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Guided modes in the plane array of optical waveguides
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It is known that for the isolated dielectric cylinder waveguide, the modes with a certain angular symmetry
cannot be guided ones (without loss by radiation) if their frequency is smaller than the cutoff frequency ω∗,
which is completely determined by the waveguide refractive index and its radius. It is shown in the paper that
the infinite plane periodic array of such waveguides possesses guided modes (with the same angular symmetry)
within the frequency domain which is below the frequency ω∗. This is due to the inevitable interaction between
the waveguides. As far as the finite array is concerned, the modes in this frequency domain are weakly radiating
ones, but their quality factor Q increases as Q(N ) ∼ N3, with N being the number of the waveguides in the
array. This dependence is both obtained numerically, using the multiple scattering formalism, and justified within
the framework of a simple analytical model.
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I. INTRODUCTION

The optical waveguides are the inherent component of
the optical and optoelectronic devices, indispensable for the
optical signal’s transmission between different parts of the
system. The interaction between the closely spaced waveg-
uides usually results in the undesirable effects that distort the
transmitted signal. However, in some cases, the interaction
between the waveguides can be exploited for practical pur-
poses. In particular, this concerns the plane periodic arrays
of waveguides, which are a special kind of low-dimensional
photonic crystal. The main feature of such systems is a
band structure of the optical spectrum which defines its
peculiar properties [1–4]. A low-dimensional photonic crystal
composed of the parallel rods is of special interest. The band
structure of the plane array composed of the semiconductor
cylinders was investigated in Ref. [5]. Then a similar metallic
structure, which took into account dissipation, was computed
in Ref. [6]. Superconductive photonic crystals of such kind
were considered in [7]. Photonic crystals composed of parallel
cylinders are useful for various applications [8]. In particular,
they reveal negative-angle refraction and reflection [9]. On the
other hand, the array of parallel interacting cylinders is an
ideal system to simulate various physical phenomena inherent
in condensed-matter physics, such as Anderson localization,
Bloch oscillations, Bloch-Zener tunneling, etc. [10–15].

The electromagnetic field which describes a guided mode in
a waveguide is finite inside the waveguide, while it is vanishing
at a large distance from it. For the isolated dielectric cylinder
waveguide, all the components of the electromagnetic field
are expressed via its z components, with z being directed

along the waveguide axis. The angular dependence of these
components is determined by the factor eimϕ , with m being
an integer (see the next section). It is known that except for
the particular case m = 1, the modes cannot be guided ones
(without loss by radiation) if their frequency is smaller than
the cutoff frequency ω∗, which is completely determined by
the waveguide refractive index and its radius [16]. This is
due to the fact that the conversion of such modes with the
frequency below ω∗ into a free photon is possible. However, in
various applied tasks, it may be necessary to have such guided
mode below the frequency ω∗ for the given waveguides. In
particular, such problem may appear in the following case.
Indeed, along with the radiation, there exist losses connected
with the absorption by the material itself. If the frequency
window is located below the cutoff frequency ω∗, there arises
a problem to shift the frequency ω∗ into this window region.

It was shown in Refs. [17–21] that the arrays of the
interacting identical microspheres manifest the features that
are not inherent in a single isolated microsphere. In particular,
the quality factor for the whispering-gallery modes reveals
a remarkable increase for such arrays. This phenomenon,
initially predicted numerically, was explained using the
concept of the light-cone constraint [17,19].

In this paper, we investigate a possibility of a formation
of high-quality guided modes (with given angular symmetry)
in the plane waveguide array which are below the cutoff
frequency of the isolated waveguide ω∗. Thus our aim is to
suppress the radiation loss using the array of the waveguides.
First, we consider the infinite plane periodical array of the
waveguides and show that taking into account the interaction
between them results in the appearance of the guided modes
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FIG. 1. The optical waveguide array. The polar coordinates of
radius vector r relative to different waveguides.

below ω∗. These modes possess the infinite Q factor. However,
actually we deal with the array of a finite size and the modes
become low radiating ones. For this reason, we investigate
how the Q factor of the low-radiating modes depends on the
number of the waveguides in the array N . Using the multiple
scattering formalism (MSF), it is shown numerically that
Q(N ) ∼ N3. This formalism is based on the exact description
of the electromagnetic waves which are scattered by the infinite
cylinder [22]. Besides, we propose a simple model which
qualitatively explains this cubic dependence.

The paper is organized as follows. In Sec. II, we describe
the MSF, giving a brief derivation of the principal relations.
Based on the relations obtained, the numerical simulation for
the infinite and the finite arrays of cylinder waveguides is
given in Sec. III. A clear qualitative explanation of the results
obtained numerically is given in Sec. IV.

II. MULTIPLE SCATTERING FORMALISM

Let us consider the array of N parallel cylindrical dielectric
waveguides (see Fig. 1). The axes of the waveguides are in the
xz plane and are parallel to the z axis. The array is equidistant,
with a being the distance between the axes of the nearest
waveguides. All the waveguides are assumed to have the same
radius R and the same refractive index n. The refractive index
of the environment is n0. The system of units where the speed
of light c = 1 is used.

Let us consider a guided mode with a frequency ω which
is excited in the array. Because of the translation invariance in
the z direction, all the components of the electromagnetic field
describing the guided mode depend on the coordinate z as eiβz,
with β being a propagation constant. Thus, all the components
of the electromagnetic field describing the guided mode are
proportional to the factor e−iωt+iβz. First, let us describe the
electromagnetic field inside the waveguides. The field inside
the j th waveguide, being of a finite value, may be represented
as follows:

Ẽj (t,r) = e−iωt+iβz
∑

m=0,±1,...

eimφj [cjm Ñω′βm(ρj )

− djm M̃ω′βm(ρj )],

H̃j (t,r) = e−iωt+iβz n
∑

m=0,±1,...

eimφj [cjm M̃ω′βm(ρj )

+ djm Ñω′βm(ρj )], (1)

where r = (x,y,z) = (ρ,z), ρj = |ρ − aj | < R, φj is the
polar angle for the vector ρ − aj (see Fig. 1), and ω′ = nω.
The vector cylinder harmonics M̃ω′βm(ρj ) and Ñω′βm(ρj ) are
defined as follows:

Ñω′βm(ρj ) = er

iβ

κ
J ′

m(κρj ) − eφ

mβ

κ2ρj

Jm(κρj )

+ ez Jm(κρj ), (2)

M̃ω′βm(ρj ) = er

mω′

κ2ρj

Jm(κρj ) + eφ

iω′

κ
J ′

m(κρj ), (3)

where κ =
√

n2ω2 − β2, Jm(κρj ) is the Bessel function, and
the prime means the derivative with respect to the argument
κρj . Thus, the guided mode inside the j th waveguide is
determined by the frequency ω, the propagation constant β,
and the partial amplitudes cjm, djm.

Now let us turn to the electromagnetic field for the same
guided mode outside of the array. This field is a sum of the
contributions induced by all the waveguides,

E(t,r) =
N∑

j=1

Ej (t,r), H(t,r) =
N∑

j=1

Hj (t,r). (4)

For the guided mode, the contribution of the j th waveguide
should vanish at ρj → ∞. Therefore, one can write

Ej (t,r) = e−iωt+iβz
∑
m

eimφj
[
ajm Nω0βm(ρj )

− bjm Mω0βm(ρj )
]
,

(5)
Hj (t,r) = e−iωt+iβzn0

∑
m

eimφj
[
ajm Mω0βm(ρj )

+ bjm Nω0βm(ρj )
]
,

where ρj > R. In (5), another kind of vector cylinder harmon-
ics is introduced,

Nω0βm(ρj ) = er

iβ

κ0
H ′

m(κ0ρj ) − eφ

mβ

κ2
0 ρj

Hm(κ0ρj )

+ ez Hm(κ0ρj ), (6)

Mω0βm(ρj ) = er

mω0

κ2
0 ρj

Hm(κ0ρj ) + eφ

iω0

κ0
H ′

m(κ0ρj ), (7)

where Hm(κ0ρj ) is the Hankel function of the first kind,
ω0 = n0ω, and κ0 =√

n2
0ω

2−β2. Thus, the contribution of the
j th waveguide into the guided mode field outside of the
array is determined by the frequency ω, the propagation
constant β, and the partial amplitudes ajm, bjm. Note that for
β = 0, expansions (1) and (5) transform into the corresponding
expressions in [22]; however, different notations are used there.
Below, the factor e−iωt+iβz is omitted.

Below, for the purpose of illustration of the effect, we
confine ourselves to the zero-harmonic approximation. This
means that only the terms with m = 0 are taken into account
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in (1) and (5). It is easy to convince ourselves that in this
case, the guided modes are either transverse-magnetic (TM)
modes or transverse-electric (TE) ones. For the TM mode,
bj0 = dj0 = 0, while for the TE mode, aj0 = cj0 = 0. As an
example, let us consider the TM modes. Then, Eqs. (1) and (5)
take the form

Ẽj (r) = cj Ñω′β0(ρj ), H̃j (r) = cjn M̃ω′β0(ρj ), ρj < R,

(8)

Ej (r) = aj Nω0β0(ρj ), Hj (r) = ajn0 Mω0β0(ρj ), ρj > R.

(9)

Here the notations aj , cj are used instead of aj0, cj0.
Let Rj be the radius vector of a point on the surface of

the j th waveguide. Then the fields Ẽj (Rj ), H̃j (Rj ) in Eq. (1)
and the fields E(Rj ) H(Rj ) in Eq. (4) obey the boundary
conditions on the surface of this waveguide. Generally, there
are six boundary conditions. However, for the TM modes, only
two of them are required,

[E(Rj )]z = [Ẽj (Rj )]z, [H(Rj )]φ = [H̃j (Rj )]φ. (10)

These equations determine the partial amplitude aj and cj for
given ω and β. To represent Eqs. (10) in a convenient form, one
should express the fields El(Rj ) for l �= j entering in Eq. (4)
in terms of the functions Ñ using the Graph formula,
[

Nω0βn(ρl)
Mω0βn(ρl)

]
einφl =

+∞∑
m=−∞

Ulj
nm(ω,β)

[
Ñω0βm(ρj )

M̃ω0βm(ρj )

]
eimφj ,

(11)
where

Ulj
nm(ω,β) = Hn−m(κ0a|l − j |) [sign(j − l)]n−m. (12)

For the m = 0 approximation, one has

Nω0β0(ρl) ≈ Ul−j (ω,β) Ñω0β0(ρj ),
(13)

Mω0β0(ρl) ≈ Ul−j (ω,β) M̃ω0β0(ρj ),

where Ul−j (ω,β) = U
lj

00(ω,β). Then, it follows from Eq. (9)
that

El(r) = al Ul−j (ω,β) Ñω0β0(ρj ),

Hl(r) = al n0 Ul−j (ω,β) M̃ω0β0(ρj ). (14)

Thus,

E(r) = aj Nω0β0(ρj ) +
∑
l �=j

al Ul−j (ω,β) Ñω0β0(ρj ),

H(r) = aj n0 Mω0β0(ρj ) +
∑
l �=j

al n0 Ul−j (ω,β) M̃ω0β0(ρj ).

(15)

Substituting (15) and (8) into (10), one obtains

aj H0(κ0R) +
∑
l �=j

al Ul−j (ω,β) J0(κ0R) = cj J0(κR),

aj n0
iω0

κ0
H ′

0(κ0R) +
∑
l �=j

al n0 Ul−j (ω,β)
iω0

κ0
J ′

0(κ0R)

= cj n
iω′

κ
J ′

0(κR). (16)

Then the system of equations (16) is reduced to the form

aj

ā(ω,β)
−

∑
l �=j

Ul−j (ω,β) al = 0, (17)

cj = c̄(ω,β) aj , (18)

where

ā(ω,β) = n2κ0 J ′
0(κR) J0(κ0R) − n2

0κ J0(κR) J ′
0(κ0R)

n2
0κ J0(κR) H ′

0(κ0R) − n2κ0 J ′
0(κR) H0(κ0R)

,

(19)

c̄(ω,β) = n2
0κ{H0(κ0R)J ′

0(κ0R) − H ′
0(κ0R)J0(κ0R)}

n2
0κJ ′

0(κ0R)J0(κR) − n2κJ0(κ0R)J ′
0(κR)

. (20)

The terms Ul−j (ω,β) in Eq. (17) describe the interaction
between the waveguides. If the interaction Ul−j (ω,β) in
Eq. (17) is neglected, the poles of ā(ω,β) or c̄(ω,β) determine
the guided modes for the isolated waveguide.

The system of equations (17) possesses nontrivial solutions
if

det

∥∥∥∥ δjl

ā(ω,β)
− Ul−j (ω,β)

∥∥∥∥ = 0. (21)

This equation relates the frequency of the guided mode ω and
its propagation constant β implicitly.

For the infinite periodical array of identical waveguides, the
solution of Eq. (17) reads

aj = a0 eikaj, − π/a < k � π/a. (22)

In this case, the nontrivial solution exists if

1

ā(ω,β)
− U (ω,β,k) = 0, (23)

where

U (ω,β,k) =
∑
l �=0

Ul(ω,β) eikal. (24)

Equation (23) determines the dispersion law ω(β,k). If the
propagation constant β is real, the corresponding mode
frequencies may be either real or complex. If the frequency
is real, the mode possesses an infinite Q factor. Otherwise,
the mode has a finite lifetime and the imaginary part of the
frequency determines the mode decay rate. However, if
the corresponding quality factor is large, the mode may be
considered as a guided one.

III. NUMERICAL SIMULATION FOR THE INFINITE AND
THE FINITE ARRAYS

Let us consider the infinite array of the waveguides with
the geometric parameters and the refractive indices which
are chosen to be close to those in Ref. [14]. The specific
values of the parameters are taken so that the illustration of the
results looks quite representative. For this reason, one takes
the waveguide radius R = 1.975 μm, the refractive index of
the waveguides n = 1.554, and the refractive index of the
environment n0 = 0.99n = 1.538. Using (19), one finds the
cutoff frequency for the isolated waveguide, ω∗ = 5.57 μm−1.

This value corresponds to the cutoff propagation constant
β∗ = 8.57 μm−1. (Let us remind the reader that the speed
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FIG. 2. The dispersion curve for the infinite array.

of light c = 1 and, therefore, the frequency has a dimension
of the inverse length.)

The modes we are interested in appear due to the interaction
between the waveguides. For this reason, we assume that the
neighbor waveguides touch each other, since in this case the
interaction reveals itself the most strongly. As an example, let
us choose the propagation constant β = 8 μm−1 < β∗. The
dispersion curve ω(β,k), which is a numerical solution to
Eq. (23), is presented in Fig. 2 by the thick solid line.

One sees that the curve is completely located within the
domain β < n0ω(k) <

√
β2+k2. A physical explanation of this

fact is given below. These numerical results completely support
the kinematic criterion for the mode to be one without loss by
radiation. Thus the infinite periodical array of the waveguides
may possess the guided modes with the frequencies below the
cutoff frequency of the single waveguide.

The guided modes that are inherent in the periodical array
found above (see Fig. 2) possess the infinite quality factor
Q = 2Re ω/|Im ω|. This is due to the fact that the array is
infinite. However, actually one deals with the arrays composed
of a finite number of the waveguides N . On the other hand,
it is evident that for N 
 1, the array should manifest the
features similar to the infinite array. In particular, the guided
modes should possess a high quality. Let us investigate how
the quality factor Q depends on the number of the waveguides
N.

Using Eq. (21), one can obtain numerically that for a
finite N 
 1, the highest-quality factor is reached for the

FIG. 4. The partial amplitude for the mode with the highest-
quality factor.

modes whose frequency is close to the upper edge of the
Brillouin zone, k ≈ π/a (such a feature is also inherent for
the array of spherical particles [17,19,21]). The dependence
of the quality factor on the number of the waveguides N

just for modes with the highest Q factor is illustrated by
two examples: the waveguides are touching, a = 2R, and
the waveguides are spatially separated, a = 3R. The three
values for the propagation constant smaller than β∗ are taken:
β1 = 6 μm−1, β2 = 7 μm−1, β3 = 8 μm−1 < β∗. The results
of the numerical simulation are presented in Fig. 3. The
analysis of the dependencies in this figure reveals a remarkable
feature: for N > 10, the dependence of the quality factor
Q(N ) ∼ N3.

Let us retrieve, using Eq. (17), the relation between
the partial amplitudes aj . A typical dependence, obtained
numerically, is presented as an example in Fig. 4 for the case
N = 15.

IV. THE INTERPRETATION OF THE
NUMERICAL RESULTS

Knowing the dependence ω(β,k) allows us to determine the
features of the guided modes. Let us pay attention to the fact
that the reason for the mode to possess a finite lifetime is a
conversion of it into a free photon. That mode is a radiative
one. First, let us consider a single waveguide. Then the mode is

FIG. 3. The dependence of the quality factor on the number of the waveguides N for the plane array of waveguides.
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described by a frequency ω and a propagation constant β. For
the conversion into a free photon to takes place, the photon
wave vector q should satisfy the following two conditions:
|q| = n0ω and qz = β. Since qz < |q|, the photon can be
emitted only if β < n0ω. In the opposite case β > n0ω, the
mode is one without loss by radiation and it is a guided
one with the infinite quality factor. Let us turn to the infinite
plane periodic array. In this case, a mode is determined by
a quasiwave vector k, in addition to the frequency ω and the
propagation constant β. Thus, the wave vector q of the emitted
free photon satisfies three conditions: |q| = n0ω, qz = β, and
qx = k. It is obvious that

√
q2

x + q2
z < |q|. So, the mode can

be converted into a free photon only if
√

k2+β2<n0ω. Thus, the
infinite periodical array possesses guided modes within the
frequency domain, which obeys the kinematic criterion

β < n0ω <
√

β2 + k2, (25)

where the single waveguide allows only the radiating modes.
Note that since nω(β,k) <

√
β2+k2, a guided mode may not

exist for small k at all.
Then, let us explain qualitatively the cubic dependence for

the Q factor found in the previous section. First, let us consider
the infinite array of the waveguides. Let Aj (t) be the effective
time-dependent partial amplitude for the j th waveguide, which
characterizes the waveguide as a whole. The time evolution of
Aj (t) may be approximately described by the equation which
is similar to a Schrödinger one,

i
dAj

dt
(t) + V [Aj−1(t) + Aj+1(t)] = 0. (26)

Here, V is the effective coupling between the nearest waveg-
uides. Let us find the solution for this equation in the form

Aj (t) = A0 e−iωt+ikj , − π < k � π. (27)

Substituting (27) into (26), one obtains the dispersion law

ω(k) = −2V cos k. (28)

Now let us turn to the finite array. As found above, the
infinite array possesses the infinite Q, while the finite array
possesses a large but finite Q (see Fig. 3). For this reason, it
is natural to assume that this is connected with the availability
of the edge waveguides in the array, which are responsible for
the radiation of the photon. Based on this fact, one can write
for the finite array the equation similar to Eq. (26),

i
dAj

dt
(t) + V (1 − δj1)Aj−1(t) + V (1 − δjN )Aj+1(t)

+ iγ (δj1 + δjN )Aj (t) = 0. (29)

The parameter γ � V is responsible for the free photon
emission. Using (27), one obtains, from (29),

ω Aj + V (1 − δj1) Aj−1 + V (1 − δjN ) Aj+1

+ iγ (δj1 + δjN ) Aj = 0. (30)

Note that ω = ω′ + iγ may be complex. For the particular
j = N, this equation takes the form

(ω′ + iγ ) AN + V AN−1 = 0. (31)

So,

ω′ + iγ = −V
AN−1

AN

. (32)

The dependence for aj in Fig. 4 approaches zero at the
edges of the array and resembles a cosine one. For this reason,
let us seek the solution to Eq. (30) in the form

Aj ∼ cos k (j − N/2), (33)

with k being close to π − π/N . Substituting (28) and (33) into
(32), one gets

−2V cos k + iγ = −V
cos k(N/2 − 1)

cos kN/2
. (34)

Let

k = π − π/N + x, (35)

where x is complex and |x| � π/N . For the sake of simplicity,
let us assume N to be even. Then, substituting (35) into (34),
one gets

2V cos

(
π

N
− x

)
+ iγ = V

sin (π/N + Nx/2)

sin Nx/2
. (36)

Taking into account a smallness of the arguments in the
trigonometric functions in (36), one obtains

2V + iγ ≈ V

(
2π

N2x
+ 1

)
. (37)

Then, since γ � V , one has

x ≈ 2π

N2

(
1 − i

γ

V

)
. (38)

Substituting (38) and (35) into (28), one gets

ω ≈ 2V − i
4π2γ

N3
. (39)

Then, the quality factor

Q = 2Re ω

|Im ω| = V N3

π2γ
(40)

reveals the sought-for cubic dependence.

V. CONCLUSION

In this paper, on the simple example of m = 0 modes, we
investigated the guided modes in the array of coupled waveg-
uides below the cutoff frequency of a single waveguide, i.e., in
the frequency domain where the single waveguide possesses
only the radiating modes. It is shown that the infinite periodic
array possesses a band of the guided modes with the infinite
Q factor. This is due to the inevitable interaction between the
waveguides. In the case of the finite array, the modes below the
cutoff frequency are weakly radiating ones. Their quality factor
increases with the number of waveguides as Q(N ) ∼ N3.

These results are obtained numerically using the multiple
scattering formalism. A clear physical interpretation of the
numerical results is given. Note that the effect is also similar to
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the interacting micro- and nanospheres, as mentioned in Sec. I.
The increasing of the lifetime of the excited identical nuclei
which resonantly interact by the virtual x-radiation emitted by
the nuclei was observed in [23].
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