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Measuring the dispersive frequency shift of a rectangular microwave cavity induced
by an ensemble of Rydberg atoms
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In recent years the interest in studying interactions of Rydberg atoms or ensembles thereof with optical
and microwave frequency fields has steadily increased, both in the context of basic research and for potential
applications in quantum information processing. We present measurements of the dispersive interaction between
an ensemble of helium atoms in the 37s Rydberg state and a single resonator mode by extracting the amplitude
and phase change of a weak microwave probe tone transmitted through the cavity. The results are in quantitative
agreement with predictions made on the basis of the dispersive Tavis-Cummings Hamiltonian. We study this
system with the goal of realizing a hybrid between superconducting circuits and Rydberg atoms. We measure
maximal collective coupling strengths of 1 MHz, corresponding to 3×103 Rydberg atoms coupled to the cavity.
As expected, the dispersive shift is found to be inversely proportional to the atom-cavity detuning and proportional
to the number of Rydberg atoms. This possibility of measuring the number of Rydberg atoms in a nondestructive
manner is relevant for quantitatively evaluating scattering cross sections in experiments with Rydberg atoms.
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I. INTRODUCTION

Light-matter interaction enhancement in cavity quantum
electrodynamics (QED) leads to many interesting phenomena.
The first demonstrations of this enhancement with Rydberg
atoms in the microwave domain [1] and with ground-state
atoms in the optical domain [2] were followed by demon-
strations in solid-state systems including superconducting
qubits [3], quantum dots [4], nitrogen-vacancy centers [5],
and magnons in an yttrium-iron-garnet (YIG) sphere [6].
Rydberg atoms constitute a particularly interesting type of
emitter, owing to their long lifetimes and large transition dipole
moments for transitions in the microwave domain. Moreover,
the combination of optical and microwave transitions could
provide a path to realize quantum frequency conversion
between the optical and the microwave domains [7].

Cavity-QED systems contribute significantly to the rapidly
expanding field of quantum information processing [8–10]. In
cavity QED, quantum nondemolition (QND) measurements
provide ideal projective measurements of either part of the
system, emitter or photon, by using the other to acquire
information [11–14]. These measurement schemes enabled
many experiments at the core of quantum physics, such
as the observation of the quantum Zeno effect [15,16] or
the implementation of quantum feedback [17–19]. They are
further used to generate squeezed states of the many-atom
pseudospin [20,21] that allow metrological measurements
below the standard quantum limit. For approximate two-level
systems, QND measurements are commonly performed in the
dispersive regime, where the interaction leads to a mutual
dispersive shift in energy for the cavity and the emitter.
In circuit QED, for instance, measurements of the cavity
dispersive shift are the standard tool for qubit-state detection,
achieving single-shot readout within hundreds of nanosec-
onds [22]. In Rydberg cavity-QED experiments, measuring
the atomic dispersive shift allows one to prepare and detect
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the quantum state of the cavity field nondestructively [23,24].
Using the cavity dispersive shift to determine the state of a
single Rydberg atom or a Rydberg-atom ensemble, however,
is less explored. Maioli et al. [25] measured the phase
shift of a coherent cavity field resulting from the dispersive
interaction with a few Rydberg atoms, which allowed them to
nondestructively determine either the atom state or the atom
number. This measurement was performed with a coherent
tone that mapped the phase shift to an intensity difference,
which was then, in a second step, measured with a mesoscopic
number of resonant atoms. Whereas, in the optical domain,
cavity transmission measurements were employed to observe
the vacuum Rabi mode splitting and the dispersive shift caused
by a beam of atoms [2] or single atoms [26] traversing the
cavity, to our knowledge no such measurements have been
reported for Rydberg atoms in the microwave domain.

In this article, we present measurements of the dispersive
shift of a three-dimensional (3D) cavity induced by an
ensemble of Rydberg atoms. In Sec. II, we introduce the
experimental setup, which allows for the preparation and
detection of helium Rydberg atoms and for the detection
of a cavity shift by transmission measurements with low
probe-photon number. In Sec. III, we present our results on the
time-dependent dispersive shift and the dispersively shifted
cavity spectrum. We show that the system is quantitatively
described by the dispersive Tavis-Cummings Hamiltonian for
an ensemble of two-level atoms and a single cavity mode.
Moreover, we study the dispersive shift under controlled
variation of the system parameters: the atom number and
the atom-cavity detuning. Finally, in Sec. IV, we discuss
the potential of the experiment for precise, nondestructive
atom-number and qubit-state measurements.

II. EXPERIMENTAL SETUP

A. Rydberg-atom preparation and detection

In the setup (see [27] for details) sketched in Fig. 1, in
each experimental cycle, we prepare Rydberg atoms, have
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FIG. 1. Schematic diagram of the experimental setup: a rectan-
gular 3D cavity (orange) is mounted between two pairs of circular
electrodes (yellow). The TE301 mode field intensity is depicted in
red and the embedded electrodes are drawn in green. Blue arrows
represent the pulse field used for field ionization of the Rydberg
atoms. The dimensions inside the cryogenic environment (blue dots)
are roughly to scale.

them interact with the cavity, and detect them. Within a
high-vacuum chamber, a liquid-nitrogen-cooled pulsed valve
with incorporated dielectric barrier discharge [28] generates
a cloud of supersonic 4He∗ atoms in the metastable singlet
state (1s12s1 1S0). The atom cloud, traveling at a speed
of vz = 900 ± 13 m s−1, then enters an ultrahigh-vacuum,
cryogenic environment at 3 K, where a rectangular copper
3D cavity is mounted between two pairs of circular electrodes.
Between the first pair of electrodes, a small fraction of the
He∗ atoms is photoexcited to the 37p Rydberg state (1s137p1

1P1 with lifetime τ37p � 2.7 μs [29]) by a 10-ns-long UV
laser pulse with a wavelength of 313 nm. The Rydberg atoms
are then coherently transferred to the longer-lived 37s state
(lifetime τ37s � 45 μs) using a 250-ns-long microwave pulse
with frequency close to the field-free transition frequency
ωa,0/2π = 21.5299 GHz.

The resulting ensemble of about 4000 37s Rydberg
atoms then propagates through the cavity (described in
Appendix A), where it interacts with the central maximum
of the critically coupled TE301 mode with resonance
frequency ωc/2π = 21.532 GHz and total cavity decay rate
κ/2π = 4.1 MHz. Inside the cavity, two electrodes installed
parallel to the atomic beam allow us to tune the atomic
transition frequency ωa via the quadratic dc Stark effect by
applying electric potentials of opposite polarity (+U and −U

with respect to the grounded cavity).
After leaving the cavity, the Rydberg atoms are ionized with

a pulsed field at the second pair of electrodes and the resulting
electrons are detected on a microchannel plate (MCP). The
signal from the MCP, current amplified and integrated on
a digital oscilloscope, constitutes a relative measure of the
number of Rydberg atoms.
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FIG. 2. (a) Normalized amplitude An and (b) phase φ of the
measured transmission spectrum. The transmission of the TE301

mode was measured (blue points) and fitted (solid blue line).
Dashed red lines show transmission spectra with frequency shift of
χ/2π = −1 MHz, exaggerated for clarity.

B. Detection of cavity frequency shifts

We characterize the resonator transmission spectrum of
the TE301 mode in amplitude (normalized to its maximum)
and phase with a vector network analyzer (see Fig. 2). The
data show the expected Lorentzian resonator transmission.
The dependence on the probe frequency ωp, or the probe-
cavity detuning �p = ωp − ωc, is fitted with the normalized

amplitude An(�p) = 1/
√

1 + (2�p/κ)2 and phase φ(�p) =
− arctan (2�p/κ) to obtain the values for ωc and κ stated
above. We detect the shift in resonance frequency of the cavity
induced by the atom ensemble as a change in transmission
amplitude δAn and phase δφ. The observable amplitude and
phase changes are dependent on the probe-cavity detuning as
indicated in Fig. 2 with a cavity frequency shift exaggerated
by a factor of about 10 for clarity.

To observe the dispersive frequency shift induced by the
Rydberg atoms passing through the cavity, we continuously
measure the cavity transmission. For this purpose, we apply
a weak probe tone that induces a coherent state of about 600
photons in the cavity, as calculated from the probe power and
input-output theory [30]. For the detection, we amplify the
transmitted signal with a cryogenic low-noise amplifier and
employ heterodyne down-conversion by mixing with a local
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oscillator. The complex envelope of the signal A(t) is recorded
following digital homodyne down-conversion and filtering on
a field-programmable gate array (FPGA). The detection has
a time resolution of approximately 100 ns dominated by the
digital filtering. The noise background is characterized by 34
effective noise photons referred to the cavity output [31]. When
the atoms have left the cavity, we take a reference trace A0(t)
that allows us to calculate the change in amplitude δAn(t) and
phase δφ(t), which are further averaged to reduce the noise,
with typically 5×104 repetitions of the experiment at 25-Hz
repetition rate (Appendix B provides details about noise and
averaging).

III. MEASUREMENTS OF CAVITY DISPERSIVE SHIFT

A. Time-dependent dispersive shift and dispersively shifted
transmission spectrum

We have measured the time-dependent change of cavity
transmission for probe-cavity detunings in the frequency range
(−κ,κ) with κ/8 steps (full data set presented in Appendix C).
In Figs. 3(a) and 3(b), we show the normalized amplitude

change δAn(tc) and the phase change δφ(tc) at the cavity
resonance frequency (�p = 0), as functions of the position
zc = vztc along the cavity axis, given by the time tc elapsed
since the Rydberg atoms have entered the cavity. We observe
little amplitude change δAn(tc). In contrast, the phase change
δφ(tc) gradually decreases from zero at the cavity entrance to
its minimal value of δφmin = −1.39(6)◦ at the cavity center
(black line at zm = 4 mm) and then increases back to zero as
the atoms move towards the end of the cavity. A symmetric
time dependence of the phase change is expected from the
spatial microwave field distribution of the TE301 mode. From
δφmin and the cavity decay rate κ , we extract a first estimate
of the maximal dispersive shift, 〈χ〉max/2π = −49(2) kHz.

To fully analyze the experimental results, we model the
Rydberg-atom cloud as a pointlike ensemble of N two-level
atoms with identical 37s-37p transition frequency ωa and
identical single-atom coupling g1 to the microwave field.
The Tavis-Cummings Hamiltonian describes the system [32].
In the dispersive limit, where the atom-cavity detuning
�a =ωa − ωc is much larger than the collective coupling
strength gN = g1

√
N , this leads to a collective cavity dispersive
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FIG. 3. Change in (a) normalized amplitude δAn and (b) phase δφ as a function of position zc = vztc (along the cavity axis, given by the
time the atoms travel inside the cavity, tc) measured with zero probe-cavity detuning �p (blue points). The solid lines represent fits of the
data assuming a constant atom-cavity detuning (purple) and based on the measured time dependence of the atom-cavity detuning (black).
The cavity center is marked by a black vertical line in all plots and the green bars indicate a 300-ns time window used for averaging. (c)
Calculated single-atom coupling strength g1 (orange) as a function of zc. (d) Measurement of the raw atom-cavity detuning �̃a (black points)
as a function of tc. The red parabola is a fit of the measured raw atom-cavity detunings and the red vertical line indicates the position of the
minimal atom-cavity detuning. The blue parabola displays the atom-cavity detuning �a that is used for the fit in (a) and (b) (see text for details).
Dash-dotted lines indicate the measurement range. Black error bars represent the standard error on the center frequency and green bars the full
widths at half maximum of the fitted atomic spectral lines.
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shift [33,34]

χ = gN
2

�a

Jz

N/2
, (1)

which depends on the pseudospin polarization Jz of the
ensemble. The latter is given as the sum of the individual
pseudospin operators, σ i

z /2, of the 37s-37p transition, Jz =
1
2

∑N
i=1 σ i

z , and has an expectation value 〈Jz〉 = −N/2, when
all atoms have been prepared in the spin-down state 37s. This
leads to a collective dispersive shift

〈χ〉 = −g1
2N

�a
. (2)

A model for the changes in amplitude δAn and phase δφ is
then obtained from the difference between the dispersively
shifted and the unperturbed transmission spectrum. The model
depends on constant parameters such as the probe-cavity
detuning �p and the number of Rydberg atoms, N , but also
on the single-atom coupling strength g1 and the atom-cavity
detuning �a, which in turn depend on the position of the atoms
in the cavity and are thus time dependent.

In a first step, we assume a constant atom-cavity detuning
and use the time dependence of the calculated single-atom
coupling shown in Fig. 3(c). The latter emerges from the
variation of the mode function over the length l of the cavity
in the beam direction and the atomic velocity vz. The coupling
is g1(tc)/2π = (17.5 kHz)× sin (πvztc/l), as determined from
the 37s-37p transition dipole moment (1092ea0, calculated
according to [35]) and the analytic TE301 mode function.
Fitting this simple model to the data [magenta lines in Figs. 3(a)
and 3(b)] provides a correct description of the data but also re-
veals the necessity of taking into account the time dependence
of the atom-cavity detuning for a quantitative description.

We have therefore independently measured the atom-cavity
detuning within the cavity along the propagation axis by
coherently transferring the population from the 37s to the
short-lived 37p state with a 200-ns microwave pulse (see [27]
for details). The coherent transfer (at time tc) results in fewer
Rydberg atoms being detected at the MCP, and thus in a
spectral line, when the frequency of the microwave pulse is
scanned over the atomic transition frequency. A Gaussian fit
of the spectral line determines the raw atom-cavity detuning
�̃a = �a + δac(zc), which differs from the real atom-cavity
detuning �a by a small, position-dependent ac Stark shift
δac(zc) (induced by the strength of the microwave pulse [36]).
The fit further determines the full width at half maximum of the
atomic spectral line, which includes the contribution from the
Fourier-limited width (5 MHz) of the 200-ns-long microwave
pulses. Using this method, we have mapped out the raw atom-
cavity detuning �̃a as a function of tc [see Fig. 3(d)] between
1.7 and 6.2 μs (dash-dotted black lines) in steps of 250 ns. The
time dependence of the raw atom-cavity detuning is fitted with
a parabola �̃a(tc)/2π � 6.65 MHz2

μs2 (tc − tmin)2 + 20.07 MHz
(red), the minimum (tmin � 3.96 μs, red line) of which is
shifted by approximately 450 μm from the cavity center. While
the parabolic dependence can readily be explained by linearly
increasing stray electric fields towards the cavity walls, the
spatial shift points to higher stray fields at the cavity exit,

where impurities and charges in the atomic beam are more
likely to collect on the cavity wall.

Subtracting the position-dependent ac Stark shift δac(zc) =
δac(zm)×sin2(πzc/l), where δac(zm)/2π = 2.4(4) MHz is in-
dependently measured at the cavity center, we obtain a
model for δAn(tc) and δφ(tc) that takes into account the time
dependencies of both the atom-cavity detuning �a(tc) and the
collective atom coupling gN (tc). Fitting this model to the data
[black lines in Figs. 3(a) and 3(b)] yields excellent quantitative
agreement over the full data set (see Appendix C). The fit
determines the two free parameters of the model: the origin
of the time scale (tc = 0 μs), which is used to align the data
with the cavity frame, and the number of coupled Rydberg
atoms, N = 3.33(15)×103 (relative precision 4.5%), which
corresponds to a maximal collective coupling of gN ,max/2π =
1.01(2) MHz. The precision of N and gN ,max is limited by
the detection noise on the amplitude and phase change, as
determined from the fits [see Figs. 3(a) and 3(b)], and a
dominant contribution from the spatial inhomogeneity of the
atom-cavity detuning [see the error bars in Fig. 3(d)].

The difference between the cavity spectra with and without
atoms is depicted in Fig. 4. Here, the data for each probe-cavity
detuning corresponds to the mean of δAn(tc) and δφ(tc) in
the cavity center [averaging over 300 ns around tmin; green
bar in Figs. 3(a) and 3(b)]. The data (black) is consistent
with the probe-cavity detuning dependencies δAn(�p) and
δφ(�p) of the complete model (red). The small dispersive
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FIG. 4. Change in (a) normalized amplitude δAn and (b) phase
δφ as a function of the probe-cavity detuning �p (black points). The
error bars indicate one standard deviation. A fit of the data with the
complete model is shown in red (see text).
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shift 〈χ〉max/κ � 1% implies that δAn(�p) and δφ(�p) are
proportional to the negative derivatives of the unperturbed
amplitude and phase response, An(�p) and φ(�p). We have
therefore clearly observed a collective dispersive shift, the time
dependence of which is determined by the time-dependent
collective coupling gN (tc) and atom-cavity detuning �a(tc).

The observed dispersive shift χ depends on the probe
power: it tends to vanish when the number of photons, nc,
inside the cavity increases, due to higher-order terms that
are neglected in the dispersive approximation. For a single
two-level emitter (qubit), the probe-power dependence of the
dispersive shift is negligible for photon numbers much lower
than the critical photon number ncrit = �2

a/4g2
1 [37]. When

nc reaches the order of ncrit, the observed dispersive shift
decreases significantly and limits the signal-to-noise ratio of
the qubit-state readout [38]. This effect has been investigated
in circuit-QED experiments [39]. In Appendix D, we show that
the critical photon number for the Tavis-Cummings Hamilto-
nian of N qubits is identical with ncrit of the single-qubit case,
if N � ncrit holds. In our system, ncrit � 105 and N � 103, so
ncrit still constitutes the threshold around which the dispersive
shift starts to reduce. However, to obtain a precise estimate
of the atom number from our measurements, we choose a
probe-photon number (nc � 600) two orders of magnitude
lower than ncrit. In Appendix D, we present measurements
of the probe-photon number dependence and show that the
dispersive shift remains unaffected under these conditions.

B. Variation of system parameters

The dispersive shift depends on the collective coupling
strength gN and the atom-cavity detuning �a, which further
characterize the dispersive Tavis-Cummings Hamiltonian. We
independently control both parameters in our experiment.
We exploit the linearity of δφ(�p = 0) with the dispersive
shift for χ � κ and report here mainly measurements of
phase change at zero probe-cavity detuning, where the data
are averaged in the 300-ns time window around the time of
minimal atom-cavity detuning, tmin.

We first vary the atom-cavity detuning by applying poten-
tials of opposite polarity (+U and −U ) to the two electrodes
mounted within the cavity to induce a quadratic dc Stark
shift, as depicted in Fig. 5(a), where the constant ac Stark
shift δac(zm) is already subtracted. The measured Stark shifts
agree well with the fitted parabola displayed in red, which
thus accurately describes the atom-cavity detuning �a(U ).
The measured changes in amplitude δAn and phase δφ

are displayed as a function of the atom-cavity detuning in
Figs. 5(b) and 5(c). While δAn stays approximately constant
down to a critical detuning �a,crit/2π = 10 MHz (dash-dotted
vertical lines in Fig. 5), δφ follows the expected 1/�a

dependence. The fit (red), limited to atom-cavity detunings
above �a,crit, shows reasonable agreement with the data
for N = 4.27(15)×103 Rydberg atoms. Below the critical
detuning, the measured atomic spectral lines overlap with the
cavity spectrum [compare the gray bar and the green bars in
Fig. 5(a)] and a fraction of the atoms is resonantly excited to
the 37p state, which decays rapidly, mainly to the ground state.
This additional loss mechanism for the photons in the cavity
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FIG. 5. (a) ac Stark shift corrected measurement of the atom-
cavity detuning �a/2π (black points) at t = tmin as a function of the
potential U applied to the cavity electrodes and fit of the quadratic
Stark effect with a parabola (red). The gray and green bars represent
the full widths at half maximum of the cavity and the atomic spectral
lines, respectively. Change in (b) normalized amplitude δAn and (c)
phase δφ at zero probe-cavity detuning as a function of the measured
atom-cavity detuning �a/2π shown in (a). The error bars indicate
one standard deviation for data averaged over 300 ns. The fit of the
complete model (red) is limited to atom-cavity detunings above a
threshold �a,crit/2π = 10 MHz (dash-dotted black line in all plots).

explains the drop of δAn at atom-cavity detunings below �a,crit

[see Fig. 5(b)].
We then vary the number of Rydberg atoms, N , using the

amplitude of the preparation microwave pulse that coherently
transfers the atoms from the 37p to the longer-lived 37s state.
The integrated signal S∗ measured at the MCP is proportional
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FIG. 6. (a) Phase change δφ at zero probe-cavity detuning �p

(black vertical axis and points) and Rydberg signal S (blue vertical
axis and points) as a function of the normalized microwave pulse
amplitude �/�π . (b) Phase change δφ versus Rydberg signal S. The
fit of the complete model (red) to the data calibrates the atom-number
scale on the top axis.

to the total number of Rydberg atoms and has a constant
contribution S0 = 0.79(3) V ns from Rydberg states other
than 37s (measured in the absence of the microwave pulse)
and 37p (which decays by �99% on the way to the cavity
center). Subtracting this contribution, we obtain the Rydberg
signal S = S∗ − S0 that is proportional to the number of atoms
in the 37s state. In Fig. 6(a) we display half of a complete Rabi
cycle of S (blue points and axis) as a function of the microwave
pulse amplitude expressed as the Rabi frequency � normalized
to the π -pulse frequency �π . In the same figure, we plot
the phase change δφ (black points and axis) at the constant
atom-cavity detuning �a/2π = 11.25(55) MHz as a function
of the normalized Rabi frequency �/�π . We note that δφ is
zero for �/�π = 0 and gradually decreases with increasing
Rabi frequency and increasing number of atoms in the 37s

state. We expect a linear dependence of δφ on S, because δφ

(measured at zero probe-cavity detuning) is proportional to the
dispersive shift, which in turn is expected to be proportional
to the number of 37s-state atoms. This linear dependence
between dispersive shift and Rydberg-atom number resulting
from the collective coupling is confirmed in Fig. 6(b), where
we plot δφ directly as a function of S. Here, the fit (displayed in
red) estimates a maximal number of Rydberg atoms, Nmax =
4.09(20)×103, for the Rydberg signal at �/�π = 1, which is

then used to calibrate the atom-number axis on top of the plot.
In the presented results, the maximal number of 37s Rydberg
atoms varies between 3.33(15)×103 and 4.27(15)×103, as
a consequence of experimental conditions, i.e., mainly the
efficiency of the source of metastable singlet atoms, which
varied between the presented measurements (on the time scale
of a week).

IV. CONCLUSIONS AND OUTLOOK

We have presented measurements of the microwave cavity
dispersive shift induced by Rydberg atoms obtained from the
cavity transmission with photon numbers well below its critical
value. In particular, we have modeled the experimentally
observed time dependence of the dispersive shift resulting from
the interplay between the time-dependent collective coupling
strength and atom-cavity detuning. We have also verified the
dispersive shift by measurements of the cavity transmission
as a function of the probe-cavity detuning. Controlling the
parameters of the atomic cloud, we have shown that the
collective dispersive shift χ is proportional to the number of
Rydberg atoms, N , and inversely proportional to the atom-
cavity detuning �a. The results agree well with the dispersive
Tavis-Cummings Hamiltonian, and consistently imply maxi-
mal collective coupling strengths above gN ,max/2π � 1 MHz,
corresponding to more than 3300 coupled Rydberg atoms.

With the method presented here, we are able to determine
the atom number in a nondemolition measurement. We obtain
a relative precision in the atom number of σN/N ∼ 4.5%,
dominated by the uncertainty of the atom-cavity detuning.
However, this atom number is an effective quantity, because
we neglect the variation of the single-atom coupling strength
and the atom-cavity detuning across the dimension of the
atom cloud by assuming a pointlike ensemble. Indeed, in our
experiment, the atom cloud is large enough (the longitudinal
cloud size of diameter � 2 mm is mainly determined by the
waist of the laser beam) to be sensitive to the inhomogeneities
of the microwave and static electric fields. Since these fields
vary over the cavity length of 8 mm, we expect a small
deviation of the determined effective atom number from the
real atom number. Assuming that the field inhomogeneities
over the atom cloud can be suppressed in future experiments by
using larger cavities, smaller atomic ensembles, and transitions
that are less sensitive to electric fields, with otherwise identical
parameters, the relative precision in the atom number could
then reach � 0.3%, limited by the microwave detection noise
at fixed integration time.

The ratio of dispersive shift and cavity decay rate x = 2χ/κ

can be optimized for the best atom-number determination in
phase measurements on resonance: for small values of x, the
uncertainty is large because the observed phase shift decreases
as δφ = arctan(x). For large values of x, the uncertainty is also
substantial because the phase shift saturates and the transmitted
signal amplitude decreases. The optimum ratio is estimated to
be xopt � 0.8 (details in Appendix E), which leads to a relative
precision in the determination of the atom number σN/N �
3.33/

√
RS/N k. Here, k is the number of averages and the

single-shot power SNRRS/N = ncκoutτ/nnoise is determined
by the number of photons in the cavity, nc, the coupling rate
κout of the cavity to its output port, the integration time τ , and
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the effective noise photon number nnoise of the detection chain.
For a given cavity and atomic transition, the optimal ratio can
be achieved by adjusting the atom-cavity detuning to �a,opt =
2g2

N/(xoptκ). In the dispersive approximation (�a 
 gN, κ),
the optimal detection requires collective strong coupling gN 

κ , which can be obtained with a superconducting cavity, in
which cavity losses are reduced by several orders of magnitude.

The resolution might be further enhanced by improvements
of the SNR, e.g., by using quantum-limited amplifiers (nnoise �
1), and slowing down the atoms to maximize τ , for example
with Rydberg-Stark deceleration [40,41]. Using realistic pa-
rameters (N = 4000, gN/2π = 1.1 MHz, κ/2π � κout/2π =
300 kHz for an overcoupled cavity, �a,opt/2π � 10 MHz,
nc = 880 � 10−2ncrit, and τ = 50 μs), the single-shot power
SNR increases by more than three orders of magnitude to
8×104. The relative and absolute uncertainties of the atom
number then become σN/N � 1.2% and σN � 49 in a single-
shot measurement, which is below the width of a Poissonian
distribution (

√
N � 63). Such precise nondemolition mea-

surements of large atom numbers open up the prospect of
determining absolute scattering and reactive cross sections in
experiments with Rydberg atoms and molecules [42–44]. In
the merged-beam experiment described in [44], for instance,
the knowledge of the number of H2 Rydberg molecules could
potentially be used to extract the absolute cross section of the
reaction H2

+ + H2 → H3
+ + H.

Another important potential application of the presented
measurement method is the nondemolition detection of the
quantum state of the atomic ensemble, characterized by its
pseudospin Jz. This measurement requires a long lifetime of
the excited state of the atomic transition. In helium atoms this
could be achieved with s-p transitions (τp,n=50 ∼ 100 μs) of
triplet Rydberg states or by using transitions involving high-
angular-momentum Rydberg states (τl=49,n=50 ∼ 30 ms).

Long qubit lifetimes are also relevant in the context of
quantum memories, where Rydberg atoms could for instance
act as a memory of the quantum state of a superconducting
qubit in a hybrid cavity-QED scheme [45]. For this scheme
it would be highly beneficial to implement Rydberg-Stark
trapping [46] of the atoms within the 3D cavity, to allow
for longer interaction times with a superconducting qubit.
Coherent state transfer between both systems via virtual
photons could be achieved within 1 μs with the collective
coupling measured here (1 MHz) and typical 3D cavity-
transmon couplings, so that our results can be regarded as
a step towards this hybrid cavity-QED scheme.
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FIG. 7. Photograph of the rectangular copper 3D cavity with
resonance frequency ωc/2π = 21.532 GHz (TE301 mode). The atom
entry and exit apertures as well as the intracavity electrodes are clearly
visible in the two halves of the cavity aligned by two alignment
holes in the corners of each rectangle and closed by a set of screws.
The microwaves are injected and extracted through two evanescently
coupled microwave lines entering the cavity from the sides.

APPENDIX A: DETAILS ON 3D CAVITY

The rectangular cavity presented in Fig. 7 consists of two
halves milled out from oxygen-free copper and its dimensions
(w×h×l � 42 mm×6 mm×8 mm, rounded with radius R =
3 mm in the corners) determine the resonance frequency
ωc/2π = 21.532 GHz of the TE301 mode. Two 3-mm-diameter
holes allow the Rydberg atoms to enter and leave the cavity.
One cylindrical electrode is mounted on each side of the atom
beam at the nodes of the TE301 mode to minimize perturbations
of the mode structure and microwave losses. The transmission
measurement uses two microwave antennas, which were
adjusted to obtain a critically coupled TE301 mode. In this
configuration, the mode has a decay rate of κ/2π = 4.1 MHz.

APPENDIX B: MEASUREMENT NOISE AND AVERAGING

To measure the transmission of the cavity, we apply
a weak probe tone to the cavity. The transmitted signal
is amplified with a cryogenic, ultralow-noise high-electron-
mobility-transistor (HEMT) amplifier (Caltech Cryo1126)
mounted at T = 3 K. Low-pass and high-pass filtering at
room temperature reduces the total noise power before further
low-noise amplification. After heterodyne down-conversion
using a double balanced mixer energized by a local oscillator,
we obtain the signal at an intermediate frequency of 25 MHz.
To avoid aliasing, the signal is then low-pass filtered at
the Nyquist frequency of 50 MHz before it is digitized by
an analog-to-digital converter with 10-ns sampling interval.
Afterwards, the signal is processed by a field-programmable
gate array (Xilinx Virtex4), where digital homodyne down-
conversion and digital filtering with a 100-ns boxcar filter lead
to measured time traces of the complex signal A(t) and its
reference A0(t). Considering the noise added by the amplifiers
in the detection chain, we can write each of the time traces as
the sum of a signal component AS = IS + iQS and a noise
component AN = IN + iQN.
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The noise background of the transmission measurement
is characterized by the number of effective noise photons,
nnoise, referred to the cavity output. For any detection chain,
this number is calculated as the total noise power spectral
densityP(ω) divided by the total gain G and the photon energy
h̄ω: nnoise = P(ω)/(Gh̄ω). From measurements of the total
gain and power spectral density, we have obtained nnoise �
34, which is limited by the noise from the cryogenic HEMT
amplifier. The single-shot power SNR is then calculated as the
ratio of integrated signal photon number ncκoutτ and effective
noise photon number RS/N = ncκoutτ/nnoise.

To improve the SNR, we repeat the measurement at a rate of
25 Hz (limited by the pulse repetition rate of the UV laser) and
first average A(t) and A0(t) at the FPGA. Special attention
is paid in the analysis to cancel the effects of slow phase
drifts of approximately 0.3◦/min between the probe tone and
the local oscillator (probably induced by thermal drifts of the
interferometer arms), which could lead to systematic errors
of the extracted amplitudes and phases. We minimize these
errors by averaging only 100 cycles at the FPGA (i.e., 4 s of
integration). We thus obtain the averaged complex amplitudes:

A = ASe
i φS + ANei φN ,

A0 = A0,Se
i φ0,S + A0,Nei φ0,N . (B1)

To extract the phase change δφ = φS − φ0,S, we average the
Hermitian inner product of the averaged complex amplitudes:

〈A · A0
∗〉 = ASA0,Se

iδφ + ASe
iφS〈A0,N

∗〉
+A0,Se

−iφ0,S〈AN〉 + 〈AN〉〈A0,N
∗〉. (B2)

The averaged noise terms 〈AN〉 and 〈A0,N
∗〉 decay to zero for

a large number of averages and we extract the phase change
from the only remaining term.

To obtain the amplitude change, we calculate the squared
absolute values of the complex amplitudes:

〈|A|2〉 = A2
S + 〈AN

2〉 + 2〈ISIN〉 + 2〈QSQN〉,
〈|A0|2〉 = A2

0,S + 〈A0,N
2〉 + 2〈I0,SI0,N〉 + 2〈Q0,SQ0,N〉. (B3)

Because the signal and noise components are uncorrelated,
the third and fourth terms are proportional to 〈IN〉 and 〈QN〉,
respectively, and vanish for sufficient averaging. In both
expressions the second term converges to the same nonzero

value related to the total noise power P = AN
2
/2Z, where

Z = 50 � is the line impedance. This value is determined
separately from a measurement with switched-off probe tone
and allows us to extract the signal amplitudes AS and A0,S. We
divide the difference between signal and reference amplitude
by the signal amplitude A0,S(ωc) at the cavity resonance to
obtain the change in normalized amplitude:

δAn = AS − A0,S

A0,S(ωc)
. (B4)

The changes of the amplitudes and phases were determined
as described above by averaging over 5×104 cycles, i.e.,
over 100 cycles at the FPGA followed by averaging over 500
FPGA outputs. We have noticed a small artificial phase offset
of −0.104(4)◦ between signal and reference traces (measured

in the absence of atoms) that we subtract from the measured
phase change.

APPENDIX C: FULL TEMPORAL AND SPECTRAL
DATA COMPARED TO FITS

In Fig. 8 we present the full data set (top panels) and the
fit (bottom panels) of the changes in amplitude δAn (left) and
phase δφ (right) as functions of the position along the cavity
axis, zc (and corresponding time tc), and the probe-cavity
detuning �p. The cuts through the data and fits at zero
probe-cavity detuning and around the position of minimal
atom-cavity detuning were used in Sec. III A to discuss the
time dependence of the dispersive shift and the effect of the
dispersive shift on the transmission spectrum, respectively.
We fit the full data set with a model that takes into account
the calculated single-atom coupling g1(zc) and the measured
atom-cavity detuning �a(tc) [see Figs. 3(c) and 3(d)]. The
fit determines the origin of the time scale (tc = 0 μs) that is
used to align δAn(tc) and δφ(tc) with the cavity frame and the
number of coupled Rydberg atoms, N = 3.33(15)×103, that
corresponds to a maximal collective coupling of gN ,max/2π =
1.01(2) MHz. The quantitative agreement between fit and data
implies the observation of a collective dispersive shift, the time
dependence of which is determined by the time-dependent
collective coupling gN (tc) and atom-cavity detuning �a(tc).

FIG. 8. Top: Measurements of change in amplitude δAn (left)
and phase δφ (right) as functions of the position along the cavity
axis, zc (and corresponding time tc), and probe-cavity detuning �p.
Bottom: Corresponding fits of the change in amplitude (left) and
phase (right) with the complete model introduced in the main text.
The white dashed lines indicate the cuts through the data and fits at
�p/2π = 0 MHz and tc = tmin that are shown in Figs. 3(a) and 3(b)
and Fig. 4, respectively.
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APPENDIX D: CRITICAL PHOTON NUMBER

The eigenvalues of the Jaynes-Cummings Hamiltonian [47]
for a single qubit coupled to a resonator are E±,nc/h̄ =
ncωc ± 0.5

√
�2

a + 4g2
1nc for a given photon number nc. In

the dispersive limit, the dressed cavity transition frequency is
given by the difference in eigenenergy of states that differ by
one photon and have the same qubit state (ground and excited
states correspond to − and +, respectively). For a qubit in the
ground state and in the limit nc 
 1, this leads to

χ1(nc) � d

dnc

⎛
⎝−

√
�2

a + 4g2
1nc

2

⎞
⎠

� − g2
1

�a

1√
1 + nc/ncrit

. (D1)

In Eq. (D1), the critical photon number ncrit = �2
a/4g2

1 gives a
scale for which (in the two-level approximation) the dispersive
limit breaks down [37]. One can characterize the dependence
of the dispersive shift on the photon number more carefully,
especially taking into account the dephasing that occurs for
large photon numbers [38]; ncrit nevertheless provides the
characteristic scale.

Exact diagonalization of the Tavis-Cummings Hamiltonian
is more complicated [32]. In the limit where the number n of
excitations (number of photons and of atoms in the excited
qubit state) in the system is large compared to the number
of atoms, N , the eigenenergies can be approximated [48,49]

by Ej,n/h̄ � nωc + j

√
�2

a + 4g2
1n. Here, −N/2 � j � N/2

corresponds, in the dispersive limit, to the polarization of the
atomic ensemble j = 〈Jz〉. Thus, we can extract the depen-
dence of the cavity dispersive shift on the photon number:

χN (nc) � d

dn

(
j

√
�2

a + 4g2
1n

)
� g2

1

�a
2〈Jz〉 1√

1 + nc/ncrit
, (D2)

where we have used n = nc + j + N/2 � nc, which is valid
for n 
 N . Thus, ncrit still provides the threshold around
which the dispersive shift starts to decrease.

In our experiments, the number of the probe microwave
photons should have a negligible effect on the dispersive
shift, because nc � 600 � ncrit � 105. To verify this, we have
measured the phase change for a resonant probe as a function
of the number of photons in the cavity. As shown in Fig. 9,
a significant decrease in dispersive shift is only observed at
cavity photon numbers that are at least one order of magnitude
higher than the photon numbers used to obtain the results

FIG. 9. Measured phase change δφ (black points) at the cavity
resonance as a function of the cavity photon number nc. The blue line
is calculated according to Eq. (D2). The dashed red line indicates the
cavity photon number that was used for the measurements presented
in Sec. III and Appendix C.

presented in Sec. III. The data agree qualitatively with the
scaling predicted with Eq. (D2) and the previously calculated
value of ncrit. We attribute the deviation at large photon
numbers to the uncertainty in the photon number and to a
reduction of the dispersive shift induced by the ac Stark shift.

APPENDIX E: OPTIMAL ATOM DETECTION

In the limit of large power SNR, the uncertainty in the phase
φ resulting from the Gaussian noise for a single-shot transmis-
sion measurement on resonance is given by σφ = 1/

√
RS/N

(by taking the ratio of noise and signal amplitudes and assum-
ing tan σφ � σφ for RS/N 
 1). The uncertainty of the phase
change δφ = φ − φ0 is then σδφ = 1/

√
RS/N

√
2 + (2χ/κ)2,

which takes into account the reduction of the transmitted power
for the shifted resonance. This expression matches the uncer-
tainty of the phase measured in our experiment within 20%
after multiplying by 1/

√
k to take into account the k averages.

The atom number is extracted as N = �aκ/(2g2
1) tan(δφ)

and thus has a relative uncertainty σN/N = [tan(δφ) +
1/ tan(δφ)]σδφ . After inserting the phase change δφ =
arctan(2χ/κ) and its single-shot uncertainty, we obtain

σN

N
=

(
2χ

κ
+ κ

2χ

)√
2 +

(
2χ

κ

)2 1√
RS/N

. (E1)

This function clearly depends on the ratio between the
dispersive shift and the resonator linewidth x = 2χ/κ and
reaches its minimum σN/N � 3.33/

√
RS/N for xopt � 0.8.
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