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Resonant-state expansion of light propagation in nonuniform waveguides
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A rigorous approach for precise and efficient calculation of light propagation along nonuniform waveguides
is presented. Resonant states of a uniform waveguide, which satisfy outgoing-wave boundary conditions, form
a natural basis for expansion of the local electromagnetic field. Using such an expansion at fixed frequency,
we convert the wave equation for light propagation in a nonuniform waveguide into an ordinary second-order
matrix differential equation for the expansion coefficients depending on the coordinate along the waveguide. We
illustrate the method on several examples of nonuniform planar waveguides and evaluate its efficiency compared
to the aperiodic Fourier modal method and the finite element method, showing improvements of one to four
orders of magnitude. A similar improvement can be expected also for applications in other fields of physics
showing wave phenomena, such as acoustics and quantum mechanics.
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I. INTRODUCTION

Uniform optical waveguides (WGs), such as a dielectric
slab in vacuum, are translationally invariant systems that
support bound states of light called WG modes [1]. These
modes present a small, though significant, subgroup of a
larger class of resonant states (RSs) of an optical system,
among which there are also unbound solutions, such as
Fabry-Perot (FP) and anti-WG modes [2]. Formally, RSs
are the eigenmodes of an open optical system, which satisfy
either incoming or outgoing wave boundary conditions (BCs),
and describe, with mathematical rigor, optical resonances of
different linewidths, which exist in the system. WG modes
correspond to infinitely narrow resonances, representing stable
propagating waves.

Nonuniform WGs have a varying cross section along the
main propagation direction. An electromagnetic (EM) wave,
initially excited in a WG mode of a uniform region, is scattered
on WG inhomogeneities and can thus be transferred into other
WG modes, see an example in Fig. 1. However, some part of the
EM energy leaks out of the system, an effect that is often treated
using a continuum of radiation modes [1]. This treatment does
not make use of the natural unbound RSs, and is numerically
costly, as an artificial discretization of the continuum has to be
introduced. Using instead the contributions to the EM field of
all RSs, including the unbound ones, the role of the radiation
continuum can be minimized or even fully eliminated. This
is achieved by modifying the contour of integration over
the continuum in the complex wave number plane, as was
suggested, e.g., in Refs. [3,4], or by making a transformation
from the frequency to the wave number plane [2].

Several numerical methods of computational electrody-
namics are presently employed for modeling light propagation
in nonuniform WGs. One popular approach is the aperiodic
Fourier modal method (a-FMM) [5–8], a generalization of the
standard FMM [9–11], which allows treating an open WG by
introducing an artificial periodicity and a perfectly matched
layer (PML) [6,12]. Other approaches include the finite

*LobanovS@cardiff.ac.uk
†egor.muljarov@astro.cf.ac.uk

difference in time domain method [13,14] or the finite element
method [15], both using a PML to mimic the outgoing wave
BCs. Furthermore, the multimode moment method [16], the
mode-matching technique [17], and the eigenmode expansion
method [18] use the eigenmodes of homogeneous WG regions
explicitly, expanding the EM field in each uniform region into
its own WG and radiation modes and then matching the field
at inhomogeneities. Typically such expansions are limited to
only WG modes [19,20] neglecting the radiation continuum,
which simplifies the calculation but results in systematic errors,
which are hard to control.

In this paper, we present the waveguide resonant-state
expansion (WG-RSE), a general method, based on the concept
of RSs, for calculating light propagation in WGs with varying
cross sections. Similar to some of the methods mentioned
above, we expand the EM field into a complete set of
eigenmodes of a homogeneous WG. However, we introduce
two major advances: (i) we minimize the contribution of the
radiation continuum by replacing it with the discrete unbound
RSs, and (ii) we expand the field in all regions of the WG
into the same basis RSs, in this way automatically fulfilling
the mode-matching conditions, which also enables treating
waveguides with continuous inhomogeneities. Both features
are unique to our approach and make it orders of magnitude
more efficient than other available methods.

II. FORMULATION OF WG-RSE

The formalism of RSs has been recently applied to a
uniform planar WG, and all types of RSs, including WG,
anti-WG, and FP modes, were calculated for an infinitely
extended dielectric slab surrounded by vacuum [2]. It has also
been shown that in spite of their exponential growth outside
the WG, unbound RSs naturally discretize the continuum of
radiation modes and are suited for expansion of the EM field
inside the WG.

Based on the concept of RSs, a rigorous approach in
physics can be formulated [21–23], called the resonant-state
expansion (RSE), enabling accurate calculation of RSs in
photonic systems [24–28]. The RSE calculates RSs of a given
optical system using RSs of a basis system, which is typically
analytically treatable, as a basis for expansion, and maps
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FIG. 1. (a) Sketch of the scattering geometry and the considered
planar dielectric waveguide with a rectangular hole. (b) Electric field
amplitude for excitation with WG mode 1 at h̄ω = 3 eV from the
left, on a linear color scale as given, overlaid with the WG outline.
(c) Relative power transmission Tij , from incoming left WG mode j

to outgoing right WG mode i, as function of the photon energy h̄ω.

Maxwell’s wave equation onto a linear matrix eigenvalue
problem. This approach has been applied to uniform WGs
[2] for the case of a fixed real in-plane propagation wave
vector. For the description of propagation along a waveguide,
we consider here instead RSs for a fixed real frequency, having
in general complex in-plane wave vectors, and use them to
formulate a fixed-frequency RSE for homogeneous parts of
WGs. To treat nonuniform WGs, we expand the EM field into
the basis RSs, with expansion coefficients varying along the
WG. The propagation along the WG is then simply expressed
by an ordinary second-order matrix differential equation for
the expansion coefficients, which is the main result of the
WG-RSE.

Let us now develop the general formalism of the WG-RSE,
using as an example a nonuniform planar WG in vacuum,
translationally invariant in the y direction and having a varying
cross section in the z direction, as sketched in Fig. 1(a). The
light propagation in this system is described by Maxwell’s
equations, which are reduced to a two-dimensional (2D) scalar
wave equation(

∂2

∂x2
+ ∂2

∂z2
+ ω2ε(x,z)

)
E(x,z) = 0 (1)

in the case of a TE-polarized electric field of the form E(r,t) =
ŷe−iωtE(x,z), oscillating with a fixed frequency ω > 0, where

ε(x,z) is the permittivity of the WG, ŷ is the unit vector along
the y axis, and the speed of light in vacuum c = 1 is used.

To solve Eq. (1) we introduce a basis waveguide (BWG),
which is defined as an infinitely extended homogeneous
dielectric slab in vacuum, having a constant permittivity ε

and a thickness 2a, which is including all variations of the
permittivity ε(x,z) along the nonuniform WG. The solution
of Eq. (1) outside the BWG is known to be a superposition
of plane waves exp(ipz ± ikx) with real wave numbers p,
and k =

√
ω2 − p2 being positive real for |p| < ω (outgo-

ing propagating waves) and positive imaginary for |p| > ω

(evanescent waves). This allows us, using Maxwell’s BCs, to
reduce the problem Eq. (1) to the BWG region |x| � a only,
supplemented by the two BCs(

i
d

dx
±

√
ω2 − p2

)
Ẽ(x,p) = 0 at x = ±a (2)

for the Fourier transform (FT) Ẽ(x,p) of the field E(x,z) with
the respect to z. Equation (1) is then Fourier transformed in
the same manner, yielding(

d2

dx2
+ ε ω2 − p2

)
Ẽ(x,p) = −ω2Ṽ (x,p) ∗ Ẽ(x,p), (3)

where Ṽ (x,p) is the FT of V (x,z) = ε(x,z) − ε, the perturba-
tion of the permittivity inside the BWG region, and ∗ denotes
the convolution over p. We solve Eqs. (2) and (3) using the
Green’s function (GF) G of the BWG for |x| � a, satisfying
the equation(

d2

dx2
+ ε ω2 − ξ

)
G(x,x ′; ξ ) = δ(x − x ′) (4)

and the BCs Eq. (2) at x = ±a, where we have defined ξ = p2.
This yields the integral equation

Ẽ(x,p) = −ω2
∫ a

−a

dx ′G(x,x ′; p2)
(
Ṽ (x ′,p) ∗ Ẽ(x ′,p)

)
. (5)

Being considered in the complex ξ plane, G(x,x ′; ξ ) has
simple poles at ξn = ω2 − k2

n, corresponding to RSs of the
BWG, and, owing to the square root in the BCs Eq. (2), a
cut �, going from ξ = ω2 to infinity, and splitting the ξ plane
into two Riemann sheets. The GF has to be single valued and
thus it is defined using only one of the Riemann sheets. This
physical sheet should respect the before-mentioned outgoing
boundary condition that k =

√
ω2 − ξ is positive real or

positive imaginary on the real half axis ξ > 0. This requires
that � does not cross the ξ > 0 half axis, since if � would
cross the half axis at ξc > 0, the right and left limits of k(ξ )
towards ξc would have opposite signs, such that the condition
to be positive real or positive imaginary could not be fulfilled
simultaneously for both limits.

Figure 2 shows a resulting mapping of the complex k plane
onto the complex ξ plane. The cut � is chosen here as a vertical
half axis [red line in Fig. 2(b), corresponding to the red line in
Fig. 2(a)], which divides the k plane into two half planes, one of
them corresponding to the physical sheet. The k plane contains
all possible values kn of RSs of the BWG, which include WG
(ikn < 0), anti-WG (ikn > 0), and FP (Re(kn) �= 0) modes [2].
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FIG. 2. (a) RS wave numbers—poles of the GF of the BWG in
the complex k plane. The red line splits the k plane into physical and
unphysical half planes, according to the cut � in the ξ plane. (b) Poles
on the physical (circles) and unphysical (crosses) Riemann sheet and
the cut (red line) of the GF in the complex ξ plane, calculated for a
photon energy h̄ω of 3 eV (ωa ≈ 3.04).

For the chosen BWG the kn are roots of the secular equation

(qn − kn)e2iqna = (−1)n(qn + kn), (6)

where qn = √
(ε − 1)ω2 + k2

n and n is integer, see Appendix A
for details. Only a subset S of the RSs with kn located on the
physical half plane contributes as poles to the GF G(x,x ′; ξ ).
Using the properties of the GF and applying the residue
theorem we obtain the spectral representation of the GF (see
Appendix B for derivation):

G(x,x ′; ξ ) =
∑∫
n

En(x)En(x ′)
ξn − ξ

≡
∑
n∈S

En(x)En(x ′)
ξn − ξ

+
∫

�

dξ ′ ∑
ν=±

Eν(x; ξ ′)Eν(x ′; ξ ′)
ξ ′ − ξ

, (7)

where

En(x) = 1

2in

√
kn

kna + i
(eiqnx + (−1)ne−iqnx), (8)

E±(x; ξ ) =
√

k

4π [α2 cos(2qa) ∓ (q2 + k2)]
(eiqx ± e−iqx),

(9)

α = ω
√

ε − 1, k =
√

ω2 − ξ, q =
√

ε ω2 − ξ , and the inte-
gration is performed along the cut �, from the branch point
ξ = ω2 to infinity (ξ = ω2 + i∞).

Equation (7) determines a complete set (see Appendix B)
of basis functions inside the BWG, which consists of all the
RSs on the physical sheet and a continuum of cut states. Here,
the cut continuum is the remainder of the radiation continuum
not taken into account by the FP modes on the physical sheet.
Expanding the electric field E(x,z) inside the region |x| � a,

E(x,z) =
∑

n

∫
An(z)En(x), (10)

and substituting it into Eq. (5) along with the spectral
representation Eq. (7), we obtain∑

n

∫ (
Ãn(p) + ω2 1

p2
n − p2

∑
m

∫
Ṽnm(p) ∗ Ãm(p)

)
En(x) = 0,

(11)

where Ṽnm(p) = ∫ a

−a
En(x)Ṽnm(x,p)Em(x)dx, p2

n = ξn, and
Ãn(p) is the FT of the expansion coefficient An(z). To satisfy
Eq. (11), it is sufficient to require that

p2Ãn(p) = p2
nÃn(p) + ω2

∑
m

∫
Ṽnm(p) ∗ Ãm(p). (12)

The inverse FT of this equation yields the main equation of
the WG-RSE method:

− d2

dz2
An(z) = p2

nAn(z) + ω2
∑
m

∫
Vnm(z)Am(z) (13)

in which the matrix elements of the perturbation Vnm(z) are
functions of z only, the coordinate along the nonuniform WG,
and are defined by

Vnm(z) =
∫ a

−a

En(x)[ε(x,z) − ε]Em(x)dx. (14)

Notably, Eq. (13) is expected to be applicable also to WGs with
a two-dimensional cross section, such as fibers, for which the
perturbation in Eq. (14) has to be integrated over the BWG
cross section, and ε and pn referring to a suited BWG, such
as a fiber with circular cross section, which is analytically
treatable.

The formalism of the WG-RSE is applicable in its present
form to WGs with frequency dispersive inhomogeneities.
Indeed, since the light frequency ω is fixed, the perturbation
ε(x,z) − ε of the permittivity in Eq. (14) can be taken
as frequency dependent and complex, as illustrated in the
example in Sec. III C.

III. APPLICATIONS OF THE WG-RSE

The main equation of the WG-RSE, Eq. (13), is an
ordinary second-order matrix differential equation for the
vector of the amplitudes An(z) of the field expansion into
the basis functions, which can be integrated analytically or
numerically. For numerical integration, one can use a highly
accurate finite-difference scheme, such as a fourth-order linear
multistep algorithm [29], recently implemented for solving a
one-dimensional matrix Schrödinger-like equation [30].

The analytic integration of Eq. (13) is possible in homo-
geneous regions of the nonuniform WG, in which Vnm does
not depend on z. In this case An(z) become superpositions of
e±i�zcn, where � and cn are, respectively, the eigenvalues and
eigenvectors of the linear matrix problem∑

m

∫ (
p2

nδnm + ω2Vnm

)
cm = �2cn, (15)

which is the matrix equation of the fixed-frequency RSE
for homogeneous planar WGs. Its convergence is studied in
Appendix D. The expansion coefficients of the eigenvectors in
the propagation follow from Maxwell’s BCs and can be found
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using the scattering-matrix (S-matrix) method, as it is done in
the present work, see Appendix E for details.

For the examples presented in this work, the permittivity
and consequently the functions Vnm(z) have a steplike form,
defining regions of constant cross section. Therefore the fixed-
frequency RSE determines the propagation wave vectors �

and the corresponding eigenvectors cn in each homogeneous
region, while the S matrix solves Eq. (13) over the whole
structure.

Since there is a freedom in choosing the cut �, we defined
it in such a way that its contribution is about minimized.
Considering the analytic form of the cut functions, Eq. (9),
it is clear that their normalization constants have the quickest
exponential decrease if the cut starts from the branch point
perpendicular to the real ξ axis. While the cut path can
be further optimized, e.g., by keeping a distance to FP
modes, which cause large cut amplitudes, in the present
work we choose it simply along the imaginary ξ axis as
shown in Fig. 2(b). As a result, the continuum of radiation
modes is replaced by the FP modes in S, offering a natural
discretization, while the cut contribution is minimized. The
remaining total pole weight of the cut, if treated as a stretched
pole, is C = C+ + C−, where

C± =
∫

�

∣∣∣∣dξ
ka + i

π [α2 cos(2qa) ∓ (q2 + k2)]

∣∣∣∣, (16)

resulting in values of 1.51, 0.48, and 0.69 for energies of 1 eV,
3 eV, and 5 eV, respectively, for the BWG used in this work,
see Sec. III A.

Conversely, when choosing the cut along the real axis,
going to −∞,S contains WG modes only, whereas the cut
weight C [see Eq. (16)] diverges logarithmically. This case
corresponds to using WG and radiation modes only. Then the
expansion Eq. (10) is valid in the entire space, both inside and
outside the BWG, and Eq. (13) can be obtained by substituting
Eq. (10) directly into the wave equation (1) and using the
standard orthonormality of modes given by the Hermitian inner
product. Taking furthermore the limit ε → 1 removes the WG
modes from the expansion Eq. (10), leaving only the harmonic
functions exp(ikx) ± exp(−ikx) of the cut. This corresponds
to the FMM.

A. Waveguide with hole

We now illustrate the WG-RSE on an example of a planar
dielectric WG with a hole of length L = 900 nm and width
W = 130 nm, at a distance D = 160 nm from the edge of
the WG, as shown in Fig. 1(a). As BWG we take the
homogeneous part of this WG, with a = 200 nm and ε = 2.4.
For the numerical calculations, we use a finite basis with
N = NWG + NFP + Ncut basis states, which includes WG, FP,
and cut modes, respectively. The subset of FP modes is chosen
by truncating the full set of FP modes on the physical sheet
to |kn| < kmax, with a suitably chosen cutoff kmax, while the
subset of cut modes is produced by a discretization of the cut,
as detailed in Appendix C.

To demonstrate the efficiency of the WG-RSE, we calculate
the S matrix Ŝ [11] containing the matrix elements Sij giving
the complex amplitudes of scattering from incoming WG mode
j to outgoing WG mode i. The examples used in this work have

FIG. 3. Relative error of the S matrix Ŝ versus computational time
on a CPU Intel Core i7-5830 K. Data is shown for WG-RSE, a-FMM
and ComSol, and h̄ω of 1, 3, and 5 eV, as labeled. The basis size N

is indicated for the 3 eV WG-RSE data.

equal WG modes on both sides, such that we can enumerate
them using i,j = 1,2, . . . ,2NWG with the lower (higher) half
referring to the modes on the left (right) side of the structure,
respectively. The S matrix determines the power scattering
matrix Pij = |Sij |2. Since the structures considered in this
work have a mirror symmetry plane at z = 0, we can write the
power scattering matrix P̂ as a symmetric matrix

P̂ =
(

R̂ T̂

T̂ R̂

)
, (17)

which contains transmission Tij and reflection Rij coefficients
with i,j = 1,2, . . . ,NWG with the WG modes enumerated with
decreasing pn. The calculated transmission coefficients Tij

are shown in Fig. 1(c) versus photon energy h̄ω. We can
see that the asymmetric hole in this WG allows up to 25%
power conversion from the fundamental (even) WG mode to
the first excited (odd) mode. The electric field for excitation
with the fundamental mode is given in Fig. 1(b), illustrating
this conversion.

Since no analytical solution for Ŝ is available, we define the
relative error1 of the S matrix as ‖Ŝ − Ŝ0‖/‖Ŝ0‖, with respect
to Ŝ0 calculated using the WG-RSE with the largest basis
considered, N = 20000. Figure 3 shows a comparison of the
relative error of the WG-RSE with calculations using a-FMM
and ComSol (see Appendix F for details). We see that the WG-
RSE is typically one to two orders of magnitude more efficient
than ComSol and a-FMM. It is important to note that this
conclusion does not depend on our choice to use Ŝ0 calculated
by the WG-RSE. All methods eventually reach an error below
10−6, so that for errors 10−6 the results are independent of
this choice. We show this explicitly later in Fig. 7.

1The norm of a matrix Â is defined as ‖Â‖ = sup‖x‖=1 ‖Âx‖ where
‖x‖ is the Euclidean norm of vector x.
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FIG. 4. As Fig. 1 but for a double hole as sketched in (a). The
structure has mirror symmetry with respect to the plane x = 0. (b),
(c) Electric field amplitude for excitation with WG mode 1 (b) and 3
(c), at h̄ω = 4.783 eV from the left, on a linear color scale as given,
overlaid with the WG outline. (d) Relative power transmission Tij ,
from left WG mode j to right WG mode i, as function of the photon
energy.

B. Waveguide with double hole

As a second example for the calculated transmission using
the WG-RSE method, we show here the results for a double
hole perturbation of a waveguide. The structure is shown in
Fig. 4(a), having mirror symmetry about the x = 0 plane. The
resulting transmission in Fig. 4(d) shows selection rules as no
conversion between WG modes of different parity is occurring,
e.g., T12 = 0. For a photon energy of 4.8 eV, a nearly complete
conversion between modes 1 and 3 is found (note that Tij = Tji

for systems with mirror symmetry about the z = 0 plane). This
is illustrated by the field distributions for excitation with WG
mode 1 in Fig. 4(b) and WG mode 3 in Fig. 4(c).

C. Waveguide with gold bar

As an example for a strongly dispersive and absorptive
material as perturbation, we fill the hole in the waveguide of

FIG. 5. As Fig. 1, but filling the hole in the waveguide with gold.
The discrete energies used are the ones tabulated in Ref. [31].

Sec. III A with gold. Since the WG-RSE uses a fixed frequency,
the dispersion of the susceptibility is simply accounted for by
using a different value of the susceptibility for each given
frequency. However, replacing vacuum with gold creates a
very strong and absorptive perturbation. The resulting field
distribution and transmission coefficients of the S matrix are
shown in Fig. 5. The data was calculated at the spectral points
for which the susceptibility was measured in Ref. [31]. We can
see that the gold bar leads to a significant reflection, visible
by the standing wave pattern in Fig. 5(b) and in the reflection
coefficient R11 shown in Fig. 5(c). The transmission of the
fundamental mode is accordingly low, in the 10% range. The
second-order mode instead has a higher transmission as it has
a node in the region of the gold bar.

The corresponding convergence is shown in Fig. 6 and
Fig. 7, using as Ŝ0 the highest accuracy WG-RSE or ComSol
calculation, respectively. In both cases, the convergence
displays similar features as for the air hole example Fig. 3.
Again, we find that the WG-RSE has a 1–2 orders of magnitude
higher numerical efficiency.

D. Waveguide with resonant cavity

As an example of an extended nonuniform WG, we chose
a cavity structure with two Bragg mirrors of 100 periods each,
shown in Fig. 8(a). Each period consists of the hole in the
waveguide of Sec. III A filled with a material of ε = 2.6,
close to the ε = 2.4 of the waveguide, followed by a waveguide
section of equal length L. The cavity is formed by a waveguide
section of length 2L, surrounded by the Bragg mirrors. The
chosen small perturbation in ε of 0.2 reduces the scattering
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FIG. 6. As Fig. 3, but filling the hole in the waveguide with gold.

losses. This structure has a cavity resonance at 1.24585 eV,
for which the waveguide is single moded, i.e., it supports only
one waveguide mode. The calculated electric field for three
photon energies is shown in Fig. 8(b). Outside the Bragg stop
band (h̄ω = 1.23 eV), the field is rather homogeneous, inside
the Bragg stop band (h̄ω = 1.245 eV) the field is decaying
as it gets reflected, and at resonance with the cavity mode
at h̄ω = 1.24585 eV a resonant enhancement in the cavity
is observed. The calculated transmission T11, reflection R11,
and losses L1 = 1 − T11 − R11, are given in Fig. 8(c) for the
WG-RSE using N = 2000. The Bragg stop band of about 5
meV width is evident, hosting a resonance at 1.24585 eV with
a Q factor of about 6000.

The loss L1 is significant, about 30%, reducing to 11%
in the stop band and increasing to 54% at resonance. The
loss results from scattering into non-WG modes by the large
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FIG. 7. As Fig. 6, but using as reference Ŝ0 the ComSol solutions
with m = 6 (see Appendix F).

FIG. 8. As Fig. 1, but filling the hole in the waveguide with
ε = 2.6, and creating a cavity structure made of two 100 period
Bragg mirrors of this perturbation with a period of 2L = 1800 nm,
surrounding a cavity of length 2L. (a) Schematic of the structure. (b)
Electric field amplitude for excitation with WG mode 1 propagating
from the left, on a linear color scale as given, overlaid with the WG
outline. Data outside the stop-band at h̄ω = 1.23 eV, in the stop band
at h̄ω = 1.245 eV, and at the cavity resonance h̄ω = 1.24585 eV.
(c) Relative power transmission T11, reflection R11, and loss L1 =
1 − T11 − R11, as function of the photon energy h̄ω. (d) As (c), but
restricting the S-matrix calculation to the WG mode.

number of interfaces present. The observed loss reduction in
the stop band is due to the lower penetration of the light into
the structure, and the enhancement at resonance is due to the
increased field inside the structure.
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FIG. 9. As Fig. 3, but for the waveguide cavity structure and the
three photon energies outside the stop-band at 1.23 eV, in the stop
band at 1.245 eV, and on resonance at 1.24585 eV, see Fig. 8. The
reference 2×2 scattering matrix Ŝ0 was calculated using the WG-RSE
with the largest basis considered, N = 20000.

We emphasize that the total length of this structure is
about 360 μm, corresponding to 363 free-space resonant
wavelengths, a large simulation space for FEM solvers, making
them inefficient. This is exemplified in the comparison of the
errors of the WG-RSE, a-FMM, and ComSol in Fig. 9. We
observe that the ComSol calculation times are around five
orders of magnitude longer than the WG-RSE for equal errors.
This time is dominated by the time to create the calculation
grid, but even with the grid already build (not shown) the
computation is still about four orders of magnitude longer than
the WG-RSE. This exemplifies the advantage of the WG-RSE
in calculating such extended structures containing fine detail.
For the a-FMM we find for large errors a similar result as
before, being about one order of magnitude slower than the
WG-RSE. For small errors however, the a-FMM convergence
slows down dramatically. We note that these results were
obtained using the same PML distance and width settings as
function of basis size as for the previous examples. It is possible
to optimize, specific to each energy, the PML parameters,
and to provide a faster convergence, which in some cases
can become comparable to the WG-RSE. However, such an
approach is computationally inefficient as a dependence on
the PML parameters needs to be explored in each case, and
the convergence behavior is not uniform. For example, relying
only on the a-FMM results in the present example, one could
be mislead to the conclusion that the results were converged
at about 0.1s CPU time, since the a-FMM results remain
effectively constant over the next two orders of CPU time.
However, at this point the actual errors are still amounting to
a few percent.

A simple approach used in the literature to treat such
long structures is reducing the calculation only to the WG
modes of the constant sections. To show the result of such
a treatment, we have limited the S-matrix calculation to
the only bound mode, which exists in each part of the

structure for the frequency range considered. Specifically,
after solving the eigenvalue problem Eq. (15), we replace the
expansion Eq. (10) by only one element—the WG mode of
the BWG, and leave only WG modes in the scattering matrix
Ŝ Eq. (E8). The result is shown in Fig. 8(d). While the cavity
resonance and the stop-band width is reproduced well, the
losses are not treated correctly—they are not present in this
model. Accordingly, we find L1 = 0 and a sharper cavity
resonance, with a Q factor of about 9000. This is expected, as
the missing non-WG modes are disabling the losses, so that
the resonance width is solely determined by the Bragg mirror
reflectivities.

IV. CONCLUSIONS

In conclusion, we have developed a waveguide resonant-
state expansion (WG-RSE), a general method, based on the
concept of resonant states, for calculating light propagation in
waveguides with varying cross sections. We have shown the
fundamental importance of resonant states, which provide a
natural discretization of the continuum of light waves scattered
by the waveguide inhomogeneities, thus building an optimal
basis for expansion of the electromagnetic field. As a result, the
WG-RSE can be orders of magnitude more computationally
efficient than present state-of-the-art methods, such as the
aperiodic Fourier modal or finite element method, as we
have demonstrated on several examples of nonuniform planar
waveguides.

In the present work, we use for simplicity an isotropic
permittivity and unity permeability. However, we believe that
the approach can be extended to anisotropic materials by
using the relevant tensors of permittivity and permeability in
the wave equation. The extension to anisotropic permittivity
can be introduced directly in the equations given in the
present work. Note, however, that this would in general mix
TE and TM modes, such that the basis used in the present
example would need to be extended to include the TM
modes.

More generally, we note that the WG-RSE approach is
transferable to other fields of physics showing wave phenom-
ena, such as acoustics and quantum mechanics, enabling a
wide application perspective.
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APPENDIX A: RESONANT STATES
OF THE BASIS WAVEGUIDE

Resonant states (RSs) of the basis waveguide (BWG) are
solutions of the wave equation

(
d2

dx2
+ α2 + k2

n

)
En(x) = 0 for |x| < a (A1)
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with outgoing or incoming BCs(
i

d

dx
± kn

)
En(x) = 0 for x = ±a, (A2)

where α = ω
√

ε − 1 and n is the integer index, which labels
the RSs. The electric field of the nth RS has the form

En(x) = Cn[eiqnx + (−1)ne−iqnx], (A3)

where qn = √
α2 + k2

n, and the RS wave numbers kn are
determined by the secular equation Eq. (6), following from
Maxwell’s BCs. Note that the solutions of Eq. (6) with
kn = ±iα, qn = 0, and odd n should be excluded from the
set of the eigenvalues since they correspond to zero electric
field. The normalization constants Cn are given by

Cn = 1

2in

√
kn

kna + i
(A4)

and are found from the orthonormality of RSs, which for the
fixed-frequency problem treated here is given by∫ a

−a

En(x)Em(x)dx

− En(a)Em(a) + En(−a)Em(−a)

i(kn + km)
= δnm, (A5)

where δnm is the Kronecker symbol. Note that Eq. (A5) is
obtained following the general procedure for normalizing RSs
as outlined in Refs. [23,26]. Interestingly, the normalization
condition Eq. (A5) for RSs at a fixed frequency does not
contain in the volume term the permittivity of the system ε(x)
as a weight function, unlike RSs of a planar system defined at
a fixed in-plane wave vector [2,23].

APPENDIX B: GREEN’S FUNCTION
OF THE BASIS WAVEGUIDE

The Green’s function (GF) G(x,x ′; ξ ) of the BWG satisfies
the wave equation(

d2

dx2
+ εω2 − ξ

)
G(x,x ′; ξ ) = δ(x − x ′) for |x| < a

(B1)

and the BCs(
i

d

dx
±

√
ω2 − ξ

)
G(x,x ′; ξ ) = 0 for x = ±a. (B2)

It has the analytic form

G(x,x ′; ξ ) = −eL(x<,k)eR(x>,k)

W (k)
, (B3)

where x< = min(x,x ′), x> = max(x,x ′), and eL(x,k) and
eR(x,k) are solutions of the corresponding homogeneous wave
equation satisfying, respectively, the left (at x = −a) and the
right (at x = a) BC. For the constant permittivity ε of the slab
these solutions have the explicit analytic form

eL,R(x,k) = ± e+(x)

N+(k)
+ e−(x)

N−(k)
, (B4)

where

e±(x,q) = eiqx ± e−iqx, (B5)

N±(k) = (q − k)eiqa ∓ (q + k)e−iqa, (B6)

k =
√

ω2 − ξ, (B7)

q =
√

α2 + k2, (B8)

and the Wronskian W (k) is given by

W (k) = e′
L(x)eR(x) − eL(x)e′

R(x) = −8iq

N+(k)N−(k)
. (B9)

Note that the GF is invariant with respect to the sign of q,
but changes its value if the sign of k in Eq. (B3) changes
to the opposite. Therefore, the square root that appears in the
definition of k, originating from the BCs Eq. (2), produces a cut
of the GF in the complex ξ plane, going from the branch point
at ξ = ω2 (corresponding to k = 0) to infinity. The difference
in the values of the GF on different sides of the cut is then
given by

G(x,x ′,ξ ) = −eL(x<,k)eR(x>,k)

W (k)

+ eL(x<, − k)eR(x>, − k)

W (−k)

= −2πi
∑
ν=±

σν(ξ )eν(x<,q)eν(x>,q), (B10)

where

σ±(ξ ) = k

4π [α2 cos(2qa) ∓ (q2 + k2)]
. (B11)

In addition to the cut, the GF has simple poles in the complex
ξ plane, at ξ = ξn, determined by the equation W (k) = 0,
equivalent to Eq. (6). The residues of the GF Eq. (B3) at these
poles are

ResG(x,x ′; ξn) = − (−1)nkn

4(kna + i)
e±(x,qn)e±(x ′,qn), (B12)

using e+(x,qn) for even n and e−(x,qn) for odd n. Now,
choosing the cut � as shown in Fig. 10 and selecting the
physical Riemann sheet, which contains the waveguide (WG)
modes and the Fabry-Perot (FP) modes with Re(k) > 0, we
apply the residue theorem to the function G(x,x ′; ξ ′)/(ξ − ξ ′),
integrating it in the complex ξ ′ plane, along a closed contour
shown in Fig. 10. The contour consists of a large circle, two
parallel lines circumventing the cut, and a vanishing half circle
surrounding the branch point. Since the GF is vanishing at
large ξ ′ and is finite at the branch point, both circular integrals
vanish, and the residue theorem yields

G(x,x ′; ξ ) =
∑
n∈S

ResG(x,x ′; ξn)

ξ − ξn

−
∫ ω2+i∞

ω2

G(x,x ′,ξ ′)dξ ′

2πi(ξ − ξ ′)
.

(B13)

Here S includes all the poles of the GF inside the closed
contour, i.e., all poles on the selected physical sheet, and the
integration in the second term is performed along the cut.
Using Eqs. (B10) and (B12), this results in Eqs. (7)–(9).
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Re(ξ)

Im(ξ) Γ

FIG. 10. Physical Riemann ξ sheet. Symbols mark poles of
the Green’s function G(x,x ′; ξ ) of the BWG. The cut � starting
from the branch point at ξ = ω2 is shown by a red line. Green curve
marks the path of integration.

Note that the discrete modes En(x) and the cut modes
E±(x; ξ ) together constitute a complete set of basis functions,
suitable for expansion of an arbitrary field within the region
|x| � a. This can be seen by substituting the series Eq. (7)
into Eq. (4) and using Eq. (A1), valid for both discrete and cut
modes, which yields the closure relation∑

n

∫
En(x)En(x ′) = δ(x − x ′). (B14)

APPENDIX C: DISCRETIZATION OF THE CUT

In numerical calculations, we discretize the remainder of
the continuum of radiation modes, represented by the cut � in
Fig. 10 (an example of the cut weight σ± is shown in Fig. 11),
by replacing the cut with a finite number of poles, which we
add to the basis of RSs along with the normal RSs included in
S. This is done following a similar procedure as described in
Ref. [25]. Namely, we first split the cut modes into even and

FIG. 11. Cut weight σ± along the cut � for a photon energy of
h̄ω = 3 eV. Other parameters as in Fig. 1 of the main text.

odd subgroups, labeled by ν = + and ν = −, respectively.
Then, for each subgroup, we divide the cut into Nν

cut intervals
[ξν

n ,ξ ν
n+1] with an equal weight defined as

wν =
∫ ξν

n+1

ξν
n

|
√

σν(ξ )|dξ, (C1)

in this way determining the points ξν
n , where n =

1,2, . . . Nν
cut,Ncut = N+

cut + N−
cut,ξ

ν
1 = ω2, and ξν

Nν
cut+1 = ω2 +

i∞. Note that the normalization constants of the cut states
Eq. (9) are given by

√
σν(ξ ). Each interval [ξν

n ,ξ ν
n+1] is then

replaced by a fictitious RS having the wave function given, as
in Eq. (8), by

Ẽν
n(x) = C̃ν

n (eiq̃nx + νe−iq̃nx), (C2)

where the coefficients C̃ν
n and the positions ξ̃ ν

n of the fictitious
poles are defined by

C̃ν
n =

(∫ ξν
n+1

ξν
n

σν(ξ )dξ

)1/2

, (C3)

ξ̃ ν
n = 1(

C̃ν
n

)2

∫ ξν
n+1

ξν
n

σν(ξ )ξdξ, (C4)

and q̃n and k̃n are given by Eqs. (B7) and (B8). The resulting
fictitious RSs produce a set of modes S̃, which we add to the
basis of RSs S and treat the resulting discrete matrix problem
numerically. The final basis consists of N = NWG + NFP +
Ncut basis states, which include WG, FP, and cut modes, respec-
tively. In numerical calculations, we use a ratio between FP
and cut poles of NFP/Ncut ≈ (ωa)/(2 log N ), which we found
to approximately minimize the errors for a given basis size N .

APPENDIX D: CONVERGENCE OF THE FIXED
FREQUENCY RSE

In this section, we present the convergence of the fixed-
frequency RSE Eq. (15) for the slot region of the waveguide
considered in the main text [see Fig. 1(a)], versus basis size
N . The relative error of the in-plane wave vector � for the
WG modes is shown in Fig. 12 versus basis size N and
computational time on a CPU Intel Core i7-5830K. We find a
convergence of the relative error scaling with N−2.5, which is
close to the N−3 scaling of the RSE [23,24]. The somewhat
slower convergence can be related to the residual role of the
continuum represented by the cut, which does not allow for a
natural discretization. In terms of computing time, the relative
error scales approximately as t−1 for large N , where it is
dominated by the diagonalization of a nonsparse matrix with
a computational complexity scaling as N3.

APPENDIX E: S MATRIX FOR A LAYERED
INHOMOGENEITY OF THE WAVEGUIDE

Let us suppose that the nonuniform WG is represented
by L uniform regions, so that in each region l defined as
zl−1 < z < zl , the permittivity ε(x,z) = ε(x,zl) is constant,
where l = 1,2, . . . ,L, and z0 = −∞ and zL = ∞. In this case,
Eq. (13) has an exact analytic solution. To find it, we introduce,
for each region l, a vector �Al(z) and a matrix M̂l having
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FIG. 12. Relative error of the in-plane wave vector �j for the layer
with the hole, for the WG modes (j = 1: solid, j = 2: dashed, j = 3:
dotted) versus basis size N (a) and CPU time (b), for different photon
energies h̄ω as indicated. The approximate convergence scalings
∝N−2.5 and ∝ t−1 are indicated.

elements

( �Al)n(z) = An(z), (E1)

(M̂l)nm = p2
nδnm + ω2Vnm(zl), (E2)

respectively, given by the expansion coefficients An(z) and z-
independent matrix elements Vnm(zl). Then Eq. (E2) becomes

− d2

dz2
�Al(z) = M̂l

�Al(z). (E3)

Its solution in region l can be written as

�Al(z) = Êl(e
iK̂l (z−zl ) �b+

l + e−iK̂l (z−zl ) �b−
l ),

= Êl(e
iK̂l (z−zl−1) �d+

l + e−iK̂l (z−zl−1) �d−
l ), (E4)

where K̂l and Êl are, respectively, a diagonal matrix of the
eigenvalues and a matrix of the corresponding eigenvectors of
the eigenvalue problem Eq. (15), which can be written as

M̂lÊl = ÊlK̂
2
l , (E5)

where the eigenvalues � form the diagonal matrix K̂l and the
eigenvectors with components cm columns of the matrix Êl .

�b+
l and �b−

l (or �d+
l and �d−

l ) in Eq. (E4) are some constant
vectors having the meaning of amplitudes of waves propagat-
ing, respectively, in the positive and negative direction of z.
Maxwell’s BCs provide relations between these amplitudes in
neighboring layers:

Êl(�b+
l + �b−

l ) = Êl+1( �d+
l+1 + �d−

l+1), (E6)

ÊlK̂l(�b+
l − �b−

l ) = Êl+1K̂l+1( �d+
l+1 − �d−

l+1). (E7)

Using these relations and the S-matrix approach [32], we find
the S matrix Ŝ of the whole system, which relates the incoming
(�b+

1 and �d−
L ) and outgoing (�b−

1 and �d+
L ) amplitudes, in the left

(l = 1) and the right (l = L) layers just at their interfaces:(�b−
1�d+
L

)
= Ŝ

(�b+
1�d−
L

)
. (E8)

For the indexes i and j corresponding to WG modes, one
can also calculate [11] the power matrix Pij = |Sij |2, which
connects power fluxes in outgoing WG modes with incoming
WG modes.

APPENDIX F: a-FMM AND COMSOL MODELS

1. a-FMM

The details of the a-FMM method used for Fig. 3 of the main
text is given in Ref. [8]. We employed a quadratic PML with a
damping strength σ = 2/|x − xt,b|p and p = 2 (see Eq. (49)
in Ref. [8]). Here, xt,b = ±(a + hair) are the coordinates of
the boundaries of the top and bottom PMLs, where hair is
the distance between the PML and the WG. To explore the
convergence we increase the number of harmonics Ng (see
Ref. [8], where Ng = 2N + 1) and simultaneously increase
the thickness hPML/2 of the PML and hair according to

hPML = hair = a

2
log10 Ng. (F1)

This link between the parameters was found to be close to
optimal for the convergence of the hole structure of Sec. III A,
for the energies shown.

2. ComSol

The structure used in the ComSol calculations for Fig. 3 is
shown in Fig. 13. It has two variable parameters. The first one
is the maximum element size of the mesh in air . The second
variable parameter is the height of air slab hair. We used

 = C12−m and hair = C2 + C3m, (F2)

20
0 

nm
h a

ir
20

0 
nm

h a
ir

200 nm 200 nm

40
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nm
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11
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nm

13
0 

nm

1300 nm

50
nm

50
nm

50
nm

50
nm

50
nm

50
nm

50
nm

50
nm

FIG. 13. Schematic of the structure used in ComSol for Fig. 3 of
the main text. Blue indicates the waveguide, green indicates PMLs,
vertical red lines mark ports. We use one port per waveguide mode.
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where C1 = 100 nm, C2 = 500 nm, C3 = 400 nm, and m =
0,0.1,0.2,0.3, . . . is parametrizing the convergence. This link

between the parameters was found to be close to optimal for
the convergence of the hole structure of Sec. III A.
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