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Deep-subwavelength lithography via graphene plasmons
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We propose a scheme to overcome diffraction limit in optical lithography via graphene-plasmon (GP)
interference. Taking advantage of the novel properties of GPs—tunability, low loss, and extremely large wave
number—we can realize lithography with a resolution up to 1/100 wavelength in arbitrary one- and even simple
two-dimensional patterns. An advantage of this method is that it works in the linear optics regime and does not
require either multiphoton absorption materials or strong intensity lasers.
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I. INTRODUCTION

According to the Rayleigh criterion, it is a challenge
to improve the resolution of imaging and lithography to
be smaller than half wavelength, which is called the Abbe
diffraction limit [1]. How to overcome this limit has been
an attractive topic for more than a century and has included
subwavelength interferometric lithography, which is very im-
portant in nanofabrication areas, such as in the semiconductor
industry that strives for a miniaturization of their devices.
In the past decades, several methods have been developed
to improve the spatial resolution beyond the diffraction
limit [2–17].

Among these approaches, quantum lithography based on
quantum entanglement requires entangled photon number
states that are experimentally difficult to generate and sustain
[2–5]. To avoid this shortcoming, several classical approaches
were developed. However, in these schemes, multiphoton
absorption materials [7–9], multi-� levels [10,11], or strong
intensity lasers [12–15] are required to generate spatial
distribution of the atomic population dependent on the field
intensity nonlinearly, which is difficult in experiment. As
a result, to shorten the field wavelength is the choice
to realize smaller patterns. Surface plasmons are electro-
magnetic excitations associated with charge density waves
on the surface of a conduction or a semiconduction ob-
ject. The amazing property of the surface plasmons is the
short wavelength, which can be used in lithography, and
a number of related proposals have been presented. These
schemes, however, have weak resolution ability and suffer
from a fixed lithography pattern for determined plasmonic
device [16,17].

Graphene, a single layer of carbon atoms arranged in
a honeycomb lattice, is well known for its unique elec-
tronic, mechanical, and optical properties [18–33]. Especially,
graphene plasmons (GPs) have emerged as a hot topic in
recent years due to their tunability, long life and extreme light
confinement. The Fermi velocity of the doped graphene is
vF = 106 m/s, which leads to a wave number that is about
two orders larger than that in vacuum. Besides, due to Pauli
blocking, doped graphene has low absorption in the midin-
frared region. Additionally, the convenient controllability of
the carrier density near the Dirac point signifies that the GPs
can be manipulated easily, such as by electric voltage and
temperature.

In the present work, we propose a scheme to use monolayer
graphene to achieve deep-subwavelength lithography with
an arbitrary one- or simple two-dimensional pattern. Due to
the tunability of graphene, we can control the Fermi level
conveniently. Consequently, the conductivity and, as a result,
the plasmonic wavelength can be tuned for a determined
frequency. Therefore, we can obtain standing wave patterns
with tunable periods, which can be used to construct the
arbitrary patterns we need. Compared to the previous schemes,
this method works in the linear optics region and does not
require multiphoton absorption materials or strong intensity
lasers.

The paper is organized as follows. In Sec. II, we present
the detail of our model and discuss the theory. In Sec. III, we
present the simulations and discuss the results. In Sec. IV, we
present the concluding remarks.

II. GRAPHENE PLASMONIC DISPERSION RELATION
AND FIELD INTENSITY DISTRIBUTION

Our model is schematically shown in Fig. 1(a). The
monolayer graphene is placed at z = 0 between two dielectric
slabs of permittivities ε1 and ε2, as shown in the figure. The
photoresist material is placed near the bottom slab, the effective
permittivity ε3 has an absorption coefficient and is dependent
on the population on level |e〉. Throughout the paper, we
set ε3 = 2 + 0.06i. The bottom slab cannot only support the
graphene sheet, but it can also prevent the photoresist from
polluting the graphene. The distance between the graphene
and the photoresist, i.e., the thickness of the bottom dielectric
slab, is d. The Fermi level of the graphene can be controlled
by the gate voltage. Laser beams can illuminate the gratings to
excite GPs. The GPs along different directions can construct
periodic field intensity patterns that play the key role in our
lithography scheme due to their tunable periods. The molecular
structure of the photoresist is shown in Fig. 1(b). Initially, the
molecules are in the ground state |g〉. Then a visible laser beam
with frequency ωl excites the molecules to the excited state
|e〉. Afterwards, GPs with frequency ωp excite the molecules
to an ancillary state |a〉. At the end, a laser with frequency
ωa dissociates the lithography molecules that are in state |a〉,
but not those in other states. The resulting patterns of the
photoresist thus depend on the spatial distribution of molecules
in state |a〉.
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FIG. 1. (a) The diagram of the lithography scheme. The top gate
can control the Fermi level of the monolayer graphene. GPs can
be generated by the dielectric gratings. Dielectric 1 has permittivity
ε1 = 2.0 and dielectric 2 has permittivity ε2 = 2.0. (b) The energy
structure of the photoresist.

In the long-wavelength limit, the in-plane conductivity of
graphene can be described as [21]

σ (ωp) = ie2EF

πh̄2(ωp + iτ−1)

+ e2

4h̄

[
�(h̄ωp − 2EF ) + i

π
ln

∣∣∣∣ h̄ωp − 2EF

h̄ωp + 2EF

∣∣∣∣
]
, (1)

under the random phase approximation (RPA). Here, EF

is the Fermi level, e is the electron charge, and �(x) is
a Heaviside step function, where �(x) = 1 for x � 0 and
�(x) = 0 for x < 0. In the high doping limit, i.e., h̄ωp � 2EF ,
the conductivity has a Drude form given by the first term of the
right-hand side of Eq. (1). τ denotes the momentum relaxation
time due to impurities or phonon-mediated scattering. When
the frequency is below the optical phonon frequency h̄ωop ≈
0.2 eV [23], the phonon-mediated scattering can be neglected.
Then τ can be expressed as τ = μEF /ev2

F . Here, μ is the
mobility of graphene charge carriers, whose values can reach
104–106 cm2/V s [20]. In this paper, we set the mobility μ =
4×104 cm2/V s at EF = 0.24 eV and μ = 0.64×104 cm2/V s
at EF = 0.6 eV.

The tunability of graphene results from the controllability
of its Fermi level. Near the Dirac point, the magnitude of Fermi
level is proportional to the square root of the carrier density n;
i.e., EF = h̄vF

√
πn. In addition, the carrier density depends

on the voltage of the top gate as VGD = ne/Cg + EF /e [24].
Here, VGD denotes the voltage difference between the top gate
and the drain; Cg refers to the charge capability of the system,
which depends on the structure size and the properties of the
top dielectric. The value of Cg can reach tens of thousandths
F/m2, for example, by using ionic gel as the top dielectric,
which can efficiently reduce the operation voltage. In Fig. 2,
we plot the Fermi level as a function of VGD . Here, we choose
Cg to be 0.025F/m2 [25].

Given the boundary conditions shown in Fig. 1, the
plasmonic wave number kgp has the following dispersion
relation (see the Appendix):

1 − α
p

21α
p

23e
2iβ2d = 0. (2)

FIG. 2. The Fermi level as well as the plasmonic wave number as
a function of the voltage VGD . Here, the vacuum wavelength of the
plasmon is set to be λ0 = 8 μm and the thickness d of the bottom
dielectric slab is set to be 10 nm.

If we have assumed ε2 = ε3 and neglect the loss, the plasmonic
wave number can be approximated by the relation [18]

Re[kgp(ωp)] ≈ (ε1 + ε2)

4α

ωp

ωF

k0, (3)

where α = e2/4πh̄ε0c ≈ 1/137 is the fine structure constant
and ωF = EF /h̄. In Fig. 2 we plot the plasmonic wave number
as a function of VGD , which, due to the electric field, decays
exponentially away from the graphene layer and the dielectric
2 consequently limits the highest-resolution ability of the
structure. This means that optimizing d is necessary.

For a graphene plasmon along the x direction, the electric
field near the graphene is proportional to (kgpez + β3ex)eikgpx .
Due to the huge value of the plasmonic wave number, the
electric fields along the x and z directions have almost the same
amplitude but a phase difference π/2. Two counterpropagation
GPs along the x have a z component proportional to eikgpxez +
e−ikgpxez = 2 cos(kgpx)ez and an x component proportional
to eikgpxex − e−ikgpxex = 2 sin(kgpx)ex . As a consequence,
the field pattern in the photoresist constructed by the two
counterpropagating plasmons along the x direction has a
constant intensity. However, due to the interference between
incident wave and the plasmons, the total field always shows
periodic pattern rather than a constant. For instance, as shown
in Fig. 3(a), we assume the gratings are located parallel
to each other and homogeneous along the y direction. A
TM-polarized wave incident to the gratings has an incident
angle φ0. The electric field of the plane wave can be expressed
as (cos φex + sin φez)eik3 sin φxe−iωpt , with amplitude set to
be 1. Here, φ is the refractive angle of the incident plane
wave in the photoresist material. The plasmonic electric field
distribution is E0[cos(kgpx + θ )ex + sin(kgpx + θ )ez]e−iωpt .
Here, E0 is the amplitude multiplied by the relative phase
difference between the the incident wave and the plasmonic
pattern. θ denotes the position of the pattern and always is
dependent on the arrival time difference of the plane wave to
the two gratings. If we set φ = π/4, the total field intensity
can be obtained as

|E0 cos(kgpx + θ ) + cos φeik3 sin φx |2

+ |E0 sin(kgpx + θ ) + sin φeik3 sin φx |2 = 1 + |E0|2

+ 2Re(E0e
i
√

2k3x/2) cos(kgpx + θ − π/4). (4)

053850-2



DEEP-SUBWAVELENGTH LITHOGRAPHY VIA GRAPHENE . . . PHYSICAL REVIEW A 95, 053850 (2017)

φ  
(a) 

b

a

z

x

FIG. 3. (a) Two perpendicular located dielectric gratings couple
two TM-polarized laser beams to the GPs. The period of the gratings
is a = 720 nm, the width of the silicon rectangular is b = 36 nm,
and the relative permittivity of the silicon is 12. Additionally, the
distance between the gratings is 6 μm and the height of the silicon
rectangle is 150 nm. The field intensity distribution in the photoresist
is VGD = 1.73 V in (b) and VGD = 0.56 V in (c).

As shown in Fig. 2, the plasmonic wave number is tens of times
larger than the vacuum wave number; i.e., kgp � √

2k3/2.
The above expression describes a standing wave pattern with
an effective period of 2π/kgp and a background 1 + |E0|2.
And, more remarkably, the phase shift θ − π/4 in the above
equation is dependent on φ0. If we change the angle φ0, we
can change the phase shift in a large range. The means that we
can obtain sinusoidal as well as cosine patterns, which plays
an indispensable role in the arbitrary pattern lithography.

Due to the loss of the graphene and the optical absorption of
the photoresist, the field decays strongly along the graphene.
In order to realize a periodic pattern with low background, the
wave vector matching between the incident field and the GPs
is required [28,29], which means

k1 sin φ0 + m� ≈ m� =
(
εeff

1 + ε2
)

4α

ωp

ωF

k0. (5)

Here, m = 1,2, . . . are integers, and � = 2π/a (a is the period
of the grating) is the reciprocal vector of the grating. εeff

1 is the
average permittivity of the grating which is determined by
the duty as well as the grating material’s permittivity. The
limited number of the grating periods and the loss of the
graphene relax the wave vector matching condition. In Figs. 3
and 4, we give some simulation results of the field intensity at
z = −15 nm in the photoresist by COMSOL Multiphysics.
In the simulation, the monolayer graphene is modeled as
conductor with thickness 0.5 nm [29]. We can see that near
the origin, the field distribution is approximately cosinoidal.
Meanwhile, the period of the pattern can be manipulated by
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FIG. 4. The field intensity distributions with VGD = 1.19 V and
incident angles (a) 27◦ and (b) 10◦.

controlling the gate voltage. In Fig. 4, we show that different
incident angles induce different pattern positions.

III. LITHOGRAPHY PROCESS AND SIMULATIONS

In the previous section, we showed that periodic field pat-
terns with periods much smaller than the vacuum wavelength
can be obtained, which means that we can obtain a deep-
subwavelength lithography pattern. Additionally, arbitrary
one- and simple two-dimensional lithography patterns can be
realized in principle by multiple exposure methods discussed
in Refs. [8,34]. In this section, we introduce the details of the
lithography scheme and present some simulations.

The mathematic process of obtaining arbitrary patterns lies
in that the target pattern can be expanded to a series Fourier
components sin(kx) and cos(kx). If the Fourier coefficients
of sin(kx) and cos(kx) are A and B and we can realize
regular field intensity patterns cos(kx + θ ) and cos(kx − θ ),
the coefficient of our patterns are (A + B)/2 cos(θ ) and
(A − B)/2 sin(θ ). We can control the incident angle to opti-
mize the positions of the patterns to minimize the lithography
noise and deposition.

In a limited-size arbitrary pattern lithography, we just need
field patterns with several separated periods. If the size of
lithography area is b (or we just etch this area in each time),
the periods of the patterns are b/2n (n = 1,2 . . . are integers).
As a consequence, if we set b = (εeff

1 + ε2)a/(ε1 + ε2), the
wave vector matching condition [Eq. (5)] and the dispersion
relation [Eq. (3)] always can be satisfied even if we change the
plasmonic wavelength.

We notice that the minimum effective wave number of
the GPs pattern is limited by the maximum Fermi level we
can obtain. For example, with the parameters in Fig. 2, the
minimum wave number is still rather large, i.e., about 30k0.
As we know, for a certain lithography pattern we want, the
Fourier expansion contains not only high-spatial-frequency
components but also low-spatial-frequency components. As a
consequence, we still need to generate field intensity pattern
with relatively low spatial frequency. Fortunately, the first step
in Fig. 1(b) can play this role. Since ωl lies in the visible region,
the standing wave pattern due to two counterpropagation laser
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FIG. 5. The simulation of one-dimensional pattern.

beam with frequency ωl can excite the molecule to excited
state |e〉 with spatial frequency from 0k0 to about 27k0 when
we set the visible laser wavelength to be 600 nm. If we reduce
the plasmonic frequency, all the Fourier components can be
obtained.

For the lithography of the high-spatial-frequency com-
ponents shown in Fig. 1, first, we use uniform laser with
frequency ωl to excite all the molecules to state |e〉. Then
we construct a GP pattern to pump the molecules to state |a〉.
As we know, plasmons decay exponentially from the graphene
layer. At the beginning, we control the top gate voltage to make
the graphene sheet on a small Fermi level, which means a large
plasmonic wave number. Afterwards, we enlarge the Fermi
level to realize a smaller plasmonic wave number. For the
lithography of the low-spatial-frequency components, after the
standing wave pattern with frequency ωl excites the molecules,
a uniform laser with frequency ωp pumps all the molecules in
state |e〉 to state |a〉. We carry out this process step by step to
complete the whole lithography process.

In Fig. 5, we present a one-dimensional example. The
simulation shows that a high-quality lithography pattern with
deep-subwavelength resolution can be obtained. Due to the
dissipation of the graphene and the photoresist, the field
patterns are always not perfectly regular, which induces some
error in the lithography result. However, this error can be
neglected if we just etch a small region one time. We can follow
the idea in Ref. [12] to control the lithography area by using the
photoetching laser. After one time of the lithography, we move
the laser spot to another area. At the same time, we control the
incident angle and even the spatial field intensity distribution
of the incident wave to construct a standing field pattern in the
new area. The lithography of the new area can be realized by the
same processes as before. Finally, large area lithography can
be achieved by scanning the whole area by the photoetching
laser. In addition, due to the fact that the background 1 + |E0|2
appears in Eq. (4), there is an additional penalty deposition
Q which depends on the Fourier coefficients [8,34]. In the
example of Fig. 4, Q ≈ 2h, where h is the height of the pattern
and is set to be 1 in the figure. Because the plamonic intensity
decays exponentially from the graphene, the field distribution
far away to the graphene has larger background, as shown in
Eq. (4). This means that the total deposition will be larger if we
consider real lithography process with thick photoresist. For a
two-dimensional pattern, the number of Fourier components
is squared. As a consequence, the deposition will be too large.
Meanwhile, the noise resulting from the loss of the graphene

and photoresist will be also too large. However, for simple
two-dimensional patterns, such as gridding structure [35], this
proposal may be valid.

This proposal also can be utilized in imaging, where large
background deposition is not a serious problem. Compared to
our previous work on imaging [18], this scheme may be more
practical, because it is more convenient to manipulate the gate
voltage than control the angle of two GPs.

In our model, high-quality graphene with high mobil-
ity is required, which can make the standing plasmonic
pattern more regular and also increase the size of a time
lithography area. As the fabrication process in graphene
improves, the mobility of graphene can be made higher and
higher. As an example, shown in [36], the mobility can
reach 4×104 cm2/V s at a carrier density 4.5×1012 cm−2

at room temperature, which corresponds to a Fermi level
of 0.24 eV. This means ωp/τ = Re(kgp)/Im(kgp) ≈ 240. As
a consequence, the graphene plasmon can propagate 40
plasmonic wavelengths. At low temperature, the mobility
even can be several times higher. These experimental results
agree with the theoretical predications based on acoustic
phonon in [37], where the mobility and carrier are related
as μ ∝ n−1. In later works, ultrahigh-mobility and large-scale
graphene from chemical vapor deposition are realized [38,39],
and the mobility is comparable with exfoliated graphene.
These advancements in graphene fabrication make our scheme
realistic. Additionally, it is also important to design the
dielectric gratings appropriately to increase the efficiency
of coupling incident waves to GPs, which can decrease the
background deposition.

Comparing with the GPs, the surface plasmons based on
metal film have symmetric and antisymmetric eigenmodes.
The symmetric mode has a small wave number associated
with low-resolution ability. The antisymmetric mode has a
relatively large wave number. However, this mode always is
accompanied by large dissipation [40], which means a small
ratio between the real part and the imaginary part of the
plasmonic wave vector is harmful to be used in arbitrary pattern
lithography or imaging.

IV. CONCLUSION

In the present paper, we propose a scheme to realize deep-
subwavelength lithography via monolayer graphene, which
may be useful in nanodevice fabrication. Taking advantage
of the ultrahigh field confinement and tunability of GPs,
we can realize optical lithography with tens of nanometers
resolution even through the real plasmonic energy frequency is
in the midinfrared region. Compared to the previous schemes,
where strong lasers are required or fixed lithography pattern
for determined plasmonic device, this scheme works in the
linear optics region and we can obtain arbitrary structure by
manipulating the voltage of the top gate.
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APPENDIX: DERIVATIONS OF EQ. (2)

As shown in Fig. 1, we denote the interface between
dielectrics 1 and 2 as interface A and the interface between
dielectrics 2 and 3 as interface B. Here, we solve the dispersion
relation of TM-polarized surface plasmonic modes supported
by the structure.

Due to the continuity of the electric field on the interfaces,
we assume the electric field to be parallel to interface A as EA

and the electric field component to be parallel to interface B as
EB . The components up- and down-prorogation in dielectric
2 are Eu and Ed , respectively. They have the relations

−Eu + Ed = EA; (A1)

−Eue
−iβ2d + Ede

iβ2d = EB. (A2)

Here ki = εik0 (i = 1,2,3) are the wave numbers in dielectric
i, where k0 = ωp/c and c is the vacuum light velocity.
βi =

√
k2
i − k2

gp are the wave-number components perpen-
dicular to the graphene. By using the Maxwell equa-
tions, it is easily to obtain the magnetic fields on
the interface. The magnetic field above interface A is
HA1 = EAk1

√
ε1

√
ε0/

√
μ0β1, while the magnetic field below

interface A is HA2 = (Eu + Ed )k2
√

ε2
√

ε0/
√

μ0β0. Here,
ε0 and μ0 are the vacuum permittivity and permeability,
respectively. The magnetic fields have the relation

HA1 − HA2 = σEA, (A3)

which means

(Eu + Ed )k2
√

ε2/β2 − EAk1
√

ε1/β1 = σEA. (A4)

Similarly, the magnetic fields on interface B have the relation

(Eue
−iβ2d + Ede

iβ2d )k2
√

ε2/β2 = EBk3
√

ε3/β3. (A5)

Combining Eqs. (A1)–(A5), we can obtain Eq. (2). Here,

α
p

21 = ε1β2 − ε2β1 + σβ1β2/
√

μ0k0

ε1β2 + ε2β1 + σβ1β2/
√

μ0k0
(A6)

and

α
p

23 = ε3β2 − ε2β3

ε3β2 + ε2β3
. (A7)

As shown in Ref. [21], the physical meaning of α
p

21 is the
reflection coefficient of a TM-polarized plane wave incident
from dielectric 2 to dielectric 1 with a monolayer graphene
between them, while α

p

23 is the reflection coefficient of a TM-
polarized plane wave incident from dielectric 2 to dielectric 3.
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