally applied) truncated
Gaussian pulse and the Gaussian pulse assumed in the model
[Eq. (A1)].

For the π (σ ) transition, the average over all fit-
ted traces yields C = 0.50 ± 0.12 (0.41 ± 0.09). The fit-
ted detunings �π/2π = 2.81 ± 0.28 MHz (�±/2π = 1.55 ±
0.84 MHz) deviate in each pixel only by a maximum of 2π ×
1.57 ± 0.90 MHz (2π × 1.14 ± 0.74 MHz) as determined in
an independent spectroscopic measurement. This is small
compared to the ∼10 MHz width of the observed lines
[Fig. 2(b)]. For the π transition, the dephasing was fixed

to ��/2π = 28.4 MHz, the average value over all pixels
obtained from a previous fit where �� was a variable at every
pixel. For the σ transition, a stray magnetic field induces
spatially varying dephasing as it lifts the degeneracy of the
σ± transitions (see below). We therefore keep �� as a free fit
parameter in every pixel, resulting in a variation of �� between
7 and 43 MHz. However, we observe that the determined Rabi
rates �

(0,0)
i are independent of �� to first order.

In the light-shaded region in Fig. 3(a), a stray magnetic
field with strength on the same order of magnitude as the
Earth’s magnetic field lifts the degeneracy between the σ+
and σ− transition by �4 MHz. This leads to an interference
between the |g0〉 → |e−〉 and the |g0〉 → |e+〉 transition as
confirmed by a fit, relying on a numerical calculation based
on Eq. (A2), to the data at the (representatively chosen)
positions indicated by  and © in Fig. 3(a), respectively
[fits are indicated as blue lines in Figs. 3(d) and 3(e)].
In detail, we replaced PDDP(�i,χ�

(0,0)
i ,η) in Eq. (A2) by

a numerical simulation of the driven three-level system
(|g0〉,|e+〉,|e−〉) [Fig. 4(b)] using the correct truncated Gaus-
sian pulse and the same driving strength �

(0,0)
⊥ = √

2�
(0,0)
+ =√

2�
(0,0)
− for both transitions. For panel (d) [panel (e)] in Fig. 3,

�
(0,0)
⊥ /2π = 33.3(1) MHz [27.81(6) MHz] deviates by 0.4%

[1.8%] only from the value found with the analytical model,

i.e., �
(0,0)
⊥ /2π = 33.1(4) MHz [27.3(1) MHz]. A deviation of

at most ∼0.5% is attributed to the statistical error of the fitting
procedure for �

(0,0)
i at every pixel. This is consistent with

the (precision-limiting) statistical fluctuations we observe in
the final measurements for the angle and the total field. The
magnitude of these fluctuations was (over-)estimated by fitting
a linear function to the angle (field) data along a 1-mm-long
line in panel (f) [panel (g)], where the measured values increase
approximately linearly with the distance. The precision of
∼0.5◦ (≈9 mrad) with which we can determine the angle
in our measurements and of ∼300 μV/cm in the electric-field
measurements are then determined as the maximal absolute
difference of the measured data to the linear fit.
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