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Structure of polarimetric purity of three-dimensional polarization states
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It has recently been demonstrated that a general three-dimensional (3D) polarization state cannot be considered
an incoherent superposition of (1) a pure state, (2) a two-dimensional unpolarized state, and (3) a 3D unpolarized
state [J. J. Gil, Phys. Rev. A 90, 043858 (2014)]. This fact is intimately linked to the existence of 3D polarization
states with fluctuating directions of propagation, but whose associated polarization matrices R satisfy rank R = 2.
In this work, such peculiar states are analyzed and characterized, leading to a meaningful general classification
and interpretation of 3D polarization states. Within this theoretical framework, the interrelations among the more
significant polarization descriptors presented in the literature, as well as their respective physical interpretations,
are studied and illustrated with examples, providing a better understanding of the structure of polarimetric purity
of any kind of polarization state.
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I. INTRODUCTION

Regardless of the obvious fact that any state of polarization
is realized in the physical three-dimensional space, two-
dimensional (2D) polarization states are commonly defined as
those whose electric field vector E, at the considered point r in
the space, evolves in a fixed plane during the measurement
time; otherwise, the polarization state is a genuine three-
dimensional (3D) state. In general, 3D polarization states have
an intricate structure whose physical interpretation requires
appropriate analyses beyond the common, but not general, case
of 2D states. The main aim of this work is to characterize and
classify the different types of 3D polarization states by means
of their constructive synthesis and the detailed study of their
structure of polarimetric purity. In particular, we emphasize
that not all 3D states are superpositions of a fully polarized
state, a 2D unpolarized state, and a 3D unpolarized state.

It is well known that a complete characterization of the
second-order polarization properties of an electromagnetic
field at a given point r in space is provided by the corresponding
3D polarization matrix R (also called the 3D coherency matrix)
defined as

R = 〈ε(t) ⊗ ε†(t)〉

=
⎛
⎝〈ε1(t)ε∗

1(t)〉 〈ε1(t)ε∗
2(t)〉 〈ε1(t)ε∗

3(t)〉
〈ε2(t)ε∗

1(t)〉 〈ε2(t)ε∗
2(t)〉 〈ε2(t)ε∗

3(t)〉
〈ε3(t)ε∗

1(t)〉 〈ε3(t)ε∗
2(t)〉 〈ε3(t)ε∗

3(t)〉

⎞
⎠, (1)

where ε(t) is the 3D instantaneous Jones vector [1] at point
r and at time t . Its components εi(t) (with i = 1,2,3) are
the analytic signals of the electric field components with
respect to the given reference frame XYZ, the dagger indicates
conjugate transpose, � stands for the Kronecker product, and
〈· · · 〉 represents time averaging over the measurement time.
Thus the elements of R are the second-order moments of
the (zero-mean) field variables εi(t), and therefore R has
the mathematical structure of a covariance matrix; that is,

*ppgil@unizar.es

R is a positive semidefinite Hermitian matrix. Note that the
subscripts 1, 2, 3 are used instead of x, y, z in order to simplify
later mathematical expressions. The quantity tr R represents
the intensity of the state R,

I = tr R = 〈
ε2

1(t)
〉 + 〈

ε2
2(t)

〉 + 〈
ε2

3(t)
〉
; (2)

i.e., it is proportional to the sum of the electric energy densities
of the field components along the axes X, Y, and Z.

We first consider the representation of an arbitrary 3D
polarization matrix as an incoherent sum of matrices that
correspond to pure states, meaning that their respective
electric fields lie in a fixed plane and describe a well-defined
polarization ellipse. Since the polarization matrix is Hermitian,
it can be diagonalized and we may write

R = U diag (λ1,λ2,λ3)U† = (tr R)U diag (λ̂1,λ̂2,λ̂3)U†,

[λ̂i ≡ λi/(tr R), (i = 1,2,3)], (3)

where U is the unitary matrix whose columns are the
eigenvectors of R, and diag(λ1,λ2,λ3) represents the diagonal
matrix composed of the ordered non-negative eigenvalues
(0 � λ3 � λ2 � λ1). It follows that R always can be expressed
as the following convex expansion in terms of a set of r (where
r ≡ rank R) arbitrary but independent complex unit vectors wi

belonging to the subspace generated by the eigenvectors of R
with nonzero eigenvalues [2],

R = (tr R)
r∑

i=1

piR̂pi, R̂pi ≡ wi ⊗ w†
i ,

pi = 1∑r
j=1

1
λ̂j

∣∣(U†wi)j
∣∣2 , (4)

where

r∑
j=1

pi = 1, (5)
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or equivalently,

R =
r∑

i=1

piRpi, Rpi ≡ (tr R)(wi ⊗ w†
i ). (6)

We refer to Eq. (4) as arbitrary decomposition [1]. The
term arbitrary is used here in the sense that any set of r

independent unit vectors wi allows generating r mutually
incoherent pure components Rpi ≡ (tr R)(wi ⊗ w†

i ) of R, with
respective positive coefficients given by pi .

Hereafter, when appropriate to emphasize that a given state
R is pure, its polarization matrix will be denoted as Rp. For
the sake of clarity and completeness, Appendix A includes
a proof of Eq. (4) as an adaptation of that corresponding to
the arbitrary decomposition of covariance matrices associated
with Mueller matrices, developed in [2].

The arbitrary decomposition provides theoretical support
towards the analysis of the main object of this work, namely,
the study of the structure of regular and nonregular states of
polarization, defined in Sec. II.

An important special case of Eq. (4) is encountered when
wi are the eigenvectors ui (i = 1,2,3) of R (which constitute
the respective columns of U), whereby Eq. (4) becomes the
spectral decomposition,

R = (tr R)
r∑

i=1

λ̂i(ui ⊗ u†
i ). (7)

Equivalently,

R = λ̂1[(tr R)U diag (1,0,0)U†] + λ̂2[(tr R)U diag (0,1,0)U†]

+ λ̂3[(tr R)U diag (0,0,1)U†], (8)

where the terms (in square brackets) in the sum satisfy the
following properties: (1) they have the same intensity (tr R)
as R itself, (2) they are synthesized from the corresponding
eigenvector ui of R, and (3) their weight in the convex sum is
equal to the corresponding normalized eigenvalue λ̂i . Note that
the term spectral is used here with reference to the eigenvalue
spectrum of R and without any link to the frequency spectrum
of the state represented by R.

From a mathematical point of view, the arbitrary decom-
position expresses the fact that any polarization matrix can be
represented with respect to different matrix bases constituted
by sets of three independent positive-definite Hermitian
matrices of rank 1, which are not necessarily trace orthogonal
as in the particular case of the spectral decomposition.

While 2D states are characterized by the conventional
Stokes parameters and, thus, their arbitrary decompositions
can be easily represented in the Poincaré sphere [1,3], 3D states
are characterized by a set of nine generalized (or 3D) Stokes
parameters [4–7], whose geometric representation is given by
a feasible convex region of eight dimensions determined by
the eight normalized 3D Stokes parameters (the parameter
representing the intensity is taken as unity and excluded in the
coordinate reference Stokes system, as occurs in the Poincaré
sphere representation for 2D states).

The constraining inequalities that characterize the phys-
ically admissible sets of 3D Stokes parameters have an
intricate mathematical structure that cannot be reduced to the
eight-dimensional (8D) sphere, but such inequalities define the

above-mentioned 8D convex region. Obviously, for 2D states,
the unnecessary extra Stokes dimensions can be disregarded
and the 8D convex region reduces to the Poincaré sphere.

The physical meaning of the arbitrary decomposition is
that any polarization state can be interpreted as the incoherent
superposition of a number r (with r = rank R) of different
pure states, and provides all the (infinite) possible ways to do
it. Equivalently, the arbitrary decomposition can be considered
a universal procedure for the synthesis of any 3D state by
means of the incoherent superposition (at the considered
point in the space) of pure states. This synthesis can be
performed experimentally by generating three fully polarized
electromagnetic waves (for instance, collimated beams passing
through respective polarizers), in general with different direc-
tions of propagation but intersecting at the considered point.
Measurement of 3D polarization matrices (or, equivalently, 3D
Stokes parameters [7]) requires unconventional experimental
setups like the one suggested in [8].

Since the notion of orthogonality of states is widely used
along this work, let us recall that two pure states Rp1 ≡
(tr R) (w1 ⊗ w†

1) and Rp2 ≡ (tr R) (w2 ⊗ w†
2) are said to be

mutually orthogonal when their respective generating unit
vectors w1 and w2 satisfy w†

1w2 = δ12, where δ12 stands for the
Kronecker delta. Unlike the spectral components, in general
the arbitrary components of R are not mutually orthogonal.

Next we bring up various parameters that provide informa-
tion on the polarimetric purity of a given state R. Polarimetric
purity refers to the closeness of a polarization state to a
pure state and is characterized by the degree of polarimetric
purity of R [9] (also called the degree of polarization of
three-component fields [4,11]):

P3D =
√

1

2

[
3 tr (R2)

(tr R)2 − 1

]
=

√√√√1

2

(
3

3∑
i=1

λ̂2
i − 1

)
. (9)

Conversely, polarimetric randomness refers to the closeness
of a polarization state to a fully random 3D polarization
state (or, equivalently, to the distance of a polarization state
from a pure state) and is globally measured by the degree of
polarimetric randomness that we define as

D3D =
√

2 − 3

2

tr (R2)

(tr R)2 =
√√√√3

2

(
1 −

3∑
i=1

λ̂2
i

)
=

√
1 − P 2

3D.

(10)

States which from a polarimetric point of view are fully
random, also called 3D unpolarized states, represented by
polarization matrices proportional to the 3 × 3 identity matrix
I and denoted as Ru−3D = I/3, are characterized by D3D = 1
(P3D = 0), while pure states are characterized by D3D = 0
(P3D = 1).

Since R has the structure of a covariance matrix of
the zero-mean variables εi(t), the detailed quantification
of polarimetric randomness (or conversely, of polarimetric
purity) is condensed in the eigenvalues λi of R. Their sum,
I = λ1 + λ2 + λ3, representing the intensity of the state,
acts as a common factor in the arbitrary decomposition of
Eq. (4). Therefore, beyond the neutral information provided
by I, and beyond the overall knowledge provided by P3D (or
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analogously, by D3D), the structure of polarimetric purity
(randomness) of R is given by a pair of parameters. An
important criterion for the choice of a best-suited set of such
parameters is that they provide separate physical information
in an optimally compressed and structured way. As seen in
previous works [1,10], a privileged view of the structure of
polarimetric purity is given by the characteristic or trivial
decomposition of R,

R = I [P1R̂p + (P2 − P1)R̂m + (1 − P2)R̂u−3D],

R̂p ≡ U diag (1,0,0)U†, (11)

R̂m ≡ 1
2 U diag (1,1,0)U†, R̂u−3D ≡ 1

3 I,

where (P1,P2) are the so-called indices of polarimetric purity
(hereafter IPP) [9,12], defined as

P1 = λ̂1 − λ̂2, P2 = λ̂1 + λ̂2 − 2λ̂3. (12)

By virtue of the equality λ̂1 + λ̂2 + λ̂3 = 1, P2 can also be
expressed as

P2 = 1 − 3λ̂3. (13)

The IPP have the properties

0 � P1 � P2 � 1, P3D =
√

3P 2
1 + P 2

2

4
, (14)

and give complete information about the polarimetric purity
(randomness) of R. The expression of the characteristic
decomposition in terms of the eigenvalues of 3 × 3 polarization
matrices was examined for the first time by Samson [4] through
considering their expansion in a set of nondisjoint idempotent
matrices, and later it was analyzed under the scope of radar
polarimetry by Holm and Barnes [13] and by Cloude and
Pottier [14], while Ellis, Dogariu, Brosseau, and co-workers
[3,15,16] dealt with it for electromagnetic fields.

It is worth recalling now that a simplified and significant
view of the features of a 3D polarization state is obtained
through its corresponding intrinsic polarization matrix RO ,
defined as [17–19]

RO ≡ QORQT
O ≡

⎛
⎝ a1 −inO3 inO2

inO3 a2 −inO1

−inO2 inO1 a3

⎞
⎠, (15)

where QO is the orthogonal matrix that diagonalizes the
(symmetric) real part of R and T denotes transpose. Thus, RO

represents the same state of polarization as R, but referred with
respect to the corresponding intrinsic reference frame (here-
after denoted as XOYOZO). The non-negative real parameters
ai , the eigenvalues of Re(R), are called the principal intensities
(QO is defined so as to satisfy a1 � a2 � a3), and nOi are the
components of the intrinsic angular momentum vector nO ≡
(nO1,nO2,nO3)T of the state with respect to XOYOZO . Note
that ai satisfy the property that, by considering all possible
laboratory reference frames XYZ (mutually linked by rotations
determined by respective orthogonal transformations), a1 is
the maximal value achievable for a diagonal element of the
corresponding representative polarization matrix, while a3 is
the minimal one. Moreover, when considering unitary similar-
ity transformations of R (which include the above-mentioned
orthogonal transformations as a subclass), the maximal and

minimal diagonal elements are just λ1 and λ3, respectively
[20], and therefore λ1 � a1 and λ3 � a3. As we will see in
Sec. II D, these inequalities have important implications for
distinguishing between different kinds of polarization states.

To complete this summary of notions that are required for
the analyses performed in Secs. II and III, we recall that the
information contained in RO is constituted by nO together
with the intensity

I = tr RO = tr R = a1 + a2 + a3, (16)

the degree of linear polarization (a measure of the maximum
portion of the power that can be allocated to a linearly polarized
incoherent component of R) [18,21],

Pl ≡ â1 − â2, (âi ≡ ai/I, i = 1,2,3), (17)

and the degree of directionality (a measure of how close the
state represented by R is to a 2D state) [18,21],

Pd ≡ â1 + â2 − 2â3, (18)

which, by virtue of the equality â1 + â2 + â3 = 1, can also be
expressed as

Pd = 1 − 3â3. (19)

The degree of circular polarization (a measure of the
maximum portion of the power that can be allocated to a
circularly polarized incoherent component of R) is given by
the following parameter derived from nO [21]:

Pc ≡ 2n̂O,
(
n̂O ≡

√
n2

O1 + n2
O2 + n2

O3

/
I
)
. (20)

Let us finally recall that the set of parameters (Pd,Pl,Pc)
constitutes the so-called set of components of purity (hereafter
CP) of the state of polarization considered and satisfies the
following expressions [21]:

0 � Pl � Pd � 1, P3D =
√

3
(
P 2

l + P 2
c

) + P 2
d

4
. (21)

II. INTERPRETATION OF THE CHARACTERISTIC
DECOMPOSITION OF THE 3D POLARIZATION MATRIX

At first sight, and as pointed out by several authors
[1,3,10,15,16,22], the characteristic decomposition in Eq. (11)
suggests that the state of polarization R can always be con-
sidered as representing a regular state, namely, an incoherent
composition of a pure state Rp, a 2D unpolarized state Ru−2D,
and a 3D unpolarized state Ru−3D. As required for pure
states (or totally polarized states), the electric field of the
state Rp lies in a fixed plane and describes a well-defined
polarization ellipse, while Ru−3D can always be interpreted
as an equiprobable, fully random, mixture of three linearly
polarized pure states whose respective electric fields lie in
mutually orthogonal directions and thus can properly be called
a 3D unpolarized state. Nevertheless, it has been proven that the
component Rm of the characteristic decomposition in Eq. (11)
does not necessarily represent a 2D unpolarized state [18];
that is, Rm cannot always be considered an equiprobable fully
random composition of two mutually orthogonal pure states
whose electric fields lie in a common fixed plane.
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As pointed out in previous works [18,19], the only unitary
transformations U†RU that can be physically realized as
rotations of the laboratory reference frame XYZ are those
where there exists an orthogonal matrix Q (i.e., Q satisfying
QT = Q−1 and det Q = +1) that satisfies U†RU = QT RQ.
Therefore, given a polarization matrix R satisfying rank R = 2
there is not always an orthogonal transformation QT RQ such
that one of its diagonal elements is zero. In other words, all
ai are nonzero in all frames and the electric vector is not in
a plane. To clarify this fact, and due to the key role played
by Rm in the physical interpretation of R, let us next analyze
the different types of matrices Rm on the basis of its spectral
decomposition.

A. Composition of two linearly polarized fields propagating
in different directions

Regardless of the respective directions of propagation, the
incoherent superposition, at a given point r in the space, of two
linearly polarized states is a mixed state whose electric field
lies in the plane defined by the pair of respective polarization
axes. The polarization matrix of the combined state (assumed
that the directions in which the respective fluctuating electric
fields of the components lie are different, but not necessarily
mutually orthogonal) can always be expressed as

Rll = QROQT ,

RO ≡
⎛
⎝a1 0 0

0 a2 0
0 0 0

⎞
⎠ = a2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠

+ (a1 − a2)

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠, (0 � a2 � a1), (22)

where Q is an orthogonal matrix, while the real and non-
negative parameters a1 and a2 are the respective intensities of
the linear spectral components.

In the case of an equiprobable mixture of two mutually
orthogonal linear states (i.e., a1 = a2 ≡ I/2), the polarization
matrix of the combined state has the form

Ru−2D = (I/2)Q diag (1,1,0)QT , (23)

which corresponds to a 2D unpolarized state whose electric
field lies in the plane XOYO of the intrinsic reference frame.
Consequently, this state is characterized by

Pl(Ru−2D) = 0, Pc(Ru−2D) = 0, Pd (Ru−2D) = 1,

P1(Ru−2D) = 0, P2(Ru−2D) = 1, P3D(Ru−2D) = 1/2,

(24)

and therefore, regardless of the respective directions of
propagation of the linear components, the polarization state,
at the point r considered (hence disregarding the coherence-
polarization properties of the whole beam given by the two-
point coherence matrix [7,23]), is indistinguishable from a 2D
unpolarized state propagating along the direction determined
by ZO .

Note that the particular case (discarded from the above
analysis) of an incoherent superposition of two linearly
polarized states whose electric fields lie in the same direction

results in a whole linearly polarized state (hence pure) that
defines the direction XO , but does not determine the plane
XOYO nor the direction of propagation ZO [18].

B. Equiprobable incoherent mixture of two mutually
orthogonal pure states with a common direction of propagation

It is well known that the incoherent composition, at a given
point r in the space, of two mutually orthogonal pure states
with equal intensities I/2 and whose polarization ellipses lie in
the same plane XOYO is represented by a polarization matrix
that necessarily has the form of a 2D unpolarized state. In the
three-dimensional formulation, the polarization matrix of such
a field adopts the form

Ru−2D = (I/2)Q diag (1,1,0)QT , (25)

where the proper orthogonal transformation by Q represents
a rotation from the intrinsic reference frame XOYOZO to the
particular reference frame XYZ considered. Note that, as shown
in Sec. II A, the same result is obtained for an equiprobable
incoherent mixture of two mutually orthogonal linearly polar-
ized states with different directions of propagation. The IPP
and CP of the present Ru−2D have the values indicated in
Eq. (24).

C. Equiprobable incoherent mixture of two mutually
orthogonal pure states with different directions of propagation

Let us assume that at least one of the combined states has
nonzero ellipticity (the case of linear components has been
considered in Sec. II A). It is straightforward to prove that the
polarization matrix associated with this kind of mixed state
cannot be reduced to the form Ru−2D. That is, although in this
case the polarization matrix still has the form

Rm = (I/2)U diag (1,1,0)U†, (26)

it is not a real matrix. This occurs when there is no orthogonal
matrix Q satisfying Q diag (1,1,0)QT = U diag (1,1,0)U†.

Therefore, when Rm is not a real matrix, the unitary
similarity transformation in Eq. (26) cannot be considered
a rotation of the reference frame. In other words, necessarily
a3(Rm) > 0, which means that the fluctuating electric field of
the state has three nonzero components with respect to any
laboratory reference frame and, consequently, despite the fact
that rank Rm = 2, Rm represents a 3D state. In fact, this kind
of mixed state is characterized by the following values of the
components and indices of polarimetric purity:

Pl(Rm) � 0, Pc(Rm) > 0, Pd (Rm) < 1,

P1(Rm) = 0, P2(Rm) = 1. (27)

It is remarkable that since, in this case, Rm is not a real
matrix, some nonzero off-diagonal elements of Rm are not
real and therefore the degree of circular polarization of Rm is
necessarily nonzero.

To illustrate this peculiar type of polarization state, it is
worth considering the case of an equiprobable composition
of a right-circularly polarized state Rc propagating along the
X axis and a linearly polarized state Rl whose electric field
vibrates in the direction X (i.e., the direction of propagation of
Rl is orthogonal to X). The representations of these states in
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the Cartesian reference frame XYZ are the following:

Rc = (I/2)

⎛
⎝0 0 0

0 1/2 −i/2
0 i/2 1/2

⎞
⎠, Rl = (I/2)

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠.

(28)

Therefore, the polarization matrix of the incoherently
combined state is given by

Rcl = I

⎛
⎝1/2 0 0

0 1/4 −i/4
0 i/4 1/4

⎞
⎠, (29)

which can be expressed as

Rcl = (I/2)U diag (1,1,0)U†,
(30)

U ≡
⎛
⎝1 0 0

0 1/
√

2 1/
√

2
0 i/

√
2 −i/

√
2

⎞
⎠,

and satisfies P2(Rcl) = 1, while Re(Rcl) = diag(1/2,1/4,1/4),
and thus rank [Re(Rcl)] = 3. Obviously, while this matrix has
the form Rcl = (I/2) U diag(1,1,0)U†, it is different from
Ru−2D and therefore, there is no way to identify it with a
2D unpolarized state. In fact, besides its degree of directional
purity given by Pd (Rcl) = 1/4, Rcl exhibits a certain amount
of linear and circular polarization given by Pl(Rcl) = 1/4 and
Pc(Rcl) = 1/2.

D. Regular and nonregular states of polarization

Let us consider again a general polarization matrix R and
its characteristic decomposition

R = P1Rp + (P2 − P1)Rm + (1 − P2)Ru−3D, (31)

and recall that R is said to represent a regular state when
Rm = Ru−2D. From the analysis performed in the previous
sections it follows that this condition occurs if and only if Rm

is a 2D state, that is, if and only if the following equivalent
conditions are satisfied: (1) Rm is a real matrix, (2) Pc(Rm) =
0, (3) Pd (Rm) = 1, (4) a3(Rm) = 0, and (5) m < 3 (where
m ≡ rank [Re(Rm)]).

In the special cases where P1 = P2 (which will be ana-
lyzed in Sec. III), the component Rm is not present in the
characteristic decomposition of R, so that R can be considered
as an incoherent composition of a pure state Rp and a 3D
unpolarized state Ru−3D and therefore condition P1 = P2

implies that R is a particular type of regular state. Leaving
aside states with P1 = P2, regular states (whose polarization
matrix is hereafter denoted as Rr wherever appropriate) are
characterized by m < 3, while nonregular states (hereafter de-
noted as Rn) are characterized by m = 3. States Rn constitute
a peculiar class of 3D polarization states in which the middle

component Rm of the characteristic decomposition is not real
and can be interpreted as an equiprobable mixture Rm =
(I/2)(u1 ⊗ u†

1) + (I/2)(u2 ⊗ u†
2) of two mutually orthogonal

pure states with different directions of propagation (i.e., whose
respective electric fields evolve in different planes and at least
one of them has nonzero ellipticity). Such compositions were
considered in Sec. II C above.

In summary, apart from states with P1 = P2 (which con-
stitute a particular type of regular state), a given polarization
matrix R represents a regular state if and only if its correspond-
ing component Rm, by itself, represents a regular state, in this
case, a mere unpolarized 2D field. Equivalently, R represents
a nonregular state if and only if its corresponding component
Rm, by itself, represents a nonregular state (m = 3), i.e., a true
3D field.

Let us now inspect other interesting features that distinguish
regular and nonregular states. The inequality λ̂3 � â3 (see
Sec. I), together with Eqs. (13) and (19), leads to

Pd � P2. (32)

Furthermore, as indicated above, Rm differs from Ru−2D if
and only if Pc(Rm) �= 0 (i.e., Rm exhibits a nonzero degree of
circular polarization). That is, R represents a regular state if
and only if Pc(Rm) = 0, which, in its turn is satisfied if and
only if

P 2
l + P 2

c = P 2
1 ; (33)

i.e., regular states are characterized by the fact that all the
degree of circular polarization of R is allocated to the char-
acteristic component Rp of its characteristic decomposition.
Observe that, from Eqs. (14) and (21), it follows that

2P 2
3D = 3P 2

1 + P 2
2 = 3

(
P 2

l + P 2
c

) + P 2
d , (34)

and therefore condition (32) is entirely equivalent to P 2
l +

P 2
c � P 2

1 , where the equality is satisfied if and only if Pd = P2,
which constitutes a genuine property of regular states. Due to
its particular physical significance, which will be analyzed in
Sec. III, it is worth defining the degree of elliptical purity (that
is, the combined contributions to purity due to circular and
linear degrees of polarization, or equivalently, a measure of all
the contributions to polarimetric purity except that due to the
degree of directionality) as

Pe ≡
√

P 2
l + P 2

c . (35)

Table I summarizes the main results obtained from
the analysis of polarization matrices of the form Rm =
(I/2) U diag (1,1,0)U†.

A comparison of the main properties of regular and
nonregular states is shown in Table II.

To complete the discussion on regular and nonregular states
in terms of incoherent components, it is worth recalling that, by

TABLE I. Summary of the properties of Rm in terms of the value of the integer descriptor m.

m ≡ rank [Re(Rm)] Pd (Rm) Pc(Rm) Pe(Rm) Rm 2D-3D Regularity

m = 2 Pd = P2 = 1 Pc = 0 Pe = P1 = 0 Rm ∈ R 2D Regular
m = 3 Pd < P2 = 1 Pc > 0 Pe > P1 = 0 Rm /∈ R 3D Nonregular
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TABLE II. Summary of the properties of a polarization matrix R
in terms of the value of the integer descriptor m.

m ≡ rank [Re(Rm)] Pd (R) Pc(R) Pe(R) Regularity

m = 2 Pd = P2 Pc � 0 Pe = P1 Regular
m = 3 Pd < P2 Pc > 0 Pe > P1 Nonregular

combining the spectral and the characteristic decompositions
of a given polarization state R, it can always be considered an
incoherent composition of the following form [18]:

R = I

[
P2 + P1

2
R̂p1 + P2 − P1

2
R̂p2 + (1 − P2)R̂u−3D

]
, (36)

where R̂p1 = u1 ⊗ u†
1 and R̂p2 = u2 ⊗ u†

2 represent the first
two spectral components (hence mutually orthogonal). When
the polarization ellipses of the respective polarization matrices
R̂p1 and R̂p2 lie in a common plane, then R represents a regular
state; otherwise (i.e., when R̂p1 and R̂p2 have different direc-
tions of propagation at the point r considered and at least one of
them has nonzero ellipticity) R represents a nonregular state.

Once the properties of the component Rm and its implica-
tions on the interpretation of R have been analyzed, it is worth
taking them to complete, in Table III, the general classification
of the possible types of states of polarization performed in
[7,18] in terms of the values of the integer descriptors,

r = rank R, t = rank[Re(R)], m = rank[Re(Rm)], (37)

together with the corresponding values of the IPP and CP.
Note that the following conditions satisfied by the integer
descriptors have been considered in the case analysis shown
in Table III [18]:

r = 1 ⇒ t < 3,

r = 2 ⇒ 1 < t � 3,

(r = 2, t = 2) ⇒ m = 2,

(r = 2, t = 3) ⇒ m = 3,

r = 3 ⇒ t = 3,

r = 3 ⇒ 1 < m � 3. (38)

III. DISCUSSION

The description, characterization, and classification of 3D
polarization states by means of appropriate quantities are not
only necessary from a very theoretical point of view, but
they are also justified on the increasing practical interest in
nanotechnologies, optical near-field phenomena, and other
areas [5,8–34]. However, we note that evanescent (i.e.,
inhomogeneous) electromagnetic plane waves have complex-
valued wave vectors and thereby the directionality of such
fields is physically more involved than that of the usual
propagating plane waves.

From the sole point of view of the structure of polarimetric
purity of a given 3D state R, such structure is fully character-
ized by the corresponding indices of polarimetric purity, P1 and
P2, which are insensitive to specific polarization features of R,
which in turn are determined by the components of purity Pd ,
Pl , and Pc. The degree of polarimetric purity P3D constitutes
an overall measure of the closeness of R to a polarimetrically
pure state and can be calculated either from the IPP or from
the CP through the following expressions [19]:

P 2
3D = 3

4P 2
1 + 1

4P 2
2 = 3

4P 2
e + 1

4P 2
d (39)

(recall that, in general, Pd �= P2, where the equality holds
exclusively for regular states).

Equation (39) provides two complementary ways to in-
terpret the structure of polarimetric purity of a polarization
state. On the one hand, it can be interpreted as shared among
P1 and P2, where P2 is the relative power of the incoherent
component that is not 3D unpolarized, while P1 is the relative
power of the totally polarized component. On the other hand,
it can be interpreted as shared among Pd and Pe where Pd is
the contribution to polarimetric purity allocated to the degree
of directionality (i.e., to the closeness to a 2D state) while
Pe is the contribution to polarimetric purity allocated to the

TABLE III. General classification of states of polarization.

Integer Characteristic
descriptors P2,Pd P1,Pe Pl Pc P3D 2D-3D Regularity components

r = 1
t = 1

Pd = P2 = 1 Pe = P1 = 1 Pl = 1 (Pc = 0) P3D = 1 2D R Rp linear

r = 1
t = 2

Pd = P2 = 1 Pe = P1 = 1 0 � Pl < 1 0 < Pc � 1 P3D = 1 2D R Rp elliptic

r = 2
t = 2
(m = 2)

Pd = P2 = 1 0 � Pe = P1 < 1 0 � Pl < 1 0 � Pc < 1 1/2 � P3D < 1 2D R
Rp

Ru−2D

r = 2
t = 3
(m = 3)

0 � Pd < P2 = 1 0 � P1 < Pe < 1 0 � Pl < 1 0 < Pc < 1 1/2 � P3D < 1 3D NR
Rp

Rm

r = 3
m = 2

0 � Pd = P2 < 1 0 � Pe = P1 < 1 0 � Pl < 1 0 � Pc < 1 0 � P3D < 1 3D R
Rp

Ru−2D

Ru−3D

r = 3
m = 3

0 � Pd < P2 < 1 0 � P1 < Pe < 1 0 � Pl < 1 0 < Pc < 1 0 � P3D < 1 3D NR
Rp

Rm

Ru−3D
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TABLE IV. Classification of states of polarization with P2 = 1 and 0 < P1 < 1.

Integer Characteristic
descriptors P2,Pd P1,Pe Pl Pc P3D 2D-3D Regularity components

r = 2
t = 2
(m = 2)

Pd = P2 = 1 0 < Pe = P1 < 1 0 � Pl < 1 0 � Pc < 1 1/2 < P3D < 1 2D R
Rp

Ru−2D

r = 2
t = 3
(m = 3)

0 < Pd < P2 = 1 0 < P1 < Pe < 1 0 � Pl < 1 0 < Pc < 1 1/2 < P3D < 1 3D NR
Rp

Rm

quadratic average of linear and circular degrees of polarization.
This justifies the introduction in Sec. II of the name degree of
elliptical purity for Pe.

The characteristic decomposition, whose coefficients are
determined by the IPP, provides an insightful view of the
polarimetric purity and randomness of a polarization state. As
demonstrated in previous sections (see Table III), nonregular
states are characterized by the inequality Pe > P1, which
means that, besides the amount of purity associated with the
weight P1 of the pure component, some amount of polarimetric
purity is allocated to the circular and linear polarization of the
middle component Rm of R. Only when P1 and P2 are equal
(and hence they both equal P3D) the middle component of
the characteristic decomposition in Eq. (11) vanishes and all
three quantities describe the ratio of the intensity of the pure
(polarized) part to the total intensity (see also case B below).

To go deeper into the physical interpretation of 3D states of
polarization and of the role played by the IPP, the CP, and P3D,
let us analyze the particular cases where some component
is not present in the characteristic decomposition of R.
Observe that the cases where the characteristic decomposition
contains a unique component, namely, Rp (P1 = 1), or Rm

(P1 = 0, P2 = 1), or Ru−3D (P2 = 0) (recall the inequality
0 � P1 � P2 � 1), are obvious from Secs. I and II.

A. States with P2 = 1 and 0 < P1 < 1

In this case, the characteristic decomposition of Eq. (11)
takes the form

Rpm = I [P1R̂p + (1 − P1)R̂m]. (40)

The corresponding degree of polarimetric purity is given
by P 2

3D = (3P 2
1 + 1)/4 and thus P3D > 1/2, showing that

the absence of the 3D unpolarized component (with 0 < P1)
entails a contribution of 1/2 to polarimetric purity.

In accordance to the analysis performed in Sec. II, the
physical interpretation of the state in Eq. (40) depends strongly
on m (see Table IV). When m = 2, Rpm represents a partially
polarized 2D state, that is, an incoherent composition of a

pure state Rp and a 2D unpolarized state Ru−2D with common
direction of propagation. When m = 3, Rpm represents a type
of 3D nonregular state given by an incoherent composition
of a pure state Rp and a nonregular state Rm. Observe that
regardless of the value of m, Rp can be real or not, while the
component Rm is real if and only if m = 2. Notice that an
incoherent composition of a pure state and a 2D unpolarized
state with different directions of propagation constitutes a
regular state that satisfies P2 = Pd < 1 (i.e., r = t = 3 with
m = 2). Such states necessarily fall out of the case under
consideration.

B. States with 0 < P1 = P2 < 1

In this case, the characteristic decomposition has the form

Rpu = I [P1R̂p + (1 − P1)R̂u−3D] (41)

and corresponds to a 3D regular decoupled state composed of
an incoherent mixture of a pure state and a 3D unpolarized
state (see Table V). This is a particular type of 3D regular state
for which the following relations hold:

0 < P3D = P1 = P2 = Pd = Pe < 1. (42)

This simplicity is derived from the fact that, in this case,
the polarimetric randomness is exclusively provided by the 3D
unpolarized component Ru−3D (while the polarimetric purity
is exclusively provided by the pure component Rp).

C. States with P1 = 0 and 0 < P2 < 1

The characteristic decomposition of these states has the
form

Rmu = I [P2R̂m + (1 − P2)R̂u−3D]. (43)

The corresponding degree of polarimetric purity is given
by P3D = P2/2 and thus P3D < 1/2, showing that the absence
of the pure component entails this upper limit of 1/2 for the
achievable values of P3D.

As expected, the physical interpretation of Rmu depends
strongly on m (see Table VI). When m = 2, Rmu represents a

TABLE V. States of polarization with 0 < P1 = P2 < 1.

Integer Characteristic
descriptors P2,Pd P1,Pe Pl Pc P3D 2D-3D Regularity components

r = 3
(t = 3)
m = 2

0 < Pd = P2 < 1 0 < Pe = P1 < 1 0 � Pl < 1 0 � Pc < 1
0 < P3D = Pi < 1

(i = 1,2,p,d)
3D R

Rp

Ru−3D

053856-7



GIL, FRIBERG, SETÄLÄ, AND SAN JOSÉ PHYSICAL REVIEW A 95, 053856 (2017)

TABLE VI. Classification of states of polarization with P1 = 0 and 0 < P2 < 1.

Integer Characteristic
descriptors P2,Pd P1,Pe Pl Pc P3D 2D-3D Regularity components

r = 3
m = 2

0 < Pd = P2 < 1 Pe = P1 = 0 Pl = 0 Pc = 0
0 < P3D

= P2/2
= Pd/2 < 12

3D R
Ru−2D

Ru−3D

r = 3
m = 3

0 � Pd < P2 < 1 0 = P1 < Pe < 1 0 � Pl < 1 0 < Pc < 1
0 < P3D

= P2/2 < 12
3D NR

Rm

Ru−3D

type of 3D regular state given by an incoherent composition
of a 2D unpolarized state Ru−2D and a 3D unpolarized state
Ru−3D. When m = 3, Rmu is a kind of 3D nonregular state
given by an incoherent composition of a nonregular state Rm

and a 3D unpolarized state Ru−3D.

IV. CONCLUSIONS

All the second-order properties of a general state of
polarization (3D state) are determined by the corresponding
polarization matrix R. Nevertheless, the relevant polarimetric
information does not appear explicitly in the mere elements
of R, but it has been shown that the physical interpretation,
characterization, and classification of 3D polarization states
require the use of appropriate sets of parameters derived from
the elements of R, such as the rank descriptors r , t , m in
Eq. (37); the indices of polarimetric purity P1, P2 in Eq. (12);
the components of purity Pl, Pc, Pd in Eqs. (17)–(20); and
the degree of polarimetric purity P3D of Eq. (9). These sets
of parameters are closely linked to the possible decompo-
sitions of R as convex sums of incoherent components, such
as the arbitrary decomposition given in Eq. (4), which includes
the spectral decomposition as a particular case [Eq. (7)], and
the characteristic decomposition of Eq. (11).

While all the said decompositions are useful for a complete
analysis of the different types of polarization states and their
properties, the characteristic decomposition of a given R as a
convex sum of a pure state Rp, a state of the form Rm (dealt
with in detail in Sec. II), and a fully random polarization state
Ru−3D, provides the optimum framework for the study of the
structure of polarimetric purity (or conversely, the structure of
polarimetric randomness) of 3D states. The characterization
and interpretation of states Rm arise as key issues for solving
the problem of understanding physically the 3D polarization
phenomena.

States Rm cannot always be identified with conventional
2D unpolarized states (i.e., states whose electric field evolves
fully randomly but in a fixed plane). In fact, there exists
a category of states Rm, which we named nonregular, that
can be interpreted as equiprobable mixtures of two mutually
orthogonal totally polarized (or pure) states with different
directions of propagation (at least one of them with nonzero
ellipticity). Once the said states Rm, in their alternative forms,
regular and nonregular, have been characterized and illustrated
with appropriate examples, a general classification of the 3D
states of polarization has been performed in an objective and
unambiguous way in Sec. II (see Table III).

The physical significance and the interrelations among
the degree of polarimetric purity, the indices of polarimetric

purity, and the components of purity have been studied and
illustrated with meaningful examples in Sec. III, providing a
complete framework for the understanding of the structure of
polarimetric purity of any kind of polarization state.
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APPENDIX: ARBITRARY DECOMPOSITION
OF A POLARIZATION MATRIX

Given a polarization matrix R with rank R = r , let us
consider its diagonalization,

R = U diag (λ1,λ2,λ3)U†, 0 � λ3 � λ2 � λ1, (A1)

where U is the unitary matrix whose columns are the mutually
orthonormal eigenvectors of R, and let us define

√
D ≡ diag(

√
λ1,

√
λ2,

√
λ3), (A2)

whose last 3 − r diagonal elements are zero.
By introducing the 3 × 3 complex matrix

V =
(

Vr 0
0 0

)
, (A3)

where all elements are zero except for the arbitrary r × r

unitary submatrix Vr , we find that the following equalities
are always satisfied,

R = UDU† = U
√

D
√

DU† = U
√

DIr

√
DU†

= U
√

DVV†√DU†

= U
√

D

(
r∑

i=1

vi ⊗ v†i

)√
DU†

=
r∑

i=1

(U
√

Dvi) ⊗ (U
√

Dvi)
†
, (A4)

where the matrix

Ir = V V† =
(

r∑
i=1

vi ⊗ v†i

)
(A5)
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is the diagonal matrix whose first r diagonal elements are 1 and
its last 3 − r diagonal elements are 0, while vi(i = 1, . . . ,r)
are the orthonormal column vectors of Vr .

Let us now write the vector U
√

Dvi that generates each
Hermitian matrix (U

√
Dvi) ⊗ (U

√
Dvi)† in expansion (A4) in

the following manner:

U
√

Dvi = |U
√

Dvi |wi = |
√

Dvi |wi , (A6)

where the equality |U√
Dvi | = |√Dvi | holds because U is a

unitary matrix and hence it does not affect the absolute value
of vector

√
Dvi , while wi is the unit vector obtained through

the normalization of U
√

Dvi .
From Eqs. (A4) and (A6) we deduce that any polarization

matrix R can always be expressed as the following convex
sum:

R =
r∑

i=1

piRpi ; Rpi ≡ (tr R)(wi ⊗ w†
i ),

wi ≡ U
√

Dvi

|√Dvi |
, pi ≡ |√Dvi |2

tr R
(i = 1, . . . ,r),

r∑
i=1

pi = 1.

(A7)

Based on the fact that the only exigency on Vr is
that it is unitary, expansion (A7) provides expressions for
generating arbitrary complete sets of the covariance matrices
(tr R)(wi ⊗ w†

i ) of the pure components as well as their
corresponding coefficients pi in terms of arbitrary sets of r

orthonormal vectors vi whose last 3 − r components are zero.
When r = 3, any arbitrary three-dimensional orthonormal
complex basis vi (i = 1,2,3) can be chosen. In the other
limiting case, where r = 1, R represents a pure state and
consequently the arbitrary decomposition has no physical
interest because it becomes a tautology.

As a preliminary step to determine the expression of pi

directly in terms of the set of r independent vectors wi , we
note that each of the r orthonormal vectors vi constituting the
columns of the unitary matrix Vr introduced in Eq. (A3) can
be written as follows:

vi ≡
√

tr R
√

pi(
√

D)−U†wi (i = 1, . . . ,r),
(A8)

(
√

D)− ≡ (1/
√

λ0, . . . , 1/
√

λr,0, . . . ,0),

(
√

D)− being the pseudoinverse of
√

D. Consequently, given a
set of r independent unit vectors wi belonging to the image sub-
space of a given polarization matrix R with a given rank R = r ,
the r matrices (tr R)(wi ⊗ w†

i ) can be considered as a complete
set of generators of the pure components of R. That is to
say, providing wi ∈ Range (R), the independence of the unit
vectors wi in Eq. (A7) is equivalent to the orthonormality of
their corresponding vectors vi . We finally observe that since vi

is a unit vector and λj > 0 (j = 1, . . . ,r), the following holds:

1 = tr(vi ⊗ v†i )

= (tr R)pi tr{(
√

D)
−

U†wi ⊗ [(
√

D)
−

U†wi]
†}

= (tr R)pi

r∑
j=1

∣∣∣∣ 1√
λj

(U†wi)j

∣∣∣∣
2

= (tr R)pi

r∑
j=1

1

λj

∣∣(U†wi)j
∣∣2

(i = 1, . . . ,r), (A9)

and therefore

pi = 1

(tr R)
∑r

j=1
1
λj

∣∣(U†wi)j
∣∣2 . (A10)
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