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Superradiant phase transition in the ultrastrong-coupling regime of the two-photon Dicke model
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The controllability of current quantum technologies allows one to implement spin-boson models where two-
photon couplings are the dominating terms of light-matter interaction. In this case, when the coupling strength
becomes comparable with the characteristic frequencies, a spectral collapse can take place, i.e., the discrete system
spectrum can collapse into a continuous band. Here, we analyze the thermodynamic limit of the two-photon Dicke
model, which describes the interaction of an ensemble of qubits with a single bosonic mode. We find that there
exists a parameter regime where two-photon interactions induce a superradiant phase transition, before the spectral
collapse occurs. Furthermore, we extend the mean-field analysis by considering second-order quantum fluctuation
terms, in order to analyze the low-energy spectrum and compare the critical behavior with the one-photon case.
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I. INTRODUCTION

In quantum optics, the superradiant phase transition [1,2]
(SPT) is the abrupt change in the behavior of the ground-state
properties of a quantum many-body system, while a physical
parameter is continuously varied. It is a quantum phase
transition, i.e., it can be accessed at zero temperature and it
is due to quantum fluctuations. The archetypal model known
to display such a transition is the Dicke model [3,4] (DM),
which describes the interaction of an ensemble of two-level
quantum systems, or qubits, with a single bosonic mode. In
the limit of a large number of qubits, the DM undergoes a
SPT [5] in the ultrastrong-coupling (USC) regime, where the
collective light-matter coupling becomes comparable to the
qubit and field bare frequencies [6]. Although the DM is
commonly used to describe atomic and solid-state systems,
whether it provides a reliable description of the system
ground state when approaching the critical coupling is still
the subject of debate [7–13]. In particular, the presence of the
so-called diamagnetic term is expected to prevent the SPT. The
debate has been recently extended to the framework of circuit
QED [14–19], where the USC regime has been experimentally
achieved [20–24].

However, a compelling way to circumvent no-go theo-
rems consists in using driven systems to engineer effective
Hamiltonians. Indeed, the SPT has been observed in driven
atomic systems which effectively reproduce the DM [25–27].
In general, driven atomic or solid-state systems represent a
powerful tool to access the USC regime of quantum optical
models, both in few- [28–32] and many-body physics [33,34].
In the USC regime, even apparently simple models entail
a very complex physics. This is the case for the quantum
Rabi model [35,36], which corresponds to a single-qubit DM.
Furthermore, the engineering of effective Hamiltonians allows
one to implement generalized quantum optical models [37,38],
including anisotropic couplings or two-photon interactions. In
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the case of anisotropic couplings, reaching the USC regime
leads to parity-symmetry breaking [39,40] and to a rich phase
diagram in the many-body limit [41].

Similarly, the two-photon Rabi model has highly counterin-
tuitive spectral and dynamical features. Its spectrum collapses
into a continuous band for a specific value of the coupling
strength [42–46]. In the transition from the strong to the USC
regime of the two-photon Rabi model, a continuous symmetry
breaks down into a four-folded discrete symmetry, identified
by a generalized-parity operator [47]. However, so far there are
no known results on the ground state of two-photon models in
the many-body limit.

In this work, we perform first a mean-field analysis of
the two-photon Dicke model and we find that the system
exhibits a phase transition in the thermodynamic limit. This
transition is superradiant in the sense that it is characterized
by a macroscopic change in the average photon number. The
boundary of the phase transition is set by the critical value
of the collective coupling strength, which depends on the
qubit and field energies. Interestingly, the collective coupling
strength for which the spectrum collapses depends only on
the field frequency. For larger values of the coupling strength,
the Hamiltonian is not bounded from below and the model
is not well defined. We define the parameter regime where
the SPT could be accessed within the validity region of the
model, that is, where the critical coupling is smaller than the
collapse coupling strength. Finally, we go beyond mean field
by including second-order quantum fluctuations. This lets us
characterize the system phases and analyze the differences
with the SPT of the standard DM. We find fundamental
differences in the critical scaling of the bosonic field.

The two-photon DM could be implemented using trapped
ions [47], which have been used to realize spin systems
composed of hundreds of qubits [48]. Similar schemes
can be conceived for other atomic or solid-state systems.
Particularly promising are superconducting devices, where
bosonic modes have been coupled to increasingly large spin
ensembles [49,50]. In any implementation, the critical issue
would be the number of qubits that can be effectively coupled
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FIG. 1. Left: Sketch of an ensemble of qubits interacting with a
single bosonic mode via two-photon coupling terms, as in Eq. (1).
Right: Energy levels of the uncoupled systems. Arrows represent
rotating and counter-rotating two-photon transitions.

to a single bosonic mode. In our case, we have considered the
thermodynamic limit N � 1, with N the number of qubits.
We show that, in this limit, the superradiant phase transition
of the two-photon DM entails squeezing and spin-squeezing
properties. These features provide a signature of the phase
transition that could be observed [51–53] for a smaller number
of qubits.

II. MEAN-FIELD ANALYSIS

We consider an ensemble of N qubits interacting with a
bosonic mode via two-photon interaction, as sketched in Fig. 1.
The system Hamiltonian is given by

Ĥ = ωâ†â + ωq

2

N∑
j=1

σ̂ z
j + g

N

N∑
j=1

σ̂ x
j (â2 + â†2), (1)

with h̄ = 1, σ̂ z
j and σ̂ x

j are Pauli operators describing the j th
ion, and â and â† are bosonic ladder operators. We defined the
collective coupling constant g, while ωq is the qubit energy
spacing and ω is the bosonic frequency. In Ref. [47], Felicetti
et al. have proposed to implement this model using a chain
of ions in a trap illuminated by two lasers, with the motional
degree of freedom of the chain playing the role of the bosonic
field. In this case, g, ωq , and ω are effective and tunable
parameters which depend on the frequencies and amplitudes of
the two lasers. In principle, this process allows us to engineer
the Hamiltonian in all relevant regimes of parameters. It is
then possible to reach the USC regime: g ∼ ω. Furthermore,
ωq and ω can be tuned independently. In particular, ωq need
not be equal to ω/2, and can be much bigger or smaller than ω.
In the following, we will consider this regime of parameters,
as well as the thermodynamic limit N � 1.

In the USC regime, the two-photon Dicke model exhibits
a spectral collapse [44,47]: the energy levels of the system
collapse into a continuum for g = ω

2 , that is, when the
individual coupling constant g

N
is equal to ω

2N
. Note that

with the convention we have chosen, the spectral collapse
always happens for the same value of the collective coupling
parameter g. Beyond this limit, the ground state of (1) is no
longer defined, which renders the notion of phase transition
meaningless. Thus, the goal of this work is to study the
existence of a phase transition for g < ω

2 . For this purpose,
it is convenient to describe the ensemble of qubits by pseu-
dospin operators: we define Ĵz = 1

2

∑
j σ̂ z

j , Ĵx = 1
2

∑
j σ̂ x

j ,

Ĵ± = ∑
j σ̂±

j , which gives us

Ĥ = ωâ†â + ωqĴz + g

N
(Ĵ+ + Ĵ−) (â2 + â†2). (2)

In the following, we will speak only in terms of the fluc-
tuations and polarization of this “spin,” which are physically
interpreted in terms of population and coherence of the states of
the qubits. We study the phase diagram of our model by using
a mean-field approach, inspired by the analysis performed in
Refs. [5,41]. The point here is to determine how the properties
of the ground state evolve when g increases. First of all, we
use the Holstein-Primakoff (HP) transformation to turn our
pseudospin operators into bosonic operators:

Ĵ+ = b̂†
√

N − b̂†b̂, Ĵ− =
√

N − b̂†b̂ b̂, Ĵz = b̂†b̂ − N

2
,

(3)
with [b̂,b̂†] = 1. Here and in the following, we restrict
ourselves to the eigenspace of

−→
J 2 associated with eigenvalue

N
2 (N

2 + 1) (that is, the maximal angular momentum eigenspace
HN/2) [54].

Next, we shift b̂ and b̂† with respect to their mean values in
the ground state |GS〉 of (2):

b̂ = β + d̂, β = 〈GS|b̂|GS〉, [d̂,d̂†] = 1. (4)

As a zeroth-order approximation, we neglect altogether the
spin fluctuations d̂ and d̂†, which gives

Ĥ = ωâ†â + gβ(â2 + â†2) + ωq |β|2 − ωqN

2
, (5a)

gβ = g

N
(β + β∗)

√
N − |β|2. (5b)

In other terms, we replace the spin operators by their classical
mean values. This Hamiltonian is quadratic in â, and can
therefore be diagonalized by Bogoliubov transformation. The
ground state is a squeezed vacuum state with squeezing
parameter:

r (MF)
a = 1

2
arctanh

(
2gβ

ω

)
. (6)

The corresponding ground-state energy is given by

EG = 1

2

cosh
(
2r (MF)

a

)
ω

(
ω2 − 4g2

β

) + ωq |β|2 − ωq

N

2
− ω

2
.

(7)

The final step consists in minimizing this energy in order to
determine the value of β the system adopts in its ground state.
β then plays the role of order parameter for our system:
a change in its behavior leads to a modification of the
qualitative properties of the ground state, which indicates a

phase transition. We find that, for g < gt =
√

ωωqN

4 , EG is
minimal for β = β∗ = 0. For g > gt , we have two degenerate
minima:

β = β∗ = ±
√

N

2

(
1 −

√
1 − μ

4μ2λ2 − μ

)1/2

= ±β0, (8)
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FIG. 2. Phase diagram of our model in the mean-field approxi-
mation. g and Nωq are given in units of ω. In the unbounded region,
the model is no longer valid. For Nωq > ω, the phase transition can
no longer happen before the spectral collapse and only the normal
phase exists.

where we have defined

λ = ω

2ωqN
� 0; μ = 4g2

ω2
� 0. (9)

Thus, our system exhibits two phases: in the first, β and the
squeezing parameter are zero for all g, meaning that the field
â is in the vacuum state and the pseudospin Ĵz is polarized
along the z axis: 〈Ĵz〉 = |β|2 − N

2 = −N
2 , 〈Ĵx〉 = 〈Ĵy〉 = 0.

In the second phase, the ground state is twice degenerate.
This degeneracy comes from the fact that β can be positive
or negative. The field â is in a squeezed vacuum state, the
direction of squeezing depending on the sign of β: (i) For
β > 0, the quadrature X̂a = â + â† is squeezed, and the
fluctuations of P̂a = i(â† − â) are amplified. (ii) For β < 0,
the squeezed quadrature is P̂a . In both cases, when g increases,
the squeezing parameter increases and the pseudospin polar-
ization evolves toward the x axis: |〈Ĵz〉| decreases until it hits
zero for g = gcollapse = ω

2 , and |〈Ĵx〉| increases at the same
time. This phase diagram is reminiscent of the one-photon
Dicke model and its superradiant phase transition [5,41].
Here, only the pseudospin acquires macroscopic mean value
in the second phase; the mean value of â remains zero.
However, the average number of photons becomes nonzero
at the transition; thus, we argue that our transition may still be
dubbed “superradiant.” Note also that the zero mean value of
the bosonic field comes from the fact that we have considered
only quadratic terms for â in the Hamiltonian. If a linear term
is present, â will acquire nonzero mean value at the mean-field
level (see Appendix A). Figure 2 displays the phase diagram
of the model in the mean-field approximation.

Let us finally notice that, for the phase transition to occur
before the spectral collapse, the following condition must be
satisfied: ωqN < ω. As we have already mentioned, since ω

and ωq are adjustable effective parameters, it is possible in
principle to meet this condition. From this point on, we will
consider that the order of magnitude of the parameter ωq is
ω
N

[ωq = O( ω
N

)]. We can notice that the approximation that
we have made to obtain (5) amounts simply to keeping only

terms of order O(ω) in the Hamiltonian, and to neglecting
higher-order terms [55].

III. BEYOND MEAN FIELD

Let us now take the fluctuations of Ĵz into account, in
addition to the mean value. We will expand the Hamiltonian
keeping terms of order O(ω), O( ω√

N
), and O( ω

N
). Then, we

will make use of a technique that Hwang et al. applied to the
Rabi and Jaynes-Cumming models [56,57]. This method is
inspired by the Schrieffer-Wolff transformation [58,59], and
can be summarized as follows: one starts with a Hamiltonian
describing a spin operator σ̂z and another degree of freedom,
that can be written as

Ĥ = Ĥ0 + εĤc, (10)

with a small parameter ε 	 1, Ĥ0 an operator that does not
couple the σ̂z eigenstates, and Ĥc that does. In Ref. [56]
for instance, this method was applied to a Jaynes-Cummings
Hamiltonian:

ĤJC = ω0â
†â + �spin

2
σ̂z − ε g(âσ̂+ + â†σ̂−). (11)

The method consists in decoupling the spin eigenspaces up
to a certain order of ε. This is done by finding a transformation
eŜ , with Ŝ an anti-Hermitian operator such that Ĥ ′ = e−Ŝ Ĥ eŜ

commutes with σ̂z up to a certain order in ε. It is then possible
to project Ĥ ′ in one of the spin eigenspaces, which allows
one to effectively suppress the spin degree of freedom and to
diagonalize the Hamiltonian more easily.

In our case, it would seem natural to decouple the
eigenspaces of the pseudospin Ĵz. Instead, however, we are
going to apply the HP transformation once more, and shift
the operators b̂ with respect to their mean-field expectation
value β.

We define the following operators:

K̂0 = 1
2

(
â†â + 1

2

)
, (12)

K̂+ = 1
2 â†2, (13)

K̂− = 1
2 â2, (14)

which obey spinlike commutation relations [K̂0,K̂±] = ±K̂±,
and [K̂+,K̂−] = −2K̂0. Note that the commutation algebra
here is SU(1,1) instead of SU(2), hence these are not spin
operators even if the commutation relations are the same.
In order to apply the method described above, we take profit
of these commutation relations to decouple the eigenspaces
of these pseudospin operators up to a certain order of the
small parameter 1√

N
. Then, we project out the K̂ degree of

freedom. This gives us an effective Hamiltonian describing
the low-energy fluctuations of b̂ above the ground state; the
detailed calculations can be found in Appendixes B–D.

While not very intuitive at first glance, this manipulation
can be justified by two arguments. First, it is interesting to use
the HP transformation on Ĵz again in order to make a link to
our previous study and to re-use our results. Hence, only â is
available to play the role of the pseudospin whose eigenspaces
we seek to decouple. Next, as we mentioned previously, we
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FIG. 3. Schematic layout of the energy levels of our Hamiltonian
in the regime ωq 	 ω. In this regime, the energy scale associated to
the pseudospin operator K̂0 defined in Eq. (12) is much larger than
the energy scale of the bosonic operator b̂ of Eq. (3).

consider the following regime of parameters: ωq = O( ω
N

).
Since N � 1, this means that the typical energy separation
between the â eigenstates, given by ω, is much bigger than
the typical energy separation for the Ĵz (or b̂†b̂) eigenstates,
given by ωq . As a consequence, the eigenspaces associated
with the pseudospin (12) are well separated in energy, but
the eigenspaces of Ĵz are not. A schematic representation of
the energy levels is shown in Fig. 3. Thus, it is possible to
project the Hamiltonian into the lowest-energy eigenspace of
K̂0 and to study the fluctuations of Ĵz while staying inside this
subspace, but not the opposite.

In the first phase, after having decoupled the K̂0 eigenspaces
and projected the system into the lowest-energy one, we obtain
the following Hamiltonian:

Ĥ = −ωqN

2
+ ωqd̂

†d̂ − g2

Nω
(d̂ + d̂†)2 + O

(
ω

N
√

N

)
,

(15)

where d̂ has been defined in Eq. (4). The associated ground
state for d̂ is a squeezed vacuum state, with squeezing param-
eter r (1)

s = 1
4 ln(1 − 4g2

Nωωq
) (let us note that this parameter is

negative, meaning that the squeezed quadrature is P̂d instead
of X̂d ). This constitutes a piece of information about the
fluctuations of Ĵz, while only mean values were accessible
in our first analysis. The â field is found to be in a coherent
vacuum state, with no modifications with respect to the
mean-field analysis.

In the second phase, we also find squeezing properties for
the b̂ ground state, with squeezing parameter:

r (2)
s = −1

4

× ln

(
1 + α2

1−2α2

(
3 + α2

1−α2

) − 1−2α2

1−α2−(16g2/ω2)α2(1−α2)2

1 + α2

1−2α2

)
,

with α = β√
N

. The results for the â field are identical to
the mean-field case with a slight correction, i.e., we have a
squeezed vacuum state with squeezing parameter r (2)

a which
differs from r (MF)

a by a correction of order 1
N

(see Appendix D).
Going back to the definition of the b̂ field (3), the behavior

FIG. 4. Schematic representation of mean value and spin-
squeezing fluctuations of the collective angular momentum J state,
in a generalized Bloch sphere. Several values of g are considered
(top left: g < gt ; top right: g � gt ; bottom left: gt < g < gcollapse;
bottom right: g � gcollapse), for β > 0. For convenience, the z axis
was inverted.

for the
−→
J operators can be summarized as follows: in the first

phase,
−→
J is polarized along the z axis: 〈Ĵx〉 = 〈Ĵy〉 = 0. When

g increases, the fluctuations of Ĵy are damped, while the fluc-
tuations of Ĵx are amplified proportionally. The amplification
factor goes to infinity when approaching the transition: even
though the approximations we have used break down near the
critical point, the divergence of the Ĵx fluctuations in our model
may have observable consequences in an actual experiment.
In the second phase, the

−→
J polarization will gradually evolve

from the z axis to the x axis as g increases. Near the spectral
collapse g = gcollapse = ω

2 ,
−→
J will be polarized along the x

axis, and we will have squeezing properties for the fluctuations
in the y and z directions. As for the â field, we have a
coherent vacuum state in the first phase; then, at the transition,
the field acquires squeezing properties. In the second phase,
the squeezing parameter increases with g and diverges at the
spectral collapse. The behavior of spin-squeezing fluctuations
is schematically depicted in Fig. 4. We can also characterize
the ground-state energy and the b̂ excitation energy in both
phases: the results for the excitation energy are displayed in
Fig. 5.

Finally, using the effective Hamiltonian in both phases, we
can compute the critical exponents of several observables that
exhibit critical behavior at the transition, that is,

A(g → gt ) ∝
∣∣∣∣g − gt

gt

∣∣∣∣
γA

,

γA being the critical exponent of A. We can compare those
results to the critical exponents in the one-photon case [5,60],
with an interacting term of the form g

N
(â + â†)(Ĵ+ + Ĵ−) [note
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FIG. 5. Excitation energy Eexc of the b̂ field, divided by ωq ,
for λ = ω

2ωqN
= 1. In the regime of parameters considered, Eexc

ωq
is

independent of the qubit number N . The cancellation of Eexc for
g = gt indicates the phase transition.

that this convention differs slightly from the one usually found
in the literature, g√

N
(â + â†)(Ĵ+ + Ĵ−)]. In the one-photon

model, the atomic and photonic excitations are hybridized to
form polaritons. The energy spectrum exhibits two polaritonic
branches, one of which goes to zero at the transition. In the
limit ωq 	 ω, however, the excitations cease to hybridize; the
lowest- and highest-energy polaritons are purely atomic and
photonic, respectively, which corresponds to our low-energy−→
J excitations and high-energy â (K̂0) excitations. Notice that
this situation is similar to what is considered in Ref. [61],
where an atomic ensemble interacts with a strongly detuned
optical cavity. We compare the critical exponents of the one-
and two-photon Dicke models in the regime ωq 	 ω, in a such
a way that the polaritonic branches have the same atomic and
photonic components in both cases. The results (computed for
β > 0) are summarized in Table I.

Notice that the variance of X̂a remains constant near the
transition in the two-photon case, but diverges in the one-
photon case, which is a marked difference. However, the di-
verging terms in the one-photon case are high-order terms; near
the transition, 
X̂a ∼ 1 + O( 1√

N
| g−gt

gt
|−1/4). Thus, as long as

one does not get too close to the transition, the behavior of X̂a

remains identical in the one-photon and the two-photon cases.
When g−gt

gt
= O(N−2), though, the results begin to differ.

TABLE I. Critical exponents of the excitation energy Eexc and
of the quadratures X̂a = a + â† and X̂d = d + d̂†. The one-photon
interaction term is taken to be g

N
(â + â†)(Ĵ+ + Ĵ−). For the two-

photon case, we took β > 0.

Two-photon case One-photon case

Eexc
1
2

1
2


X̂d − 1
4 − 1

4


X̂a 0 − 1
4

On the other hand, the critical exponents are the same in
both cases for Eexc and X̂d . Nevertheless, for these quantities,
some of the higher-order terms we have neglected in our
analysis may diverge faster near the transition than the terms
we took into account, leading to the breakdown of our analysis
when g comes close enough to the critical value gt . More
precisely, the scaling parameter for 
X̂d is no longer valid
when g−gt

gt
becomes comparable with 1

N
.

IV. SUMMARY AND OUTLOOK

In conclusion, we have shown the presence of a super-
radiant phase transition of the two-photon Dicke model in
the ultrastrong-coupling regime. We have characterized the
behavior of the qubits and bosonic field in both phases, and
we have studied some of their critical properties near the
transition. With respect to the one-photon case, fundamental
differences arise in the behavior of the bosonic field â, which
does not acquire macroscopic occupation in the second phase,
and whose fluctuations do not diverge at the critical point, at
least at the order considered. The pseudospin

−→
J , on the other

hand, does exhibit diverging fluctuations at the transition that
could lead to observable phenomena which would mark the
transition in experimentally accessible situations.

Our work paves the way to the study of phase transitions
induced by two-photon interactions, in quantum many-body
systems. As an extension of this work, it would be interesting to
analyze the spin-squeezing properties of the ground state of the
system for a finite number of qubits. Moreover, quantum-phase
transitions and the ground-state properties could be analyzed
also modifying the symmetries of the model [41], considering
anisotropic couplings or including multiple bosonic fields.
Finally, it would be interesting to study dynamical features
of the present model. In the driven-dissipative case, dynamical
properties of two-photon processes have been analyzed in the
context of two-photon lasing [62,63]. In the unitary case,
it would be interesting to study the emergence of quantum
chaos [5,64,65] in the two-photon Dicke model.
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APPENDIX A: LINEAR TERM EXPANSION
OF THE HAMILTONIAN

Let us consider an extension of our model, obtained by
adding a linear term in â:

Ĥ = ωâ†â + ωqĴz + g2

N
((Ĵ+) + (Ĵ−))(â2 + â†2)

+ g1

N
((Ĵ+) + (Ĵ−))(â + â†). (A1)
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This gives, in the mean-field approximation,

Ĥ = ωâ†â + g
β

2 (â2 + â†2) + g
β

1 (â + â†) + ωq |β|2 − ωqN

2
,

(A2a)

g
β

1 = g1

N
(β + β∗)

√
N − |β|2, (A2b)

g
β

2 = g2

N
(β + β∗)

√
N − |β|2. (A2c)

We can shift the â operator: â = ĉ − α. A proper choice of

α, namely, α = g
β

1

ω+2g
β

2

, allows one to suppress the linear term

in ĉ. This gives us

Ĥ = ωĉ†ĉ + g
β

2 (ĉ2 + ĉ†2) + ωq |β|2 − ωqN

2
−

(
g

β

1

)2

ω + 2g
β

2

,

(A3)

which is just Hamiltonian (5) with an additional constant
term. Hence, â in the ground state is in a displaced squeezed

state, with squeezing factor rc = 1
2 arctanh( 2g

β

2
ω

) and 〈â〉GS =
− g

β

1

ω+2g
β

2

. There is also a correction on the values of β and

EG. Importantly, the presence of the term (gβ

1 )2

ω+2g
β

2

in Eq. (A3),

which is not invariant under the transformation β → −β, lifts
the degeneracy between β > 0 and β < 0.

APPENDIX B: DESCRIPTION OF THE METHOD
USED TO GO BEYOND MEAN FIELD

We are now going to detail the method used in Refs. [56,57].
We begin with (10), and we assume that we have a two-
dimensional pseudospin operator σ̂z. Ĥ0 is then a block-
diagonal operator with respect to the σ̂z eigenbasis, and Ĥc

is block antidiagonal with respect to this eigenbasis (in the
following, we will simply talk about block-diagonal and block-
antidiagonal operators, and about pseudospin eigenstates and
eigenspaces: the reference to σ̂z is implicit). We apply the
unitary transformation Û = eŜ to Ĥ , which yields

Ĥ ′ = e−Ŝ Ĥ eŜ =
∞∑

k=0

1

k!
[Ĥ ,Ŝ](k), (B1)

with [Ĥ ,Ŝ](k) = [[Ĥ ,Ŝ](k−1),Ŝ] and [Ĥ ,Ŝ](0) = Ĥ . We impose
Ŝ to be block antidiagonal. If we split Ĥ ′ into its block-diagonal
Ĥ ′

d and block-antidiagonal Ĥ ′
a parts, we get

Ĥ ′
d =

∞∑
k=0

1

2k!
[Ĥ0,Ŝ](2k) +

∞∑
k=0

1

2k + 1!
[εĤc,Ŝ](2k+1),

(B2a)

Ĥ ′
a =

∞∑
k=0

1

2k + 1!
[Ĥ0,S](2k+1) +

∞∑
k=0

1

2k!
[εĤc,Ŝ](2k).

(B2b)

These equations stem from the following relations: consider
D1 and D2 two arbitrary block-diagonal operators, and O1

and O2 two arbitrary block-antidiagonal operators. Then,

[D1,D2] and [O1,O2] are block diagonal and [O1,D1] is block
antidiagonal.

At this point, the idea is to expand Ŝ with respect to ε:
Ŝ = εŜ1 + ε2Ŝ2 + · · · , with Ŝi block antidiagonal for all i. By
properly choosing the Ŝi for i from 1 to p with p arbitrary, it
is possible to cancel Ĥ ′

a up to order εp, thus decoupling the
pseudospin eigenspaces up to this order.

Our case, however, is slightly different, because we have
an infinite number of eigenstates instead of only two. When
SU(1,1) is presented in terms of quadratic combinations of
creation-annihilation operators the relevant representations are
those with Bargmann parameters q = 1

4 and q = 3
4 . The first

one corresponds to an even number of b̂ excitations, while the
second one is associated with an odd number [66]. They are not
connected by any of the operators of the algebra. Since we will
focus on the ground state, we concentrate on the q = 1

4 case.
Then, we have an infinity of eigenstates |n〉K , with K̂0|n〉K =
(n + 1

4 )|n〉K . This means that we have to slightly modify the
method above if we want to apply it to bigger Hilbert spaces.

For this, let us consider the operators diagonal in the |n〉K
basis, which can be written as

∑∞
n=0 α0

n|n〉K〈n|K with arbitrary
α0

n. Let us call the ensemble of these operators M(0); K̂0, for
instance, belongs to this ensemble. Then, let us call M(1) the
ensemble of all operators of the form

∑∞
n=0 α1

n|n〉K〈n + 1|K +∑∞
n=1 β1

n |n〉K〈n − 1|K , with arbitrary coefficients; K̂+ + K̂−
is an element of M(1). M(2) contains the operators of
the form

∑∞
n=0 α2

n|n〉K〈n + 2|K + ∑∞
n=2 β2

n |n〉K〈n − 2|K +∑∞
n=0 γ 2

n |n〉K〈n|K ; and in a general way, we define the
ensemble M(j ) that contains operators that can be written as

F̂ (j ) + F̂ (j − 2) + F̂ (j − 4) + · · · =
∑

p�j/2

F̂ (j − 2p),

(B3a)

F̂ (i) =
∞∑

n=0

ρi
n|n〉K〈n + i|K +

∞∑
n=i

χ i
n|n〉K〈n − i|K. (B3b)

Let us note here that there is a redundancy in this definition:
an element of M(j ) also belongs to M(j+2), for all j . We will
use the following property: for all Â belonging to M(i) and B̂

belonging to M(j ), Ĉ = [Â,B̂] belongs to M(i+j ), which we
denote symbolically by

[M(i),M(j )]op ⊆ M(i+j ). (B4)

The idea in the following will be to isolate the elements of
the various M(i) and to cancel those that couple the eigenstates
of K̂0 to a certain order.

APPENDIX C: STUDY OF THE FIRST PHASE

As indicated in the main text, we perform the Holstein-
Primakoff transformation, as well as the transformation
(12)–(14), and we consider the case β = 0: b̂ = β + d̂ = d̂ .
This gives us for the Hamiltonian:

Ĥ = −1

2
ω − ωqN

2
+ 2ωK̂0 + ωqd̂

†d̂

+ 2g√
N

(K̂+ + K̂−)(d̂ + d̂†). (C1)
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With a redefinition of parameters ω1 = ωqN

2ω
= O(1) and ω2 =

g

ω
= O(1), we get

Ĥ1 =
(
Ĥ + 1

2ω + ωqN

2

)
2ω

= K̂0 + ω1

N
d̂†d̂ + ω2√

N
(d̂ + d̂†)(K̂+ + K̂−), (C2)

which is explicitly of the form (10); Ĥ0 =K̂0+ ω1
N

d̂†d̂

does not couple the K̂0 eigenstates, but Ĥc = ω2(d̂ +
d̂†)(K̂+ + K̂−) does. In our case, the small parameter is 1√

N
.

The generalized method goes as follows. All the operators
implied in our calculations can be (not uniquely) decomposed
into elements belonging to the different M(i): Â = ∑nmax

i=0 Â(i),
where nmax can take an arbitrary high value. We then propose
the following decompositions:

Ĥ1 = Ĥ
(0)
1 + Ĥ

(1)
1 , (C3a)

Ĥ
(0)
1 = K̂0 + ω1

N
d̂†d̂, (C3b)

Ĥ
(1)
1 = ω2√

N
(d̂ + d̂†)(K̂+ + K̂−) = 1√

N
V̂ (1), (C3c)

Ŝ = 1√
N

P̂ + 1

N
Q̂ + 1

N
R̂ + O

(
1

N
√

N

)
, (C4)

with P̂ and Q̂ that belong to M(1) and R̂ that belongs to
M(2). Using (B4) and (B1), we then obtain the following
decomposition for Ĥ ′

1 = e−Ŝ Ĥ1e
Ŝ :

Ĥ
′(0)
1 = Ĥ

(0)
1 = K̂0 + ω1

N
d̂†d̂, (C5a)

Ĥ
′(1)
1 = 1√

N
V̂ (1)+ 1√

N
[K̂0,P̂ ]+ 1

N
[K̂0,Q̂] + O

(
1

N
√

N

)
,

(C5b)

Ĥ
′(2)
1 = 1

N
[V̂ (1),P̂ ] + 1

2N
[[K̂0,P̂ ],P̂ ] + 1

N
[K̂0,R̂]

+O

(
1

N
√

N

)
, (C5c)

Ĥ
′(3)
1 = O

(
1

N
√

N

)
. (C5d)

Since Ĥ
′(1)
1 couples the eigenvalues of K̂ ′

0, we are going
to cancel it at order 1

N
. For this purpose, we need V̂ (1) +

[K̂0,P̂ ] = 0 and [K̂0,Q̂] = 0. We note that these conditions
can be met by the following choice of operators:

P̂ = −ω2(d̂ + d̂†)(K̂+ − K̂−), (C6a)

Q̂ = 0. (C6b)

As for the Ĥ
′(2)
1 term, we find, using the above expressions for

P̂ and Q̂:

Ĥ
′(2)
1 = −4ω2

2

2N
(d̂ + d̂†)2K̂0 + 1

N
[K̂0,R̂] + O

(
1

N
√

N

)
.

(C7)

In general, we should choose R̂ so as to cancel the nondiagonal

terms of this operator. Here, though, − 4ω2
2

2N
(d̂ + d̂†)2K̂0 is

already diagonal; it is thus sufficient to set R̂ = 0. We speculate
that, for higher-order expansions, if Ĥ can be made diagonal
at order ( 1√

N
)i−1, we can make it diagonal at order ( 1√

N
)i by

adding terms of the form ( 1√
N

)i T̂p to the expansion of Ŝ, with

T̂p that belongs to M(p) and p � i. It could be interesting
in a future study to consider higher-order terms in a more
systematic way to confirm or to invalidate this conjecture.
In the end, all those manipulations yield

Ĥ ′
1 = e−Ŝ Ĥ1e

Ŝ = K̂0 + ω1

N
d̂†d̂ − 2ω2

2

N
(d̂ + d̂†)2K̂0

+O

(
1

N
√

N

)
. (C8)

This Hamiltonian does commute with K̂0; projection in the K̂0

ground state gives K̂0 → 1
4 [according to the definition (12)].

Restoring the constants in the Hamiltonian yields the operator
described in the main text:

Ĥ = −ωqN

2
+ ωqd̂

†d̂ − g2

Nω
(d̂ + d̂†)2 + O

(
ω

N
√

N

)
.

(C9)

This effective Hamiltonian describes the b̂ fluctuations near
the ground state. Being quadratic in d̂, it can be diagonalized
by using a Bogoliubov transformation of parameter r (1)

s =
1
4 ln(1 − 4g2

Nωωq
) < 0, which corresponds to a squeezed vacuum

state as described in the main text. The state of â is given by
the ground state of K̂0; here it is just the coherent vacuum
state, as in the mean-field scenario. Finally, the ground-
state energy and the d̂ excitation energy are computed: we
obtain

E(1)
exc = ωq

√
1 − 4g2

Nωωq

, (C10a)

E
(1)
G = −ωqN

2
+ E(1)

exc − ωq

2
. (C10b)

APPENDIX D: STUDY OF THE SECOND PHASE

We proceed in a similar fashion, using HP transformation
once more, and setting b̂ = β + d̂; but this time β �= 0. As a
starting point, we use the value of β obtained by our mean-
field analysis. For ease of notation, we define the following
parameters:

α = β√
N

= O(1), (D1a)

χ =
√

1 − β2

N
=

√
1 − α2 = O(1), (D1b)

δ = 1 − β2

N − β2
= O(1). (D1c)
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Expanding the Hamiltonian gives

Ĥ2 =
(

Ĥ + 1

2
ω + ωqN

2
− ωqNα2

)/
2ω

= λ0K̂
′
0 + λ1√

N
(d + d̂†) + λ2√

N
(d + d̂†)(K̂ ′

+ + K̂ ′
−) + λ3√

N
(d + d̂†)K̂ ′

0

+ λ4

N
d̂†d − 2

N
K̂ ′

0V̂1(d̂) + 1

N
(K̂ ′

+ + K̂ ′
−)V̂2(d̂) + O

(
1

N
√

N

)
, (D2)

where we have defined new operators and parameters:

K̂ ′
0 = cosh

(
2r (2)

a

)
K̂0 + 1

2
sinh

(
2r (2)

a

)
(K̂+ + K̂−), (D3a)

K̂ ′
+ + K̂ ′

− = cosh
(
2r (2)

a

)
(K̂+ + K̂−) + 2 sinh

(
2r (2)

a

)
K̂0, (D3b)

r (2)
a = 1

2
arctanh

(
4gαχ

ω
+ gα

ωχN

)
= 1

2
arctanh

(
2gβ

ω
+ gα

ωχN

)
, (D3c)

λ0 = cosh
(
2r (2)

a

) −
(

4gαχ

ω
+ gα

ωχN

)
sinh

(
2r (2)

a

)
, (D4a)

λ1 = ωqNα

2ω
, (D4b)

λ2 = gχδ

ω
cosh

(
2r (2)

a

)
, (D4c)

λ3 = −2 sinh
(
2r (2)

a

)gχδ

ω
, (D4d)

λ4 = ωqN

2ω
, (D4e)

V̂1(d̂) = sinh
(
2r (2)

a

)[− gα

χω
d̂†d̂ − g

ω

(
α

2χ
+ α3

4χ3

)
(d̂ + d̂†)2

]
, (D4f)

V̂2(d̂) = cosh
(
2r (2)

a

)[− gα

χω
d̂†d̂ − g

ω

(
α

2χ
+ α3

4χ3

)
(d̂ + d̂†)2

]
. (D4g)

Let us note that the definition (D3) amounts to a Bogoliubov transformation of parameter r (2)
a for the â field. We seek to decouple

the eigenspaces of K̂ ′
0; for this, we apply a transformation e−Ŝ Ĥ2e

Ŝ with Ŝ = 1√
N

Ŝ1 + 1
N

Ŝ2. Using the procedure described
earlier, we propose the following operators:

Ŝ1 = −λ2

λ0
(d̂ + d̂†)(K̂ ′

+ − K̂ ′
−), (D5a)

Ŝ2 = (K̂ ′
+ − K̂ ′

−)

(
λ3λ2

λ2
0

(d̂ + d̂†)2 − V̂2(d̂)

λ0

)
. (D5b)

This gives us a Hamiltonian that commutes with K̂ ′
0:

e−Ŝ Ĥ2e
Ŝ = λ0K̂

′
0 + λ3√

N
(d̂ + d̂†)K̂ ′

0 + λ1√
N

(d̂ + d̂†) + λ4

N
d̂†d̂ − 2

N
K̂ ′

0V̂1(d̂) − 4
λ2

2

2Nλ0
(d̂ + d̂†)2K̂ ′

0 + O

(
1

N
√

N

)
. (D6)

As previously, projection in the ground state of K̂ ′
0 yields an effective Hamiltonian describing the fluctuations of d̂ above

the ground state. Note that in contrast to the first phase, e−Ŝ Ĥ2e
Ŝ contains a term linear in d̂ + d̂†. e−Ŝ Ĥ2e

Ŝ can be seen as an
effective potential for the d̂ (or b̂) field; adding this linear term shifts its minimum, which amounts to changing the value of β.
In our case, the term adds a correction of order 1√

N
to the value of β (keeping in mind that the mean-field value of β is of order√

N ). We can thus absorb the linear term by adding this correction to β; once it is done, e−Ŝ Ĥ2e
Ŝ becomes quadratic in d̂ and

can be diagonalized by a Bogoliubov transformation of parameter r (2)
s , which gives squeezing properties for b̂. Going back to the
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−→
J operators, we have

Ĵx = β
√

N − β2 + N − 2β2

2
√

N − β2
X̂d + (d2term), (D7a)

Ĵy = −
√

N − β2

2
P̂d + (d2term), (D7b)

Ĵz =
(

β2 − N

2

)
+ βX̂d + (d2term), (D7c)

with X̂d and P̂d the quadratures of the d̂ field. Using the squeezing properties of d̂ in both phases, we retrieve the properties
described in the main text and in Fig. 4. As for the state of â, it corresponds to the ground state of K̂ ′

0; according to the
definition (D3), this is just a squeezed vacuum state with squeezing parameter r (2)

a . This result is identical to what we obtained

in the mean-field scenario (6), up to a small correction in the definition of r (2)
a : r (2)

a − r (MF)
a = 1

2 arctanh[
2g

(MF)
β

ω
+ O( 1

N
)] −

1
2 arctanh(

2g
(MF )
β

ω
) = O( 1

N
) [while r (MF)

a is of order O(1)].
Finally, the computation of the d̂ excitation energy gives

E(2)
exc = ωq

√(
1 + α2

1 − 2α2

)[
1 + α2

1 − 2α2

(
3 + α2

1 − α2

)
− 1 − 2α2

1 − α2 − (16g2/ω2)α2(1 − α2)2

]
. (D8)

For the sake of brevity, we do not show here the expression of the ground-state energy E
(2)
G for the second phase. The plot in

Fig. 5 is obtained by combining E(1)
exc and E(2)

exc.
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